Dietary Biodiversity and Diet Quality in Dutch Adults
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Design
2.2. Dietary Assessment
2.3. Dutch Healthy Diet Index 2015
2.4. Dietary Biodiversity Calculation
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Descriptives
3.2. DSR Scores
3.3. Dietary Biodiversity and Diet Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.S.; Kris-Etherton, P.M. Diet quality assessment and the relationship between diet quality and cardiovascular disease risk. Nutrients 2021, 13, 4305. [Google Scholar] [CrossRef] [PubMed]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0140673618322256 (accessed on 29 April 2024).
- Global Nutrition Report. 2022 Gobal Nutrition Report: Stronger Commitments for Greater Action. 2022. Available online: https://globalnutritionreport.org/reports/2022-global-nutrition-report/ (accessed on 19 March 2024).
- World Health Organization (WHO). Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; World Health Organization: Geneva, Switzerland, 2009; 70p. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Rieseberg, L.H.; Struik, P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 2014, 111, 4001–4006. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. In Public Health Nutrition; Cambridge University Press: Cambridge, UK, 2018; pp. 5–17. [Google Scholar]
- Drewnowski, A.; Popkin, B.M. The Nutrition Transition: New Trends in the Global Diet. Nutr. Rev. 1997, 55, 31–43. Available online: https://academic.oup.com/nutritionreviews/article/55/2/31/1824117 (accessed on 29 April 2024). [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2012; Available online: https://www.fao.org/3/i2624e/i2624e00.pdf (accessed on 26 January 2024).
- Jones, A.D. Critical review of the emerging research evidence on agricultural biodiversity, diet diversity, and nutritional status in low- and middle-income countries. Nutr. Rev. 2017, 75, 769–782. [Google Scholar] [CrossRef]
- Herforth, A.; Arimond, M.; Álvarez-Sánchez, C.; Coates, J.; Christianson, K.; Muehlhoff, E. A Global Review of Food-Based Dietary Guidelines. In Advances in Nutrition; Oxford University Press: Oxford, UK, 2019; Volume 10, pp. 590–605. [Google Scholar]
- Kromhout, D.; Spaaij, C.J.K.; de Goede, J.; Weggemans, R.M. The 2015 Dutch food-based dietary guidelines. Eur. J. Clin. Nutr. 2016, 70, 869–878. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Strategy on Diet, Physical Activity and Health. 2004. Available online: https://www.who.int/publications/i/item/9241592222 (accessed on 19 March 2024).
- Arimond, M.; Wiesmann, D.; Becquey, E.; Carriquiry, A.; Daniels, M.C.; Deitchler, M.; Fanou-Fogny, N.; Joseph, M.L.; Kennedy, G.; Martin-Prevel, Y.; et al. Simple food group diversity indicators predict micronutrient adequacy of women’s diets in 5 diverse, resource-poor settings1–7. J. Nutr. 2010, 140, 2059S–2069S. [Google Scholar] [CrossRef]
- Torheim, L.; Ouattara, F.; Diarra, M.M.; Thiam, F.D.; Barikmo, I.; Hatløy, A.; Oshaug, A. Nutrient adequacy and dietary diversity in rural Mali: Association and determinants. Eur. J. Clin. Nutr. 2004, 58, 594–604. [Google Scholar] [CrossRef]
- Ponce, X.; Ramirez, E.; Ne Delisle, H. A More Diversified Diet among Mexican Men May Also Be More Atherogenic. J. Nutr. 2006, 136, 2921–2927. [Google Scholar] [CrossRef]
- Mirmiran, P.; Azadbakht, L.; Msc, A.E.; Azizi, F. Dietary diversity score in adolescents-a good indicator of the nutritional adequacy of diets: Tehran lipid and glucose study. Asia Pac. J Clin Nutr. 2004, 13, 56–60. [Google Scholar]
- Powell, B.; Thilsted, S.H.; Ickowitz, A.; Termote, C.; Sunderland, T.; Herforth, A. Improving diets with wild and cultivated biodiversity from across the landscape. Food Secur. 2015, 7, 535–554. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Zimmerer, K. Understanding Agrobiodiversity and the Rise of Resilience: Analytic Category, Conceptual Boundary Object or Meta-Level Transition? Resilience 2015, 3, 1–16. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The State of the World’s Biodiversity for Food and Agriculture [Internet]; Bélanger, J., Ed.; FAO Commission on Genetic Resources for Food and Agriculture Assessments; FAO: Rome, Italy, 2019. [Google Scholar] [CrossRef]
- Díaz, S.M.; Settele, J.; Brondízio, E.; Ngo, H.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S.; et al. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 2019. Available online: https://ipbes.net/system/tdf/ipbes_global_assessment_report_summary_for_policymakers.pdf?file=1&type=node&id=35329 (accessed on 26 January 2024).
