Changes in the Fatty Acid Profile in Erythrocytes in High-Level Endurance Runners during a Sports Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Nutritional Assessment
2.4. Anthropometric and Ergoespirometric Measures
2.5. Training Characteristics
2.6. Sample Collection
2.7. Analytical Determination
2.8. Lipid Profile of the Erythrocyte Membranes
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stöggl, T.L.; Sperlich, B. The training intensity distribution among well-trained and elite endurance athletes. Front. Physiol. 2015, 6, 295. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Nutrition for endurance sports: Marathon, triathlon, and road cycling. J. Sports Sci. 2011, 29, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Hartono, F.A.; Martin-Arrowsmith, P.W.; Peeters, W.M.; Churchward-Venne, T.A. The Effects of Dietary Protein Supplementation on Acute Changes in Muscle Protein Synthesis and Longer-Term Changes in Muscle Mass, Strength, and Aerobic Capacity in Response to Concurrent Resistance and Endurance Exercise in Healthy Adults: A Systematic; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 52, ISBN 0123456789. [Google Scholar]
- Podlogar, T.; Wallis, G.A. New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med. 2022, 52, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Vitale, K.; Getzin, A. Nutrition and supplement update for the endurance athlete: Review and recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Ruan, D.G.; Lin, Z.M.; Liu, T.Y.; Wang, K.; Xu, X.Y.; Duan, R. Endurance training counteracts the high-fat diet-induced profiling changes of ω-3 polyunsaturated fatty acids in skeletal muscle of middle-aged rats. Front. Physiol. 2019, 10, 971. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, M.G.; Mougios, V. Effects of exercise on the fatty-acid composition of blood and tissue lipids. Sports Med. 2004, 34, 1051–1076. [Google Scholar] [CrossRef] [PubMed]
- Martorell, M.; Pons, V.; Domingo, J.C.; Capó, X.; Sureda, A.; Drobnic, F.; Tur, J.A.; Pons, A. Erythrocytes and Skeletal Muscle Unsaturated and Omega-6 Fatty Acids Are Positively Correlated after Caloric Restriction and Exercise. Ann. Nutr. Metab. 2018, 72, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Sandhu, S.K.; Harris, W.S.; Chan, H.M. Conversion ratios of n-3 fatty acids between plasma and erythrocytes: A systematic review and meta-regression. Br. J. Nutr. 2017, 117, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Philpott, J.D.; Witard, O.C.; Galloway, S.D.R. Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance. Res. Sports Med. 2019, 27, 219–237. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids and athletics. Curr. Sports Med. Rep. 2007, 6, 230–236. [Google Scholar] [CrossRef]
- Gammone, M.A.; Riccioni, G.; Parrinello, G.; D’orazio, N. Omega-3 polyunsaturated fatty acids: Benefits and endpoints in sport. Nutrients 2019, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Catalá, A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids 2009, 157, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Peoples, G.E.; McLennan, P.L.; Howe, P.R.C.; Groeller, H. Fish oil reduces heart rate and oxygen consumption during exercise. J. Cardiovasc. Pharmacol. 