The Effectiveness of Nutritional Interventions Implemented through Lady Health Workers on the Reduction of Stunting in Children under 5 in Pakistan: The Difference-in-Difference Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting and Participants
2.3. Selection of Study Areas
2.4. Data Collection
2.5. Procedures
2.6. Sample Size
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. End Line Characteristics
3.3. Effects of the Nutritional Supplementation Program on the Prevalence of Stunting
3.4. Effects of the Nutritional Supplementation Program on the Prevalence of Wasting
3.5. Effects of the Nutritional Supplementation Program on the Prevalence of Underweight
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risk Factors; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Leroy, J.L.; Frongillo, E.A. Perspective: What Does Stunting Really Mean? A Critical Review of the Evidence. Adv. Nutr. 2019, 10, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Pakistan UNICEF, GoPa. National Nutrition Survey 2018: Key Findings Report; UNICEF: Islamabad, Pakistan, 2019. [Google Scholar]
- Pelletier, D.L.; Frongillo, E.A., Jr.; Schroeder, D.G.; Habicht, J.P. The effects of malnutrition on child mortality in developing countries. Bull. World Health Organ. 1995, 73, 443–448. [Google Scholar]
- Abu-Saad, K.; Fraser, D. Maternal nutrition and birth outcomes. Epidemiol. Rev. 2010, 32, 5–25. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, R.P.; Shrestha, M.L.; Acharya, A.; Upadhaya, N. Determinants of stunting among children aged 0–59 months in Nepal: Findings from Nepal Demographic and health Survey, 2006, 2011, and 2016. BMC Nutr. 2019, 5, 37. [Google Scholar] [CrossRef]
- Ahmed, S.; Mehedi Hasan, M.; Ahmed, W.; Atiqul Hoque Chowdhury, M. Socio-economic Inequity of Malnutrition among Under-Five Children and Women at Reproductive Age in Bangladesh. World J. Nutr. Health 2013, 1, 13–17. [Google Scholar]
- Soofi, S.B.; Khan, G.N.; Ariff, S.; Ihtesham, Y.; Tanimoune, M.; Rizvi, A.; Sajid, M.; Garzon, C.; de Pee, S.; Bhutta, Z.A. Effectiveness of nutritional supplementation during the first 1000-days of life to reduce child undernutrition: A cluster randomized controlled trial in Pakistan. Lancet Reg. Health Southeast Asia 2022, 4, 100035. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Shah, A. Food Insecurity in Pakistan: Causes and Policy Response. J. Agric. Environ. Ethics 2011, 24, 493–509. [Google Scholar] [CrossRef]
- Dewey, K.G. Reducing stunting by improving maternal, infant and young child nutrition in regions such as South Asia: Evidence, challenges and opportunities. Matern. Child. Nutr. 2016, 12 (Suppl. 1), 27–38. [Google Scholar] [CrossRef]
- Dewey, K.G.; Adu-Afarwuah, S. Systematic review of the efficacy and effectiveness of complementary feeding interventions in developing countries. Matern. Child. Nutr. 2008, 4 (Suppl. 1), 24–85. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Thurstans, S.; Sessions, N.; Dolan, C.; Sadler, K.; Cichon, B.; Isanaka, S.; Roberfroid, D.; Stobaugh, H.; Webb, P.; Khara, T. The relationship between wasting and stunting in young children: A systematic review. Matern. Child. Nutr. 2022, 18, e13246. [Google Scholar] [CrossRef] [PubMed]
- Adu-Afarwuah, S.; Lartey, A.; Okronipa, H.; Ashorn, P.; Peerson, J.M.; Arimond, M.; Ashorn, U.; Zeilani, M.; Vosti, S.; Dewey, K.G. Small-quantity, lipid-based nutrient supplements provided to women during pregnancy and 6 mo postpartum and to their infants from 6 mo of age increase the mean attained length of 18-mo-old children in semi-urban Ghana: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Adu-Afarwuah, S.; Lartey, A.; Dewey, K.G. Meeting nutritional needs in the first 1000 days: A place for small-quantity lipid-based nutrient supplements. Ann. N. Y. Acad. Sci. 2017, 1392, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Ceesay, S.M.; Prentice, A.M.; Cole, T.J.; Foord, F.; Weaver, L.T.; Poskitt, E.M.; Whitehead, R.G. Effects on birth weight and perinatal mortality of maternal dietary supplements in rural Gambia: 5 year randomised controlled trial. BMJ 1997, 315, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Programme, W.F.; Specialized Nutritious Foods. World Food Programme. Available online: https://documents.wfp.org/stellent/groups/public/documents/communications/wfp255508.pdf (accessed on 25 June 2024).
