Inter-Relations between Dietary Patterns and Glycemic Control-Related Biomarkers on Risk of Retinopathy in Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Demographic and Clinical Data Collection
2.3. Plasma Malondialdehyde (MDA) and 8-Isoprostanes
2.4. Dietary Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Cheung, C.M.; Larsen, M.; Sharma, S.; Simo, R. Diabetic retinopathy. Nat. Rev. Dis. Primers 2016, 2, 16012. [Google Scholar] [CrossRef] [PubMed]
- Erber, E.; Hopping, B.N.; Grandinetti, A.; Park, S.Y.; Kolonel, L.N.; Maskarinec, G. Dietary patterns and risk for diabetes: The multiethnic cohort. Diabetes Care 2010, 33, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Lachin, J.M.; White, N.H.; Hainsworth, D.P.; Sun, W.; Cleary, P.A.; Nathan, D.M. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes 2015, 64, 631–642. [Google Scholar] [PubMed]
- Sun, S.; Hisland, L.; Grenet, G.; Gueyffier, F.; Cornu, C.; Jaafari, N.; Boussageon, R. Reappraisal of the efficacy of intensive glycaemic control on microvascular complications in patients with type 2 diabetes: A meta-analysis of randomised control-trials. Therapie 2022, 77, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Hammes, H.P. Diabetic retinopathy: Hyperglycaemia, oxidative stress and beyond. Diabetologia 2018, 61, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Aouacheri, O.; Saka, S.; Krim, M.; Messaadia, A.; Maidi, I. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can. J. Diabetes 2015, 39, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Shirzaiy, M.; Dalirsani, Z. The effect of glycemic control on salivary lipid peroxidation in type II diabetic patients. Diabetes Metab. Syndr. 2019, 13, 1991–1994. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei-Malazy, O.; Ardeshirlarijani, E.; Namazi, N.; Nikfar, S.; Jalili, R.B.; Larijani, B. Dietary antioxidative supplements and diabetic retinopathy; a systematic review. J. Diabetes Metab. Disord. 2019, 18, 705–716. [Google Scholar] [CrossRef]
- Sabanayagam, C.; Lye, W.K.; Januszewski, A.; Banu Binte Mohammed Abdul, R.; Cheung, G.C.M.; Kumari, N.; Wong, T.Y.; Cheng, C.Y.; Lamoureux, E. Urinary Isoprostane Levels and Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2538–2543. [Google Scholar] [CrossRef] [PubMed]
- Kesavulu, M.M.; Giri, R.; Kameswara Rao, B.; Apparao, C. Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab. 2000, 26, 387–392. [Google Scholar] [PubMed]
- Jiang, F.; Zhou, L.; Zhang, C.; Jiang, H.; Xu, Z. Malondialdehyde levels in diabetic retinopathy patients: A systematic review and meta-analysis. Chin. Med. J. 2023, 136, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Cheong, Z.Y.; Tan, B.; Wong, D.; Liu, X.; Chua, J. Dietary Intake and Diabetic Retinopathy: A Systematic Review of the Literature. Nutrients 2022, 14, 5021. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.; Mancini, F.; Rajaobelina, K.; Boutron-Ruault, M.C.; Balkau, B.; Bonnet, F.; Fagherazzi, G. Diet and risk of diabetic retinopathy: A systematic review. Eur. J. Epidemiol. 2018, 33, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P.; et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2014, 37 (Suppl. S1), S120–S143. [Google Scholar] [CrossRef] [PubMed]
- Health Promotion Administration, Ministry of Health and Warfare, Taiwan. Application Instructions for the Project to Improve the Quality of Care in Diabetes Health Promotion Institutions (DHPI). (In Chinese). Available online: https://www.tade.org.tw/upload/News/file/2306-1.pdf (accessed on 10 October 2023).
- Wilkinson, C.P.; Ferris, F.L., 3rd; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T.; et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Grobe, Y.; Chavez-Tapia, N.; Sanchez-Valle, V.; Gavilanes-Espinar, J.G.; Ponciano-Rodriguez, G.; Uribe, M.; Mendez-Sanchez, N. High coffee intake is associated with lower grade nonalcoholic fatty liver disease: The role of peripheral antioxidant activity. Ann. Hepatol. 2012, 11, 350–355. [Google Scholar] [CrossRef] [PubMed]
- 8-Isoprostane ELISA Kit, Item No. 516351. Available online: https://www.caymanchem.com/product/516351 (accessed on 10 July 2022).