2008, 52, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin. Sci. 2011, 121, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.M.M.; Ribeiro, B.G.; Bozza, M.T.; Costa Rosa, L.F.B.; do Carmo, M.G.T. Effects of the fish-oil supplementation on the immune and inflammatory responses in elite swimmers. Prostaglandins Leukot. Essent. Fat. Acids 2007, 77, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Von Schacky, C.; Kemper, M.; Haslbauer, R.; Halle, M. Low omega-3 index in 106 german elite winter endurance athletes: A pilot study. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Tepsic, J.; Vucic, V.; Arsic, A.; Blazencic-Mladenovic, V.; Mazic, S.; Glibetic, M. Plasma and erythrocyte phospholipid fatty acid profile in professional basketball and football players. Eur. J. Appl. Physiol. 2009, 107, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Paraiso, L.F.; Gonçalves-E-Oliveira, A.F.M.; Cunha, L.M.; De Almeida Neto, O.P.; Pacheco, A.G.; Araújo, K.B.G.; Da Silva Garrote-Filho, M.; Neto, M.B.; Penha-Silva, N. Effects of acute and chronic exercise on the osmotic stability of erythrocyte membrane of competitive swimmers. PLoS ONE 2017, 12, e0171318. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Domenech, E.; Viña, J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic. Biol. Med. 2008, 44, 126–131. [Google Scholar] [CrossRef]
- Martorell, M.; Capó, X.; Bibiloni, M.M.; Sureda, A.; Mestre-Alfaro, A.; Batle, J.M.; Llompart, I.; Tur, J.A.; Pons, A. Docosahexaenoic acid supplementation promotes erythrocyte antioxidant defense and reduces protein nitrosative damage in male athletes. Lipids 2015, 50, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Umeno, A.; Shichiri, M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J. Clin. Biochem. Nutr. 2013, 52, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, C.; Chatgilialoglu, C. Role of fatty acid-based functional lipidomics in the development of molecular diagnostic tools. Expert Rev. Mol. Diagn. 2012, 12, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, M.G.; Jamurtas, A.Z. Blood as a reactive species generator and redox status regulator during exercise. Arch. Biochem. Biophys. 2009, 490, 77–84. [Google Scholar] [CrossRef]
- San-Millán, I.; Brooks, G.A. Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals. Sports Med. 2018, 48, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Omega-3 fatty acids, exercise, physical activity and athletics. World Rev. Nutr. Diet. 2008, 98, 23–50. [Google Scholar] [CrossRef]
- Figueira, T.R.; Barros, M.H.; Camargo, A.A.; Castilho, R.F.; Ferreira, J.C.B.; Kowaltowski, A.J.; Sluse, F.E.; Souza-Pinto, N.C.; Vercesi, A.E. Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health. Antioxidants Redox Signal. 2013, 18, 2029–2074. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, F.; Jelinek, H.F.; Perkins, S.; Al-Aubaidy, H.A.; Dejong, B.; Butkowski, E. Acute-Phase Inflammatory Response to Single-Bout HIIT and Endurance Training: A Comparative Study. Mediat. Inflamm. 2016, 2016, 5474837. [Google Scholar] [CrossRef] [PubMed]
- Tepsic, J.; Vucic, V.; Arsic, A.; Mazic, S.; Djelic, M.; Glibetic, M. Unfavourable plasma and erythrocyte phospholipid fatty acid profile in elite amateur boxers. Eur. J. Sport Sci. 2013, 13, 414–421. [Google Scholar] [CrossRef]