- Mridha, M.K.; Matias, S.L.; Chaparro, C.M.; Paul, R.R.; Hussain, S.; Vosti, S.A.; Harding, K.L.; Cummins, J.R.; Day, L.T.; Saha, S.L.; et al. Lipid-based nutrient supplements for pregnant women reduce newborn stunting in a cluster-randomized controlled effectiveness trial in Bangladesh. Am. J. Clin. Nutr. 2016, 103, 236–249. [Google Scholar] [CrossRef]
- Lesorogol, C.; Jean-Louis, S.; Green, J.; Iannotti, L. Preventative lipid-based nutrient supplements (LNS) and young child feeding practices: Findings from qualitative research in Haiti. Matern. Child. Nutr. 2015, 11 (Suppl. 4), 62–76. [Google Scholar] [CrossRef] [PubMed]
- Lazzerini, M.; Rubert, L.; Pani, P. Specially formulated foods for treating children with moderate acute malnutrition in low- and middle-income countries. Cochrane Database Syst. Rev. 2013, 6, Cd009584. [Google Scholar] [CrossRef] [PubMed]
- Siega-Riz, A.M.; Estrada Del Campo, Y.; Kinlaw, A.; Reinhart, G.A.; Allen, L.H.; Shahab-Ferdows, S.; Heck, J.; Suchindran, C.M.; Bentley, M.E. Effect of supplementation with a lipid-based nutrient supplement on the micronutrient status of children aged 6-18 months living in the rural region of Intibucá, Honduras. Paediatr. Perinat. Epidemiol. 2014, 28, 245–254. [Google Scholar] [CrossRef]
- Kureishy, S.; Khan, G.N.; Arrif, S.; Ashraf, K.; Cespedes, A.; Habib, M.A.; Hussain, I.; Ullah, A.; Turab, A.; Ahmed, I.; et al. A mixed methods study to assess the effectiveness of food-based interventions to prevent stunting among children under-five years in Districts Thatta and Sujawal, Sindh Province, Pakistan: Study protocol. BMC Public Health 2017, 17, 24. [Google Scholar] [CrossRef]
- Wing, C.; Simon, K.; Bello-Gomez, R.A. Designing Difference in Difference Studies: Best Practices for Public Health Policy Research. Annu. Rev. Public. Health 2018, 39, 453–469. [Google Scholar] [CrossRef] [PubMed]
- Christian, P.; Hurley, K.M.; Phuka, J.; Kang, Y.; Ruel-Bergeron, J.; Buckland, A.J.; Mitra, M.; Wu, L.; Klemm, R.; West, K.P. Impact Evaluation of a Comprehensive Nutrition Program for Reducing Stunting in Children Aged 6–23 Months in Rural Malawi. J. Nutr. 2020, 150, 3024–3032. [Google Scholar] [CrossRef] [PubMed]
- Abadie, A. Difference-in-Difference Estimators. In The New Palgrave Dictionary of Economics; Palgrave Macmillan: London, UK, 2018; pp. 2869–2872. [Google Scholar]
- Das, J.K.; Salam, R.A.; Hadi, Y.B.; Sadiq Sheikh, S.; Bhutta, A.Z.; Weise Prinzo, Z.; Bhutta, Z.A. Preventive lipid-based nutrient supplements given with complementary foods to infants and young children 6 to 23 months of age for health, nutrition, and developmental outcomes. Cochrane Database Syst. Rev. 2019, 5, Cd012611. [Google Scholar] [CrossRef] [PubMed]
- Fabrizio, C.S.; van Liere, M.; Pelto, G. Identifying determinants of effective complementary feeding behaviour change interventions in developing countries. Matern. Child. Nutr. 2014, 10, 575–592. [Google Scholar] [CrossRef] [PubMed]