- Huang, M.C.; Lin, K.D.; Chen, H.J.; Wu, Y.J.; Chang, C.I.; Shin, S.J.; Hung, H.C.; Lee, C.H.; Huang, Y.F.; Hsu, C.C. Validity of a Short Food Frequency Questionnaire Assessing Macronutrient and Fiber Intakes in Patients of Han Chinese Descent with Type 2 Diabetes. Int. J. Environ. Res. Public Health 2018, 15, 1142. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Liew, G.; Tapp, R.J.; Schmidt, M.I.; Wang, J.J.; Mitchell, P.; Klein, R.; Klein, B.E.; Zimmet, P.; Shaw, J. Relation between fasting glucose and retinopathy for diagnosis of diabetes: Three population-based cross-sectional studies. Lancet 2008, 371, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Colagiuri, S.; Lee, C.M.; Wong, T.Y.; Balkau, B.; Shaw, J.E.; Borch-Johnsen, K.; DETECT-2 Collaboration Writing Group. Glycemic thresholds for diabetes-specific retinopathy: Implications for diagnostic criteria for diabetes. Diabetes Care 2011, 34, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Shiferaw, W.S.; Akalu, T.Y.; Desta, M.; Kassie, A.M.; Petrucka, P.M.; Assefa, H.K.; Aynalem, Y.A. Glycated hemoglobin A1C level and the risk of diabetic retinopathy in Africa: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2020, 14, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- Kuppan, K.; Mohanlal, J.; Mohammad, A.M.; Babu, K.A.; Sen, P.; Undurti, N.D.; Natarajan, V.; Narayanasamy, A. Elevated serum OxLDL is associated with progression of type 2 Diabetes Mellitus to diabetic retinopathy. Exp. Eye Res. 2019, 186, 107668. [Google Scholar] [CrossRef] [PubMed]
- Ito, F.; Sono, Y.; Ito, T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants 2019, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Fritz, K.S.; Petersen, D.R. An overview of the chemistry and biology of reactive aldehydes. Free Radic. Biol. Med. 2013, 59, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: The Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015, 3, 866–875. [Google Scholar] [CrossRef] [PubMed]
- Trott, M.; Driscoll, R.; Pardhan, S. Associations between diabetic retinopathy and modifiable risk factors: An umbrella review of meta-analyses. Diabet. Med. 2022, 39, e14796. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.Y.Z.; Man, R.E.K.; Fenwick, E.K.; Gupta, P.; Li, L.J.; van Dam, R.M.; Chong, M.F.; Lamoureux, E.L. Dietary intake and diabetic retinopathy: A systematic review. PLoS ONE 2018, 13, e0186582. [Google Scholar] [CrossRef] [PubMed]
- Mulpuri, L.; Sridhar, J.; Goyal, H.; Tonk, R. The relationship between dietary patterns and ophthalmic disease. Curr. Opin. Ophthalmol. 2023, 34, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, C.; Aida, R.; Tanaka, S.; Kamada, C.; Tanaka, S.; Yoshimura, Y.; Kodera, R.; Fujihara, K.; Kawasaki, R.; Moriya, T.; et al. Sodium Intake and Incidence of Diabetes Complications in Elderly Patients with Type 2 Diabetes-Analysis of Data from the Japanese Elderly Diabetes Intervention Study (J-EDIT). Nutrients 2021, 13, 689. [Google Scholar] [CrossRef] [PubMed]
- Group, A.S.; Group, A.E.S.; Chew, E.Y.; Ambrosius, W.T.; Davis, M.D.; Danis, R.P.; Gangaputra, S.; Greven, C.M.; Hubbard, L.; Esser, B.A.; et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med. 2010, 363, 233–244. [Google Scholar]