- Hooks, M.P.; Madigan, S.M.; Woodside, J.V. Intake in Elite Level (Tier 4), Female Athletes: Pilot Study. Nutrients. 2023, 2821. [Google Scholar] [CrossRef]
- Peña, N.; Amézaga, J.; Marrugat, G.; Landaluce, A.; Viar, T.; Arce, J.; Larruskain, J.; Lekue, J.; Ferreri, C.; Ordovás, J.M.; et al. Competitive season effects on polyunsaturated fatty acid content in erythrocyte membranes of female football players. J. Int. Soc. Sports Nutr. 2023, 20, 2245386. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Alves, J.; Barrientos, G.; Toro, V.; Sánchez, E.; Muñoz, D.; Maynar, M. Changes in anthropometric and performance parameters in high-level endurance athletes during a sports season. Int. J. Environ. Res. Public Health 2021, 18, 2782. [Google Scholar] [CrossRef] [PubMed]
- Alves, J.; Toro, V.; Barrientos, G.; Bartolomé, I.; Muñoz, D.; Maynar, M. Hormonal changes in high-level aerobic male athletes during a sports season. Int. J. Environ. Res. Public Health 2020, 17, 5833. [Google Scholar] [CrossRef] [PubMed]
- Maynar, M.; Llerena, F.; Grijota, F.J.; Alves, J.; Robles, M.C.; Bartolomé, I.; Muñoz, D. Serum concentration of several trace metals and physical training. J. Int. Soc. Sports Nutr. 2017, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas De Composicion De Alimentos: Guia de Prácticas; Pirámide: Madrid, Spain, 2016; ISBN 978-84-368-3623-3. [Google Scholar]
- Beermann, B.L.; Lee, D.G.; Almstedt, H.C.; McCormack, W.P. Nutritional Intake and Energy Availability of Collegiate Distance Runners. J. Am. Coll. Nutr. 2020, 39, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Marfell-Jones, M. International Society for the Advancement of Kinanthropometry. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011; ISBN 0620362073/9780620362078. [Google Scholar]
- Midgley, A.W.; McNaughton, L.R.; Polman, R.; Marchant, D. Criteria for determination of maximal oxygen uptake: A brief critique and recommendations for future research. Sports Med. 2007, 37, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Gaskill, S.E.; Ruby, B.C.; Walker, A.J.; Sanchez, O.A.; Serfass, R.C.; Leon, A.S. Validity and reliability of combining three methods to determine ventilatory threshold. Med. Sci. Sports Exerc. 2001, 33, 1841–1848. [Google Scholar] [CrossRef]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [CrossRef]
- Casado, A.; González-Mohíno, F.; González-Ravé, J.M.; Foster, C. Training Periodization, Methods, Intensity Distribution, and Volume in Highly Trained and Elite Distance Runners: A Systematic Review. Int. J. Sports Physiol. Perform. 2022, 17, 820–833. [Google Scholar] [CrossRef]
- Arsić, A.; Vučić, V.; Tepšić, J.; Mazić, S.; Djelić, M.; Glibetić, M. Altered plasma and erythrocyte phospholipid fatty acid profile in elite female water polo and football players. Appl. Physiol. Nutr. Metab. 2012, 37, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Kamada, T.; Tokuda, S.; Aozaki, S.I.; Otsuji, S. Higher levels of erythrocyte membrane fluidity in sprinters and long- distance runners. J. Appl. Physiol. 