- Koenker, H.; Keating, J.; Alilio, M.; Acosta, A.; Lynch, M.; Nafo-Traore, F. Strategic roles for behaviour change communication in a changing malaria landscape. Malar. J. 2014, 13, 1. [Google Scholar] [CrossRef]
- Basu, A.M. How pervasive are sex differentials in childhood nutritional levels in south Asia? Soc. Biol. 1993, 40, 25–37. [Google Scholar] [CrossRef]
- Nuruddin, R.; Hadden, W.C. Are pre-school girls more likely to be under-nourished in rural Thatta, Pakistan?-a cross-sectional study. Int. J. Equity Health 2015, 14, 151. [Google Scholar] [CrossRef] [PubMed]
- Roba, A.A.; Assefa, N.; Dessie, Y.; Tolera, A.; Teji, K.; Elena, H.; Bliznashka, L.; Fawzi, W. Prevalence and determinants of concurrent wasting and stunting and other indicators of malnutrition among children 6-59 months old in Kersa, Ethiopia. Matern. Child. Nutr. 2021, 17, e13172. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; Christian, P.; Vidaletti, L.P.; Gatica-Domínguez, G.; Menon, P.; Black, R.E. Revisiting maternal and child undernutrition in low-income and middle-income countries: Variable progress towards an unfinished agenda. Lancet 2021, 397, 1388–1399. [Google Scholar] [CrossRef]
- Correa, P.R. Factors associated with stunting among children 0 to 59 months of age in Angola: A cross-sectional study using the 2015-2016 Demographic and Health Survey. PLoS Glob. Public Health 2022, 2, e0000983. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Hasan, M.I.; Braat, S.; Larson, L.M.; Tipu, S.M.M.; Hossain, S.J.; Shiraji, S.; Baldi, A.; Bhuiyan, M.S.A.; Tofail, F.; et al. Benefits and Risks of Iron Interventions in Infants in Rural Bangladesh. N. Engl. J. Med. 2021, 385, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Ezeh, O.K.; Abir, T.; Zainol, N.R.; Al Mamun, A.; Milton, A.H.; Haque, M.R.; Agho, K.E. Trends of Stunting Prevalence and Its Associated Factors among Nigerian Children Aged 0-59 Months Residing in the Northern Nigeria, 2008–2018. Nutrients 2021, 13, 4312. [Google Scholar] [CrossRef] [PubMed]
Ration Contents | WSB | Wawamum (per 50 G) | MNP (per 1 G) |
---|---|---|---|
Daily ration (g/person/day) | 167 | 50 | On alternate day |
Energy (kcal) | 633 | 255 | - |
Protein (g) | 29.1 | 5.5 | - |
Fat (g) | 10.2 | 13 | - |
Calcium (mg) | 683 | 267.5 | - |
Iron (mg) | 13.9 | 5 | 10 |
Iodine (µg) | 67 | 50 | 90 |
Vitamin A (µg RE) | 842 | 275 | 400 |
Thiamine B1 (mg) | 0.66 | 0.5 | - |
Riboflavin vitamin B2 (mg) | 1.03 | 1.05 | - |
Niacin (mg NE) | 15.3 | 6.5 | 6 |
Vitamin C (mg) | 168.9 | 30 | 30 |
Pantothenic VitB5 (mg) | 3.4 | 2 | - |
Vitamin B6 (mg) | 1.8 | 0.9 | 0.5 |
Vitamin B7 (µg) | - | 30 | - |
Folic Acid (µg) | 100 | - | 902 |
Vitamin B12 (µg) | 3 | 1.35 | 0.9 |
Vitamin D (µg) | 10.0 | 7.5 | - |
Vitamin E (mg) | - | 8 | - |
Vitamin K (µg) | - | 13.5 | - |
Ca (mg) | - | - | - |
Cu (mg) | - | 0.7 | - |
Magnesium (mg) | - | 75 | - |
Manganese (mg) | - | 0.6 | - |
Phosphorus (mg) | - | 225 | - |
Potassium (mg) | - | 450 | - |
Selenium (µg) | 49.3 | 10 | 17 |
Na (mg) | - | 135 | - |
Zn (mg) | - | 5.5 | - |
Vitamin D3 (μg) | - | - | 5 |
Vitamin E (mg) | 15.8 | - | 5 |