- Sasaki, M.; Yuki, K.; Hanyuda, A.; Yamagishi, K.; Motomura, K.; Kurihara, T.; Tomita, Y.; Mori, K.; Ozawa, N.; Ozawa, Y.; et al. Associations between fatty acid intake and diabetic retinopathy in a Japanese population. Sci. Rep. 2023, 13, 12903. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Kawasaki, R.; Rogers, S.; Man, R.E.; Itakura, K.; Xie, J.; Flood, V.; Tsubota, K.; Lamoureux, E.; Wang, J.J. The Associations of Dietary Intake of Polyunsaturated Fatty Acids With Diabetic Retinopathy in Well-Controlled Diabetes. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7473–7479. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J. Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol. Nutr. Food Res. 2007, 51, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J.; Selhub, J.; Shpaizer, A.; Rabkin, B.; Shacham, I.; Tirosh, O. Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health. Redox Biol. 2017, 12, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Han, X.; Wu, C.; Keel, S.; Shang, X.; Zhang, L.; He, M. Does daily dietary intake affect diabetic retinopathy progression? 10-year results from the 45 and up Study. Br. J. Ophthalmol. 2020, 104, 1774–1780. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.; Chia, A.R.; Chee, M.L.; Man, R.E.K.; Tan, G.S.W.; Lamoureux, E.L.; Wong, T.Y.; Chong, M.F.; Schmetterer, L. The relationship of dietary fish intake to diabetic retinopathy and retinal vascular caliber in patients with type 2 diabetes. Sci. Rep. 2018, 8, 730. [Google Scholar] [CrossRef] [PubMed]
- Kadri, R.; Vishwanath, P.; Parameshwar, D.; Hegde, S.; Kudva, A.A. Dietary associations with diabetic retinopathy-A cohort study. Indian. J. Ophthalmol. 2021, 69, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Song, J.T. Potential mechanisms of macular degeneration protection by fatty fish consumption. Curr. Opin. Pharmacol. 2022, 63, 102186. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Shi, X.; Fan, Y.; Wang, D.; Li, B.; Zhou, J.; Pei, C.; Ma, L. Dietary omega-3 polyunsaturated fatty acids and fish intake and risk of age-related macular degeneration. Clin. Nutr. 2021, 40, 5662–5673. [Google Scholar] [CrossRef]
- Dominguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Hadavi, H.; Mottaghi, A.; Azizi, F. Effect of dietary patterns on oxidative stress in Patiants with metabolic syndrome: Tehran Lipid and Glucose Study. Casp. J. Intern. Med. 2018, 9, 376–385. [Google Scholar]
No DR (n = 466) | DR (n = 136) | p 2 | |
---|---|---|---|
Age | 66.0 ± 8.5 | 65.2 ± 8.5 | 0.350 |
Diabetes duration (year) | 11.2 ± 7.7 | 16.6 ± 8.7 | <0.001 |
Male (%) | 234 (50.2%) | 74 (54.4%) | 0.389 |
Education ≤ 6 y (%) | 141 (30.3%) | 45 (33.1%) | 0.530 |
Current smoker (%) | 74 (15.9%) | 19 (14.0%) | 0.588 |
Alcohol drinker (%) | 45 (9.7%) | 13(9.6%) | 0.973 |
Exercise habits (%) | 324 (69.5%) | 100 (73.5%) | 0.368 |
Systolic BP (mmHg) | 139 ± 17 | 143 ± 18 | 0.003 |
Diastolic BP (mmHg) | 78 ± 11 | 79 ± 11 | 0.698 |
BMI (kg/m2) | 26.7 ± 4.0 | 26.5 ± 4.1 | 0.536 |
Hemoglobin A1c (%) | 6.9 ± 0.9 | 7.6 ± 1.1 | <0.001 |
Triglycerides (mg/dL) 3 | 134.7 ± 73.9 | 136.4 ± 122.1 | 0.847 |