- Global Panel on Agriculture and Food Systems for Nutrition. Future Food Systems: For People, our Planet and Prosperity [Internet]; Global Panel: London, UK, 2020; Available online: https://www.glopan.org/wp-content/uploads/2020/09/Foresight-2.0_Future-Food-Systems_For-people-our-planet-and-prosperity.pdf (accessed on 26 January 2024).
- Lachat, C.; Raneri, J.E.; Smith, K.W.; Kolsteren, P.; Van Damme, P.; Verzelen, K.; Penafiel, D.; Vanhove, W.; Kennedy, G.; Hunter, D.; et al. Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proc. Natl. Acad. Sci. USA 2018, 115, 127–132. [Google Scholar] [CrossRef]
- Hanley-Cook, G.T.; Huybrechts, I.; Biessy, C.; Remans, R.; Kennedy, G.; Deschasaux-Tanguy, M.; Murray, K.A.; Touvier, M.; Skeie, G.; Kesse-Guyot, E.; et al. Food biodiversity and total and cause-specific mortality in 9 European countries: An analysis of a prospective cohort study. PLoS Med. 2021, 18, e1003834. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, C.T.M.; Buurma-Rethans, E.J.M.; Dinnissen, C.S.; Beukers, M.H.; Brants, H.A.M.; Ocké, M.C. The Diet of the Dutch: Results of the Dutch National Food Consumption Survey 2012–2016; Rijksinstituut voor Volksgezondheid en Milieu (RIVM): Bilthoven, The Netherlands, 2020. [Google Scholar]
- Slimani, N.; Ferrari, P.; Ocké, M.; Welch, A.; Boeing, H.; van Liere, M.; Pala, V.; Amiano, P.; Lagiou, A.; Mattisson, I.; et al. Standardization of the 24-hour diet recall calibration method used in the European Prospective Investigation into Cancer and Nutrition (EPIC): General concepts and preliminary results. Eur. J. Clin. Nutr. 2000, 54, 900–917. Available online: www.nature.com/ejcn (accessed on 29 April 2024). [CrossRef] [PubMed]
- The National Insitute for Public Health and the Environment. Available online: https://nevo-online.rivm.nl/ (accessed on 29 April 2024).
- Looman, M.; Feskens, E.J.; de Rijk, M.; Meijboom, S.; Biesbroek, S.; Temme, E.H.; de Vries, J.; Geelen, A. Development and evaluation of the Dutch Healthy Diet index 2015. Public Health Nutr. 2017, 20, 2289–2299. [Google Scholar] [CrossRef]
- Vellinga, R.E.; van de Kamp, M.; Toxopeus, I.B.; van Rossum, C.T.; de Valk, E.; Biesbroek, S.; Hollander, A.; Temme, E.H. Greenhouse Gas Emissions and blue water use of dutch diets and its association with health. Sustainability 2019, 11, 6027. [Google Scholar] [CrossRef]
- Steyn, N.; Nel, J.; Nantel, G.; Kennedy, G.; Labadarios, D. Food variety and dietary diversity scores in children: Are they good indicators of dietary adequacy? Public Health Nutr. 2006, 9, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Luckett, B.G.; DeClerck, F.A.J.; Fanzo, J.; Mundorf, A.R.; Rose, D. Application of the Nutrition Functional Diversity indicator to assess food system contributions to dietary diversity and sustainable diets of Malawian households. Public Health Nutr. 2015, 18, 2479–2487. [Google Scholar] [CrossRef] [PubMed]
- Albert Heijn. AH Webshop. Available online: https://www.ah.nl/ (accessed on 17 January 2024).