Vitamin K1 (µg) | - | - | - |
Vitamin B1 (mg) | - | - | 0.5 |
Vitamin B2 (mg) | - | - | 0.5 |
Folic acid (µg) | - | - | - |
Zinc (mg) | 11.2 | - | 4.1 |
Copper (mg) | 0.6 | - | 0.56 |
Folate (µg) | 288 | 165 | - |
Dry skimmed milk protein | - | 1.8 | - |
ω-3 fatty acids | - | 0.15 | - |
ω-6 fatty acid | - | 1.3 | - |
Characteristics | Baseline | Endline | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Intervention | Control | p | Intervention | Control | p | |||||
n = 1832 | % | n = 1565 | % | n = 1650 | % | n = 1627 | % | |||
Average household density | 7.1 | 6.2 | 0.00 | 7.3 | 7.3 | 0.356 | ||||
Child sex | 0.668 | 0.012 | ||||||||
Male | 950 | 51.9% | 800 | 51.1% | 807 | 48.9% | 867 | 53.3% | ||
Female | 882 | 48.1% | 765 | 48.9% | 843 | 51.1% | 760 | 46.7% | ||
Age | 0.011 | 0.508 | ||||||||
6–23 months | 849 | 46.3% | 657 | 42.0% | 740 | 44.8% | 711 | 43.7% | ||
24–59 months | 983 | 53.7% | 908 | 58.0% | 910 | 55.2% | 916 | 56.3% | ||
Hand washing access * | 1549 | 84.6% | 1285 | 82.1% | 0.00 | 877 | 53.2% | 760 | 46.7% | 0.00 |
Maternal education | 0.00 | 0.00 | ||||||||
None | 1469 | 80.2% | 1536 | 98.1% | 1368 | 82.9% | 1517 | 93.2% | ||
Primary or middle | 267 | 14.6% | 27 | 1.7% | 206 | 12.5% | 90 | 5.5% | ||
Secondary or higher | 96 | 5.2% | 2 | 0.1% | 76 | 4.6% | 20 | 1.2% | ||
Wealth quintiles | 0.00 | 0.00 | ||||||||
Lowest | 187 | 10.2% | 509 | 32.5% | 223 | 13.5% | 449 | 27.6% | ||
Second | 266 | 14.5% | 405 | 25.9% | 262 | 15.9% | 397 | 24.4% | ||
Middle | 353 | 19.3% | 326 | 20.8% | 321 | 19.5% | 343 | 21.1% | ||
Fourth | 446 | 24.3% | 251 | 16.0% | 402 | 24.4% | 251 | 15.4% | ||
Highest | 580 | 31.7% | 74 | 4.7% | 442 | 26.8% | 187 | 11.5% |
Baseline | Endline | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Intervention | Control | Difference | p | Intervention | Control | Difference | p | DID | p | |
Stunting (overall) | 55.7 | 55.2 | 0.4 | 0.849 | 44.6 | 49.3 | −4.7 | 0.01 | −5.1 | 0.079 |
Gender | ||||||||||
Boys | 56.4 | 58.5 | −2.2 | 0.485 | 45.2 | 51.4 | −6.1 | 0.018 | −3.9 | 0.334 |
Girls | 54.7 | 52.5 | 2.3 | 0.489 | 44 | 47.4 | −3.5 | 0.183 | −5.7 | 0.171 |
Age Group | ||||||||||
6–23 m | 51.5 | 54.9 | −3.4 | 0.307 | 39.7 | 39.2 | 0.5 | 0.844 | 4 | 0.358 |
24–59 m | 58.9 | 55 | 3.9 | 0.196 | 48.5 | 57.7 | −9.1 | 0.00 | −13 | 0.001 |
Wealth Quintiles | ||||||||||
Lowest | 53.6 | 50.2 | 3.5 | 0.477 | 47.3 | 48.2 | −0.9 | 0.853 | −4.4 | 0.533 |
Second | 58.4 | 57.5 | 0.9 | 0.844 | 50.6 | 50.2 | 0.4 | 0.934 | −0.5 | 0.94 |
Middle | 59.8 | 62 | −2.2 | 0.639 | 48 | 49.4 | −1.5 | 0.738 | 0.7 | 0.908 |
Fourth | 57.5 | 58.9 | −1.3 | 0.797 | 45.8 | 51.5 | −5.2 | 0.174 | −3.9 | 0.547 |
Highest | 46.5 | 36.7 | 9.8 | 0.079 | 36.2 | 47.6 | −11.4 | 0.001 | −21.2 | 0.001 |
Wasting (overall) | 17.7 | 16.2 | 1.6 | 0.314 | 11.7 | 12.2 | −0.5 | 0.679 | −2.1 | 0.298 |
Gender | ||||||||||
Boys | 19.6 | 14.4 | 5.5 | 0.013 | 12.8 | 13.6 | −0.9 | 0.636 | −6.4 | 0.027 |
Girls | 15.5 | 18.9 | −3.4 | 0.122 | 10.6 | 10.7 | −0.1 | 0.958 | 3.3 | 0.239 |
Age Group | ||||||||||