Uric acid (mg/dL) 3 | 5.7 ± 1.4 | 5.9 ± 1.6 | 0.189 |
BUN (mg/dL) 3 | 15.5 ± 5.3 | 16.0 ± 6.4 | 0.438 |
Creatinine (mg/dL) | 0.9 ± 0.3 | 0.9 ± 0.3 | 0.545 |
eGFR (mL/min/1.73 m2) | 88.3 ± 27.2 | 87.2 ± 29.5 | 0.702 |
<60 ≥60 | 63 (73.3%) 403 (78.1%) | 23 (26.7%) 113 (21.9%) | 0.320 |
Malondialdehyde (µM) | 14.5 ± 4.8 | 15.9 ± 5.8 | 0.006 |
8-Isoprostane (pg/mL) 3 | 188.4 (81.8–343.9) | 190.6 (74.5–302.4) | 0.570 |
Risk Factor | No DR N (%) | DR N (%) | Crude Model OR | 95% CI | p | Adjusted Model OR 1 | 95% CI | p |
---|---|---|---|---|---|---|---|---|
Sex | ||||||||
Male | 234 (50.2) | 74 (54.4) | 1 | 1 | ||||
Female | 232 (49.8) | 62 (45.6) | 0.85 | 0.58–1.24 | 0.389 | 0.84 | 0.53–1.34 | 0.476 |
Age (year) | ||||||||
<65 | 185 (39.7) | 58 (42.6) | 1 | 1 | ||||
≥65 | 281 (60.3) | 78 (57.4) | 0.89 | 0.60–1.30 | 0.538 | 0.60 | 0.38–0.95 | 0.028 |
Duration of diabetes (year) | ||||||||
<15 | 347 (74.5) | 63 (46.3) | 1 | 1 | ||||
15–30 | 105 (22.5) | 58 (42.5) | 3.04 | 2.00–4.62 | <0.001 | 3.22 | 2.07–5.04 | <0.001 |
≥30 | 14 (3.0) | 15 (11.0) | 5.90 | 2.72–12.83 | <0.001 | 6.59 | 2.85–15.22 | <0.001 |
Smoking status | ||||||||
No | 392 (84.1) | 117 (86.0) | 1 | 1 | ||||
Yes | 74 (15.9) | 19 (14.1) | 0.86 | 0.50–1.48 | 0.588 | 0.85 | 0.46–1.58 | 0.612 |
Drinking status | ||||||||
No | 421 (90.3) | 123 (90.4) | 1 | 1 | ||||
Yes | 45 (9.7) | 13 (9.6) | 0.97 | 0.52–1.89 | 0.973 | 0.96 | 0.46–2.02 | 0.961 |
Exercise status | ||||||||
No | 142 (30.5) | 36 (26.5) | 1 | 1 | ||||
Yes | 324 (69.5) | 100 (73.5) | 1.22 | 0.79–1.87 | 0.369 | 1.24 | 0.78–1.98 | 0.361 |
Malondialdehyde (uM) | ||||||||
<16.2 | 320 (68.7) | 77 (56.6) | 1 | 1 | ||||
≥16.2 | 146 (31.3) | 59 (43.4) | 1.68 | 1.14–2.48 | 0.009 | 1.38 | 0.89–2.12 | 0.147 |
Hemoglobin A1c (%) | ||||||||
<8.5 | 443 (79.2) | 116 (81.7) | 1 | 1 | ||||
≥8.5 | 34 (7.1) | 26 (18.3) | 2.72 | 1.55–4.78 | <0.001 | 2.12 | 1.14–3.93 | 0.017 |
Factor 1 Animal Protein | Factor 2 Processed Food | Factor 3 Vegetables | |
---|---|---|---|
White meat | 0.654 | 0.034 | −0.143 |
Red meat | 0.622 | 0.061 | −0.195 |
Marine fish | 0.599 | −0.116 | 0.192 |
Freshwater fish | 0.577 | −0.191 | 0.210 |
Fatty meats and skin | 0.566 | −0.073 | 0.092 |
Smoked meat, salted meat | 0.428 | 0.177 | −0.176 |
Seafood | 0.418 | 0.276 | −0.219 |
Fresh fruits | 0.177 | 0.126 | 0.055 |
Low calorie snacks | 0.087 | 0.021 | −0.044 |
Gluten products | −0.090 | 0.486 | −0.005 |
Sause use | 0.061 | 0.460 | −0.039 |
Starch/thickened soup and food | 0.037 | 0.445 | −0.016 |
Processed soy products | −0.224 | 0.397 | 0.062 |
Fried food | 0.063 | 0.388 | −0.242 |
Canned meats | 0.056 | 0.386 | −0.168 |
Pickled vegetables | 0.127 | 0.364 | −0.009 |
Fermented products | 0.029 | 0.350 | 0.062 |
Low nitrogen staple foods | 0.145 | 0.335 | −0.117 |
Eating out | 0.056 | 0.334 | −0.197 |
Soy products | 0.017 | 0.313 | −0.102 |
Seeds and nut | 0.154 | 0.291 | 0.006 |
Chinese pastries and foreign pastries | −0.003 | 0.272 | 0.060 |
Chinese staple food | −0.047 | 0.263 | 0.176 |
Sugar substitute | −0.060 | 0.233 | 0.076 |
Eggs | 0.140 | 0.220 | −0.173 |
Root food | 0.060 | 0.201 | 0.008 |
Sugar-free tea | 0.065 | 0.179 | −0.022 |
Handshake beverages | −0.071 | 0.174 | −0.104 |