1993, 74, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Ney, J.G.; Koury, J.C.; Azeredo, V.B.; Casimiro-Lopes, G.; Trugo, N.M.F.; Torres, A.G. Associations of n-6 and n-3 polyunsaturated fatty acids and tocopherols with proxies of membrane stability and subcutaneous fat sites in male elite swimmers. Nutr. Res. 2009, 29, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Kelly, F.D.; Sinclair, A.J.; Mann, N.J.; Turner, A.H.; Abedin, L.; Li, D. A stearic acid-rich diet improves thrombogenic and atherogenic risk factor profiles in healthy males. Eur. J. Clin. Nutr. 2001, 55, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.R.; Londeree, B.R.; Gerhardt, K.O.; Gehrke, C.W. Fatty acid profile and cholesterol in skeletal muscle of trained and untrained men. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 43, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Tezcan, D.; Eryavuz Onmaz, D.; Körez, M.K.; Limon, M.; Gülcemal, S.; Yılmaz, S.; Sivrikaya, A. The role of fatty acids in patients with Behçet’s disease and their association with thrombosis. Lipids 2024. early view. [Google Scholar] [CrossRef] [PubMed]
- Høstmark, A.T.; Haug, A. Percentages of oleic acid and arachidonic acid are inversely related in phospholipids of human sera. Lipids Health Dis. 2013, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- Pamplona, R.; Portero-Otin, M.; Sanz, A.; Requena, J.; Barja, G. Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain. Exp. Gerontol. 2004, 39, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Min, K.; Talbert, E.E.; Kavazis, A.N.; Smuder, A.J.; Willis, W.T.; Powers, S.K. Exercise protects cardiac mitochondria against ischemia-reperfusion injury. Med. Sci. Sports Exerc. 2012, 44, 397–405. [Google Scholar] [CrossRef]
- Davinelli, S.; Intrieri, M.; Corbi, G.; Scapagnini, G. Metabolic indices of polyunsaturated fatty acids: Current evidence, research controversies, and clinical utility. Crit. Rev. Food Sci. Nutr. 2021, 61, 259–274. [Google Scholar] [CrossRef]
- Dennis, E.A.; Norris, P.C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 2015, 11, 511–523. [Google Scholar] [CrossRef]
- Mitchell, J.A.; Kirkby, N.S. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br. J. Pharmacol. 2019, 176, 1038–1050. [Google Scholar] [CrossRef]
- Andersson, A.; Sjödin, A.; Olsson, R.; Vessby, B.; Hedman, A.; Olsson, R.; Vessby, B. Fatty acid profile of skeletal muscle phospholipids in trained and untrained young men. Am. J. Physiol. Endocrinol. Metab. 1998, 279, 744–751. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef]
- Steinbacher, P.; Eckl, P. Impact of Oxidative Stress on Exercising Skeletal Muscle. Biomolecules 2015, 5, 356–377. [Google Scholar] [CrossRef]
- Thielecke, F.; Blannin, A. Omega-3 fatty acids for sport performance—Are they equally beneficial for athletes and amateurs? A narrative review. Nutrients 2020, 12, 3712. [Google Scholar] [CrossRef]
- Calder, P.C.; Yaqoob, P. Omega-3 polyunsaturated fatty acids and human health outcomes. BioFactors 2009, 35, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Salman, H.B.; Salman, M.A.; Akal, E.Y. The effect of omega-3 fatty acid supplementation on weight loss and cognitive function in overweight or obese individuals on weight-loss diet. Nutr. Hosp. 2022, 39, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Wang, S.; Rahman, S.M.; Robert-McComb, J.; Moustaid-Moussa, N. Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic update. J. Nutr. Biochem. 2018, 58, 1–16. [Google Scholar] [CrossRef]