6–23 m | 25.6 | 16.2 | 9.4 | 0.00 | 18.1 | 14 | 4.1 | 0.052 | −5.3 | 0.114 |
24–59 m | 10.8 | 15.9 | −5.1 | 0.005 | 6.4 | 10.6 | −4.2 | 0.004 | 0.9 | 0.712 |
Wealth Quintiles | ||||||||||
Lowest | 16.7 | 21.1 | −4.4 | 0.206 | 11.7 | 13.5 | −1.8 | 0.616 | 2.5 | 0.613 |
Second | 23.8 | 18.2 | 5.5 | 0.123 | 14 | 19.5 | −5.5 | 0.156 | −11 | 0.037 |
Middle | 18.6 | 23.7 | −5 | 0.148 | 11.3 | 13.5 | −2.2 | 0.497 | 2.8 | 0.552 |
Fourth | 17.2 | 13.5 | 3.7 | 0.302 | 13 | 12.6 | 0.5 | 0.862 | −3.3 | 0.466 |
Highest | 10.9 | 4.8 | 6.1 | 0.063 | 9.3 | 9.2 | 0.2 | 0.933 | −5.9 | 0.12 |
Underweight (overall) | 47.8 | 42.7 | 5.1 | 0.021 | 33.6 | 36.7 | −3.1 | 0.078 | −8.2 | 0.004 |
Gender | ||||||||||
Boys | 48 | 43.9 | 4.1 | 0.184 | 35.4 | 38.2 | −2.9 | 0.258 | −6.9 | 0.081 |
Girls | 47.5 | 42.9 | 4.6 | 0.146 | 31.8 | 35.1 | −3.3 | 0.188 | −7.9 | 0.051 |
Age Group | ||||||||||
6–23 m | 46.5 | 36.2 | 10.4 | 0.001 | 36.5 | 29.4 | 7.2 | 0.006 | −3.2 | 0.444 |
24–59 m | 48.4 | 50.6 | −2.2 | 0.453 | 31.2 | 42.7 | −11.6 | 0.00 | −9.4 | 0.014 |
Wealth Quintiles | ||||||||||
Lowest | 46.8 | 46.6 | 0.2 | 0.973 | 33.3 | 38.7 | −5.3 | 0.285 | −5.5 | 0.424 |
Second | 50.9 | 48.2 | 2.7 | 0.566 | 34.9 | 47 | −12.1 | 0.015 | −14.7 | 0.031 |
Middle | 53.5 | 50.3 | 3.2 | 0.493 | 39.4 | 36.9 | 2.5 | 0.575 | −0.8 | 0.906 |
Fourth | 45.5 | 45.2 | 0.3 | 0.961 | 36.3 | 39.6 | −3.3 | 0.381 | −3.6 | 0.578 |
Highest | 41.7 | 20.2 | 21.5 | 0 | 26.2 | 31.6 | −5.4 | 0.08 | −26.9 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, K.; Huda, T.M.; Ikram, J.; Ariff, S.; Sajid, M.; Khan, G.N.; Umer, M.; Ahmed, I.; Dibley, M.J.; Soofi, S.B. The Effectiveness of Nutritional Interventions Implemented through Lady Health Workers on the Reduction of Stunting in Children under 5 in Pakistan: The Difference-in-Difference Analysis. Nutrients 2024, 16, 2149. https://doi.org/10.3390/nu16132149
Ashraf K, Huda TM, Ikram J, Ariff S, Sajid M, Khan GN, Umer M, Ahmed I, Dibley MJ, Soofi SB. The Effectiveness of Nutritional Interventions Implemented through Lady Health Workers on the Reduction of Stunting in Children under 5 in Pakistan: The Difference-in-Difference Analysis. Nutrients. 2024; 16(13):2149. https://doi.org/10.3390/nu16132149
Chicago/Turabian StyleAshraf, Khizar, Tanvir M. Huda, Javeria Ikram, Shabina Ariff, Muhammad Sajid, Gul Nawaz Khan, Muhammad Umer, Imran Ahmed, Michael J. Dibley, and Sajid Bashir Soofi. 2024. "The Effectiveness of Nutritional Interventions Implemented through Lady Health Workers on the Reduction of Stunting in Children under 5 in Pakistan: The Difference-in-Difference Analysis" Nutrients 16, no. 13: 2149. https://doi.org/10.3390/nu16132149
APA StyleAshraf, K., Huda, T. M., Ikram, J., Ariff, S., Sajid, M., Khan, G. N., Umer, M., Ahmed, I., Dibley, M. J., & Soofi, S. B. (2024). The Effectiveness of Nutritional Interventions Implemented through Lady Health Workers on the Reduction of Stunting in Children under 5 in Pakistan: The Difference-in-Difference Analysis. Nutrients, 16(13), 2149. https://doi.org/10.3390/nu16132149