- Biesbroek, S.; Verschuren, W.M.; Boer, J.M.; van de Kamp, M.E.; Van Der Schouw, Y.T.; Geelen, A.; Looman, M.; Temme, E.H. Does a better adherence to dietary guidelines reduce mortality risk and environmental impact in the Dutch sub-cohort of the European Prospective Investigation into Cancer and Nutrition? Br. J. Nutr. 2017, 118, 69–80. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Hyde, E.; Debelius, J.W.; Morton, J.T.; Gonzalez, A.; Ackermann, G.; Aksenov, A.A.; Behsaz, B.; Brennan, C.; Chen, Y.; et al. American Gut: An Open Platform for Citizen Science Microbiome Research. Am. Soc. Microbiol. 2018, 3, e00031-18. [Google Scholar] [CrossRef] [PubMed]
- Heerschop, S.N.; Biesbroek, S.; Temme, E.H.M.; Ocké, M.C. Can healthy and sustainable dietary patterns that fit within current dutch food habits be identified? Nutrients 2021, 13, 1176. [Google Scholar] [CrossRef]
- Łuczaj, Ł.J. Plant identification credibility in ethnobotany: A closer look at Polish ethnographic studies. J. Ethnobiol. Ethnomed. 2010, 6, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Barbara, M.; Livingstone, E.; Black, A.E. Biomarkers of Nutritional Exposure and Nutritional Status Markers of the Validity of Reported Energy Intake 1. Am. Soc. Nutr. Sci. 2003, 133, 895S–920S. [Google Scholar]
- Schoeller, D.A. Limitations in the Assessment of Dietary Energy Intake by Self-Report. Metabolism 1995, 44, 18–22. [Google Scholar] [CrossRef]
- Mullaney, L.; O’Higgins, A.C.; Cawley, S.; Doolan, A.; McCartney, D.; Turner, M.J. An estimation of periconceptional under-reporting of dietary energy intake. J. Public Health 2015, 37, 728–736. [Google Scholar] [CrossRef]
- FAO and Biodiversity International. Guidelines on Assessing Biodiverse Foods in Dietary Surveys; FAO and Biodiversity International, Ed.; FAO and Biodiversity International: Rome, Italy, 2017; Available online: www.fao.org/publications (accessed on 30 April 2024).