Juice | −0.063 | 0.172 | −0.028 |
Milk, yogurt | 0.070 | 0.106 | 0.062 |
Light-colored vegetables | 0.176 | 0.093 | 0.872 |
Dark-colored vegetables | 0.157 | 0.126 | 0.867 |
Bread | 0.102 | −0.002 | −0.204 |
Processed dairy products | 0.077 | 0.080 | −0.204 |
% Variance explained | 7.3% | 7.0% | 6.1% |
Crude Model | p | Adjusted Model 1 | p | ||
---|---|---|---|---|---|
OR (95% CI) | OR (95% CI) | ||||
Model 1: <2/3 animal protein diet factor score (n = 415) | |||||
Malondialdehyde (μM) | ≥16.2 vs.<16.2 | 1.20 (0.73–1.94) | 0.482 | 1.10 (0.87–1.91) | 0.734 |
Hemoglobin A1c (%) | ≥8.5 vs.<8.5 | 2.13 (1.08–4.21) | 0.029 | 1.91 (0.87–4.19) | 0.107 |
Model 2: ≥2/3 animal protein diet factor score (n = 197) | |||||
Malondialdehyde (μM) | ≥16.2 vs.<16.2 | 3.27 (1.65–6.46) | 0.001 | 2.93 (1.33–6.48) | 0.008 |
Hemoglobin A1c (%) | ≥8.5 vs.<8.5 | 5.00 (1.75–14.32) | 0.003 | 4.44 (1.34–14.68) | 0.015 |
Model 3: <2/3 processed food factor score (n = 401) | |||||
Malondialdehyde (μM) | ≥16.2 vs.<16.2 | 1.69 (1.07–2.72) | 0.026 | 1.50 (0.89–2.52) | 0.131 |
Hemoglobin A1c (%) | ≥8.5 vs.<8.5 | 2.48 (1.27–4.84) | 0.008 | 1.78 (0.84–3.78) | 0.136 |
Model 4: ≥2/3 processed food factor score (n = 201) | |||||
Malondialdehyde (μM) | ≥16.2 vs.<16.2 | 1.60 (0.78–3.30) | 0.199 | 1.43 (0.59–3.46) | 0.434 |
Hemoglobin A1c (%) | ≥8.5 vs.<8.5 | 3.33 (1.18–9.39) | 0.023 | 3.96 (1.12–14.04) | 0.033 |
Model 5: <2/3 vegetables diet factor score (n = 402) | |||||
Malondialdehyde (μM) | ≥16.2 vs.<16.2 | 1.65 (1.01–2.68) | 0.044 | 1.25 (0.73–2.16) | 0.475 |
Hemoglobin A1c (%) | ≥8.5 vs.<8.5 | 3.10 (1.54–6.24) | 0.002 | 2.57 (1.16–5.67) | 0.020 |
Model 6: ≥2/3 vegetables diet factor score (n = 200) | |||||
Malondialdehyde (μM) | ≥16.2 vs.<16.2 | 1.73 (0.89–3.34) | 0.105 | 1.61 (0.75–3.46) | 0.222 |
Hemoglobin A1c (%) | ≥8.5 vs.<8.5 | 2.14 (0.83–5.52) | 0.116 | 2.00 (0.66–6.00) | 0.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-J.; Hsu, C.-C.; Hwang, S.-J.; Lin, K.-D.; Lin, P.-C.; Huang, Y.-F.; Lee, C.-H.; Chang, C.-I.; Huang, M.-C. Inter-Relations between Dietary Patterns and Glycemic Control-Related Biomarkers on Risk of Retinopathy in Type 2 Diabetes. Nutrients 2024, 16, 2274. https://doi.org/10.3390/nu16142274
Wu Y-J, Hsu C-C, Hwang S-J, Lin K-D, Lin P-C, Huang Y-F, Lee C-H, Chang C-I, Huang M-C. Inter-Relations between Dietary Patterns and Glycemic Control-Related Biomarkers on Risk of Retinopathy in Type 2 Diabetes. Nutrients. 2024; 16(14):2274. https://doi.org/10.3390/nu16142274
Chicago/Turabian StyleWu, Yu-Ju, Chih-Cheng Hsu, Shang-Jyh Hwang, Kun-Der Lin, Pi-Chen Lin, Ya-Fang Huang, Chien-Hung Lee, Chiao-I Chang, and Meng-Chuan Huang. 2024. "Inter-Relations between Dietary Patterns and Glycemic Control-Related Biomarkers on Risk of Retinopathy in Type 2 Diabetes" Nutrients 16, no. 14: 2274. https://doi.org/10.3390/nu16142274
APA StyleWu, Y.-J., Hsu, C.-C., Hwang, S.-J., Lin, K.-D., Lin, P.-C., Huang, Y.-F., Lee, C.-H., Chang, C.-I., & Huang, M.-C. (2024). Inter-Relations between Dietary Patterns and Glycemic Control-Related Biomarkers on Risk of Retinopathy in Type 2 Diabetes. Nutrients, 16(14), 2274. https://doi.org/10.3390/nu16142274