- Armstrong, A.; Anzalone, A.J.; Pethick, W.; Murray, H.; Dahlquist, D.T.; Askow, A.T.; Heileson, J.L.; Hillyer, L.M.; Ma, D.W.L.; Oliver, J.M. An evaluation of omega-3 status and intake in canadian elite rugby 7s players. Nutrients 2021, 13, 3777. [Google Scholar] [CrossRef]
- Ritz, P.P.; Rogers, M.B.; Zabinsky, J.S.; Hedrick, V.E.; Rockwell, J.A.; Rimer, E.G.; Kostelnik, S.B.; Hulver, M.W.; Rockwell, M.S. Dietary and biological assessment of the omega-3 status of collegiate athletes: A cross-sectional analysis. PLoS ONE 2020, 15, e0228834. [Google Scholar] [CrossRef]
- Heileson, J.L.; Anzalone, A.J.; Carbuhn, A.F.; Askow, A.T.; Stone, J.D.; Turner, S.M.; Hillyer, L.M.; Ma, D.W.L.; Luedke, J.A.; Jagim, A.R.; et al. The effect of omega-3 fatty acids on a biomarker of head trauma in NCAA football athletes: A multi-site, non-randomized study. J. Int. Soc. Sports Nutr. 2021, 18, 65. [Google Scholar] [CrossRef]
- Dalli, J.; Colas, R.A.; Serhan, C.N. Novel n-3 immunoresolvents: Structures and actions. Sci. Rep. 2013, 3, 1940. [Google Scholar] [CrossRef]
- Ervik, K.; Reinertsen, A.F.; Koenis, D.S.; Dalli, J.; Hansen, T.V. Stereoselective Synthesis, Pro-resolution, and Anti-inflammatory Actions of RvD5 n-3 DPA. J. Nat. Prod. 2023, 17, 2546–2553. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
Parameters | INITIAL | 3 MONTHS | 6 MONTHS | 9 MONTHS |
---|---|---|---|---|
Lipids (g/kg/d) | 1.82 ± 0.85 | 1.42 ± 0.57 | 1.40 ± 0.44 | 1.77 ± 0.86 |
Saturated fatty acids (g/day) | 37.45 ± 21.14 | 31.45 ± 11.14 | 33.45 ± 14.54 | 36.15 ± 19.17 |
Monounsaturated fatty acids (g/day) | 52.27 ± 25.24 | 40.76 ± 17.24 | 38.03 ± 12.24 | 43.45 ± 22.18 |
Polyunsaturated fatty acids (g/day) | 11.97 ± 5.35 | 12.11 ± 4.69 | 11.56 ± 3.93 | 13.08 ± 8.58 |
ω-6 (g/day) | 9.28 ± 4.82 | 9.08 ± 4.84 | 9.47 ± 4.00 | 10.58 ± 6.34 |
ω-3 (g/day) | 1.08 ± 0.44 | 0.98 ± 0.53 | 1.03 ± 0.44 | 1.33 ± 1.11 |
Parameters | INITIAL | 3 MONTHS | 6 MONTHS | 9 MONTHS |
---|---|---|---|---|
VO2 max (mL/kg/min) | 68.30 ± 4.45 | 67.82 ± 8.23 | 68.80 ± 6.73 | 68.62 ± 7.37 |
VT2 (%VO2 max) | 90.84 ± 2.68 | 92.56 ± 3.27 | 91.04 ± 3.44 | 90.71 ± 2.05 |
vVT2 (Km/h) | 19.37 ± 0.90 | 20.08 ± 0.80 ** | 19.76 ± 1.10 | 19.48 ± 1.40 |
Maximum heart rate (bpm) | 190 ± 9 | 192 ± 7 | 194 ± 9 | 193 ± 7 |
Weight (kg) | 65.50 ± 7.30 | 65.45 ± 7.36 | 64.67 ± 7.03 * | 64.80 ± 7.34 * |
Fat mass (kg) | 5.59 ± 1.23 | 5.42 ± 1.07 | 5.24 ± 0.83 * | 5.24 ± 0.96 * |
Muscle mass (kg) | 32.19 ± 4.00 | 32.36 ± 4.01 | 31.83 ± 3.93 | 31.88 ± 4.12 * |
INITIAL | 3 MONTHS | 6 MONTHS | 9 MONTHS | |
---|---|---|---|---|
Training (km/week) | 44.32 ± 8.16 | 114.78 ± 18.26 | 101.11 ± 15.54 | 80.90 ± 13.36 |
<VT2 (km/week) | 44.32 ± 8.16 | 91.83 ± 14.61 | 75.83 ± 11.66 | 69.62 ± 11.36 |
>VT2 (km/week) | - | 22.96 ± 3.65 | 25.28 ± 3.89 | 12.29 ± 2.01 |
Parameters | RANGES | INITIAL | 3 MONTHS | 6 MONTHS | 9 MONTHS |
---|---|---|---|---|---|
Palmitic Acid | 17–27 | 22. 52 ± 1.22 | 25.15 ± 2.40 ** | 23.35 ± 0.96 *$ | 24.94 ± 2.19 **## |
Stearic Acid | 13–20 | 19.46 ± 0.93 | 20.51 ± 1.71 * | 19.67 ± 0.97 $ | 20.52 ± 2.36 |
Oleic Acid | 9–18 | 16.73 ± 1.01 | 17.32 ± 1.34 * | 17.35 ± 1.10 * | 17.42 ± 1.27 * |
Linoleic Acid | 9–16 | 11.81 ± 1.19 | 11.83 ± 1.55 | 11.69 ± 0.93 | 12.75 ± 2.40 * |
Calendic Acid | - | 0.60 ± 0.22 | 0.58 ± 0.17 | 0.77 ± 0.33 $ | 0.64 ± 0.43 |