- Fischer, C.G.; Garnett, T.; Food Climate Research Network. Plates, Pyramids, and Planets: Developments in National Healthy and Sustainable Dietary Guidelines: A State of Play Assessment; Food and Agriculture Organization of the United Nations and University of Oxford: Oxford, UK, 2016; 70p. [Google Scholar]
Total Population N = 2078 | Age 19–30 Years N = 516 | Age 31–50 Years N = 523 | Age 51–64 Years N = 367 | Age ≥65 Years N = 672 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | Men | Women | |
Sex, n (%) | 1043 (50.3) | 1035 (49.8) | 260 (50.4) | 256 (49.6) | 259 (49.5) | 264 (50.5) | 178 (48.5) | 189 (51.5) | 346 (51.5) | 326 (48.5) |
Age (in years), M (SD) | 50.8 (19.2) | 50.2 (19.1) | 25.3 (3.7) | 25.1 (3.6) | 42.1 (5.5) | 41.2 (5.9) | 58.1 (3.9) | 58.0 (3.9) | 72.8 (3.9) | 72.6 (3.7) |
Educational level, n (%) | ||||||||||
Low | 242 (23.2) | 360 (34.8) | 27 (10.4) | 28 (10.9) | 39 (15.1) | 53 (20.1) | 49 (27.5) | 73 (38.6) | 127 (36.7) | 206 (63.2) |
Middle | 406 (38.9) | 383 (37.0) | 116 (44.6) | 106 (41.4) | 114 (44.0) | 133 (50.4) | 68 (38.2) | 76 (40.2) | 108 (31.2) | 68 (20.9) |
High | 395 (37.9) | 292 (28.2) | 117 (45.0) | 122 (47.7) | 106 (40.9) | 78 (29.5) | 61 (34.3) | 40 (21.2) | 111 (31.1) | 52 (16.0) |
BMI (in kg/m2), M (SD) | 26.0 (4.6) | 26.6 (5.6) | 23.8 (3.8) | 24.3 (4.8) | 26.5 (4.4) | 27.3 (5.5) | 27.9 (4.7) | 28.3 (6.1) | 27.3 (4.4) | 27.5 (4.3) |
Energy intake (kcal/day), M (SD) | 2489 (712) | 1842 (487) | 2673 (748) | 1950 (538) | 2637 (817) | 1851 (539) | 2541 (674) | 1797 (468) | 2213 (507) | 1776 (388) |
Quantity consumed (grams), M (SD) 1 | ||||||||||
Fruits | 239 (255) | 280 (274) | 204 (247) | 265 (297) | 202 (236) | 231 (246) | 246 (243) | 275 (293) | 290 (272) | 335 (257) |
Vegetables | 301 (197) | 298 (210) | 300 (223) | 266 (196) | 269 (180) | 273 (208) | 289 (181) | 310 (231) | 333 (194) | 356 (203) |
Mean DSR scores, M(SD) | ||||||||||
DSR overall 2 | 12.9 (4.5) | 13.1 (4.6) | 12.7 (4.8) | 12.9 (4.6) | 12.7 (4.4) | 12.5 (4.8) | 12.8 (4.7) | 13.9 (4.6) | 13.1 (4.0) | 13.4 (4.4) |
DSR fruit | 1.7 (1.7) | 2.2 (1.9) | 1.5 (1.7) | 1.9 (1.9) | 1.5 (1.6) | 1.9 (1.7) | 1.7 (1.7) | 2.2 (1.9) | 2.0 (1.7) | 2.6 (1.9) |
DSR vegetables | 5.2 (3.0) | 5.2 (3.0) | 5.4 (3.2) | 5.3 (2.9) | 5.4 (3.1) | 5.1 (3.2) | 5.0 (3.0) | 5.8 (3.2) | 5.1 (2.8) | 5.0 (2.8) |
Median DSR scores, median (IQR) | ||||||||||
DSR overall 2 | 12 (6) | 13 (6) | 12 (6) | 12 (7) | 12 (6) | 12 (7) | 12 (7) | 14 (6) | 13 (5) | 13 (6) |
DSR fruit | 1 (2) | 2 (2) | 1 (2) | 1 (3) | 1 (2) | 2 (2) | 1 (1) | 2 (2) | 2 (2) | 2 (3) |
DSR vegetables | 5 (4) | 5 (4) | 5 (5) | 5 (4) | 5 (5) | 5 (5) | 5 (5) | 5 (5) | 5 (4) | 4 (4) |
DHD15-index score, M(SD) 3 | 53.7 (17.4) | 65.1 (18.0) | 50.6 (18.3) | 62.5 (20.6) | 51.6 (18.2) | 63.6 (18.2) | 52.3 (15.0) | 65.1 (16.8) | 58.2 (16.5) | 68.4 (15.9) |
DSR Overall ᵒ | Total Population N = 2078 | Age 19–30 N = 516 | Age 31–50 N = 523 | Age 51–64 N = 367 | Age ≥ 65 N = 672 |
Model 1 1 B [95%-CI] p-value | 1.28 [1.12–1.43] <0.001 * | 1.50 [1.17–1.82] <0.001 * | 0.93 [0.60–1.26] <0.001 * | 1.18 [0.84–1.51] <0.001 * | 1.08 [0.81–1.36] <0.001 * |
Model 2 2 B [95%-CI] p-value | 1.40 [1.25–1.55] <0.001 * | 1.62 [1.31–1.92] <0.001 * | 1.10 [0.80–1.40] <0.001 * | 1.28 [0.952–1.60] <0.001 * | 1.24 [0.97–1.52] <0.001 * |
DSR fruit | Total population N = 2078 | Age 19–30 N = 516 | Age 31–50 N = 523 | Age 51–64 N = 367 | Age ≥ 65 N = 672 |
Model 1 1 B [95%-CI] p-value | 3.96 [3.57–4.35] <0.001 * | 3.99 [3.13–4.85] <0.001 * | 3.54 [2.67–4.41] <0.001 * | 3.64 [2.80–4.48] <0.001 * | 3.45 [2.82–4.08] <0.001 * |
Model 2 2 B [95%-CI] p-value | 4.01 [3.65–4.38] <0.001 * | 4.28 [3.47–5.09] <0.001 * | 3.65 [2.84–4.46] <0.001 * | 3.62 [2.80–4.44] <0.001 * | 3.69 [3.07–4.30] <0.001 * |
Model 3 3 B [95%-CI] p-value | 1.91 [1.40–2.42] <0.001 * | 2.50 [1.34–3.65] <0.001 * | 0.87 [−0.21–1.94] 0.11 | 1.58 [0.50–2.66] 0.004 * | 2.03 [1.21–2.86] <0.001 * |
DSR vegetables | Total population N = 2078 | Age 19–30 N = 516 | Age 31–50 N = 523 | Age 51–64 N = 367 | Age ≥ 65 N = 672 |
Model 1 1 B [95%-CI] p-value | 0.79 [0.54–1.04] <0.001 * | 1.26 [0.74–1.79] <0.001 * | 0.74 [0.26–1.22] 0.002 * | 0.74 [0.22–1.26] 0.005 * | 0.25 [−0.18–0.67] 0.35 |
Model 2 2 B [95%-CI] p-value | 0.84 [0.61–1.08] <0.001 * | 1.24 [0.74–1.74] <0.001 * | 0.84 [0.39–1.29] <0.001 * | 0.76 [0.25–1.27] 0.003 * | 0.34 [−0.09–0.77] 0.116 |
Model 3 3 B [95%-CI] p-value | 0.16 [−0.07–0.40] 0.17 | 0.38 [−0.10–0.87] 0.12 | 0.30 [−0.16–0.76] 0.21 | 0.24 [−0.27–0.76] 0.36 | −0.20 [−0.62–0.23] 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakker, R.E.; Booij, V.S.; van Dooren, C.; Nicolaou, M.; Brouwer, I.A.; Olthof, M.R. Dietary Biodiversity and Diet Quality in Dutch Adults. Nutrients 2024, 16, 2189. https://doi.org/10.3390/nu16142189
Bakker RE, Booij VS, van Dooren C, Nicolaou M, Brouwer IA, Olthof MR. Dietary Biodiversity and Diet Quality in Dutch Adults. Nutrients. 2024; 16(14):2189. https://doi.org/10.3390/nu16142189
Chicago/Turabian StyleBakker, Rosalie E., Vera S. Booij, Corné van Dooren, Mary Nicolaou, Ingeborg A. Brouwer, and Margreet R. Olthof. 2024. "Dietary Biodiversity and Diet Quality in Dutch Adults" Nutrients 16, no. 14: 2189. https://doi.org/10.3390/nu16142189
APA StyleBakker, R. E., Booij, V. S., van Dooren, C., Nicolaou, M., Brouwer, I. A., & Olthof, M. R. (2024). Dietary Biodiversity and Diet Quality in Dutch Adults. Nutrients, 16(14), 2189. https://doi.org/10.3390/nu16142189