Alpha Linoleic Acid | - | 0.88 ± 0.38 | 0.83 ± 0.33 | 1.59 ± 0.24 **$$ | 0.72 ± 0.31 ++ |
Arachidonic Acid | 13–17 | 20.22 ± 2.42 | 17.41 ± 2.27 ** | 17.77 ± 1.60 ** | 19.10 ± 2.44 + |
Eicosapentaenoic Acid | 0.5–9 | 0.98 ± 0.33 | 1.20 ± 0.52 | 1.15 ± 0.50 | 1.36 ± 0.99 |
Docosapentaenoic Acid | - | 1.69 ± 0.53 | 2.45 ± 0.90 ** | 1.88 ± 0.51 $ | 1.63 ± 0.60 + |
Docosahexaenoic Acid | 5–7 | 5.07 ± 1.04 | 4.36 ± 1.89 | 3.96 ± 0.93 ** | 4.46 ± 1.12 ** |
Index ω-3 | >8% | 6.06 ± 1.09 | 5.56 ± 2.16 | 5.11 ± 1.02 | 5.82 ± 1.22 # |
ω-6/ω-3 ratio | 3.5–5.5 | 4.24 ± 0.80 | 3.95 ± 1.00 | 4.38 ± 1.16 | 4.40 ± 0.88 |
Parameters | RANGES | INITIAL | 3 MONTHS | 6 MONTHS | 9 MONTHS |
---|---|---|---|---|---|
Total saturated fatty acids | 34–45 | 41.99 ± 1.94 | 45.67 ± 3.74 * | 43.03 ± 1.74 | 45.47 ± 3.85 * |
Total polyunsaturated fatty acids | 30–43 | 39.79 ± 2.18 | 37.27 ± 2.81 * | 36.48 ± 1.64 * | 39.31 ± 4.47 $# |
Total monounsaturated fatty acids | 15–23 | 16.74 ± 1.02 | 17.33 ± 1.34 * | 17.35 ± 1.11 * | 17.42 ± 1.27 * |
Saturation index | 1.7–2 | 2.52 ± 0.17 | 2.60 ± 0.29 | 2.49 ± 0.13 | 3.01 ± 0.95 |
Desaturase 9 | - | 0.86 ± 0.06 | 0.85 ± 0.11 | 0.88 ± 0.05 | 0.86 ± 0.08 |
Desaturase ω-3 | - | 3.32 ± 1.32 | 1.91 ± 0.82 * | 2.30 ± 1.15 * | 3.13 ± 1.41 # |
Elongase | - | 0.86 ± 0.76 | 0.82 ± 0.71 | 0.84 ± 1.01 | 0.82 ± 1.08 |
Parameters | Km/week | Km/week >VT2 | Km/period | Fat mass | VO2 max (mL/kg/min) | |||||
---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | |
Palmitic Acid. | 0.243 | 0.026 | 0.261 | 0.016 | 0.374 | 0.000 | ||||
Stearic Acid. | −0.227 | 0.038 | ||||||||
Alpha Linoleic Acid | - | - | 0.367 | 0.001 | - | - | ||||
Arachidonic Acid. | - | - | −0.460 | 0.000 | −0.450 | 0.000 | ||||
Eicosapentaenoic Acid | −0.226 | 0.038 | ||||||||
Docosapentaenoic Acid | - | - | 0.258 | 0.018 | 0.260 | 0.017 | ||||
Docosahexaenoic Acid | - | - | −0.302 | 0.005 | −0.293 | 0.007 | ||||
Total saturated fatty acids | - | - | - | - | 0.287 | 0.008 | ||||
Total polyunsaturated fatty acids | - | - | −0.415 | 0.002 | −0.359 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves Vas, F.J.; Grijota Pérez, F.J.; Toro-Román, V.; Sánchez, I.B.; Maynar Mariño, M.; Barrientos Vicho, G. Changes in the Fatty Acid Profile in Erythrocytes in High-Level Endurance Runners during a Sports Season. Nutrients 2024, 16, 1895. https://doi.org/10.3390/nu16121895
Alves Vas FJ, Grijota Pérez FJ, Toro-Román V, Sánchez IB, Maynar Mariño M, Barrientos Vicho G. Changes in the Fatty Acid Profile in Erythrocytes in High-Level Endurance Runners during a Sports Season. Nutrients. 2024; 16(12):1895. https://doi.org/10.3390/nu16121895
Chicago/Turabian StyleAlves Vas, Francisco Javier, Fco. Javier Grijota Pérez, Víctor Toro-Román, Ignacio Bartolomé Sánchez, Marcos Maynar Mariño, and Gema Barrientos Vicho. 2024. "Changes in the Fatty Acid Profile in Erythrocytes in High-Level Endurance Runners during a Sports Season" Nutrients 16, no. 12: 1895. https://doi.org/10.3390/nu16121895
APA StyleAlves Vas, F. J., Grijota Pérez, F. J., Toro-Román, V., Sánchez, I. B., Maynar Mariño, M., & Barrientos Vicho, G. (2024). Changes in the Fatty Acid Profile in Erythrocytes in High-Level Endurance Runners during a Sports Season. Nutrients, 16(12), 1895. https://doi.org/10.3390/nu16121895