Role of Arthrospira Platensis in Preventing and Treating High-Fat Diet-Induced Hypercholesterolemia in Adult Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microalgae Biomass Preparation
2.3. Animals and Experimental Design
- -
- Group I (control group), fed with a standard diet for laboratory rats.
- -
- Group II, fed with a standard diet and treated with the biomass of the spirulina strain.
- -
- Group III (atherogenic control group), fed with a high-fat diet (HFD), standard diet supplemented with an atherogenic mixture consisting of 20% sunflower oil, 2.5% cholesterol and 0.5% cholic acid.
- -
- Group IV, fed with a HFD (like group III) and treated with a spirulina biomass strain (preventive treatment).
- -
- Group V, fed with a HFD (like group III) and, after the development of hyperlipidaemia in the fifth week, treated with Spirulina biomass (curative treatment).
2.4. Biochemical Analyses and Parameters for Atherosclerosis
2.5. High Performance Liquid Chromatography (HPLC) Determination of Cholesterol in Faeces
2.6. HPLC Determination of Bile Acids in Faeces
2.7. Total Calorific Value of Faeces
2.8. Determination of Proteins and Lipids in the Faeces
2.9. Statistical Analysis
3. Results and Discussion
3.1. Changes of Body Weight
3.2. Hyperlipidaemia and Hepatic Biochemical Markers
3.3. Chemical Composition, Cholesterol and Bile Acid Content of Faeces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaggini, M.; Gorini, F.; Vassalle, C. Lipids in Atherosclerosis: Pathophysiology and the Role of Calculated Lipid Indices in Assessing Cardiovascular Risk in Patients with Hyperlipidemia. Int. J. Mol. Sci. 2022, 24, 75. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Disease and Risk Collaborators, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Global Health Data Exchange. GBD Results Tool. Institute for Health Metrics and Evaluation. 2021. Available online: http://ghdx.healthdata.org/gbd-results-tool (accessed on 10 January 2022).
- Mensah, G.A.; Fuster, V.; Murray, C.J.L.; Roth, G.A.; Global Burden of Cardiovascular, D.; Risks, C. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef] [PubMed]
- Rosada, A.; Kassner, U.; Weidemann, F.; Konig, M.; Buchmann, N.; Steinhagen-Thiessen, E.; Spira, D. Hyperlipidemias in elderly patients: Results from the Berlin Aging Study II (BASEII), a cross-sectional study. Lipids Health Dis. 2020, 19, 92. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 73, 3168–3209. [Google Scholar] [CrossRef] [PubMed]
- Karr, S. Epidemiology and management of hyperlipidemia. Am. J. Manag. Care 2017, 23, S139–S148. [Google Scholar] [PubMed]
- Ridker, P.M.; Mora, S.; Rose, L.; Group, J.T.S. Percent reduction in LDL cholesterol following high-intensity statin therapy: Potential implications for guidelines and for the prescription of emerging lipid-lowering agents. Eur. Heart J. 2016, 37, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhao, D.; Qi, Y. Global Trends in the Epidemiology and Management of Dyslipidemia. J. Clin. Med. 2022, 11, 6377. [Google Scholar] [CrossRef] [PubMed]
- Newman, C.B.; Preiss, D.; Tobert, J.A.; Jacobson, T.A.; Page, R.L., 2nd; Goldstein, L.B.; Chin, C.; Tannock, L.R.; Miller, M.; Raghuveer, G.; et al. Statin Safety and Associated Adverse Events: A Scientific Statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2019, 39, e38–e81. [Google Scholar] [CrossRef]
- Gentscheva, G.; Nikolova, K.; Panayotova, V.; Peycheva, K.; Makedonski, L.; Slavov, P.; Radusheva, P.; Petrova, P.; Yotkovska, I. Application of Arthrospira platensis for Medicinal Purposes and the Food Industry: A Review of the Literature. Life 2023, 13, 845. [Google Scholar] [CrossRef]
- Jung, F.; Krüuger-Genge, A.; Waldeck, P.; Küpper, J.-H. Spirulina platensis, a Super Food? J. Cell. Biotechnol. 2019, 5, 43–54. [Google Scholar]
- Banakar, V.; Alam, Q.; Rajendra, S.V.; Pandit, A.; Cladious, A.; Gnanaprakash, K. Spirulina, The Boon of Nature. Int. J. Res. Pharm. Sci. 2020, 11, 57–62. [Google Scholar] [CrossRef]
- Maddiboyina, B.; Vanamamalai, H.K.; Roy, H.; Ramaiah; Gandhi, S.; Kavisri, M.; Moovendhan, M. Food and drug industry applications of microalgae Spirulina platensis: A review. J. Basic Microbiol. 2023, 63, 573–583. [Google Scholar] [CrossRef]
- Rahnama, I.; Arabi, S.M.; Chambari, M.; Bahrami, L.S.; Hadi, V.; Mirghazanfari, S.M.; Rizzo, M.; Hadi, S.; Sahebkar, A. The effect of Spirulina supplementation on lipid profile: GRADE-assessed systematic review and dose-response meta-analysis of data from randomized controlled trials. Pharmacol. Res. 2023, 193, 106802. [Google Scholar] [CrossRef]
- Simeunović, J. Kolekcija Kultura Cijanobakterija; Biblioteka Academia Zadužbina Andrejević: Belgrade, Serbia, 2005; p. 102. [Google Scholar]
- Soong, P. Production and development of Chlorella and Spirulina in Taiwan. In Algae Biomass: Production and Use; Shelef, G., Soeder, C.J., Eds.; Elsevier/North-Holland Biomedical Press: Amsterdam, The Netherlands, 1980. [Google Scholar]
- Deng, R.; Chow, T.J. Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc. Ther. 2010, 28, e33–e45. [Google Scholar] [CrossRef]
- Sharma, V.; McNeill, J.H. To scale or not to scale: The principles of dose extrapolation. Br. J. Pharmacol. 2009, 157, 907–921. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.I.; Shin, T.S.; Chang, E.J. Determination of Cholesterol in Milk and Dairy Products by High-Performance Liquid Chromatography. Asian-Australas. J. Anim. Sci. 2001, 14, 1465–1469. [Google Scholar] [CrossRef]
- Sjövall, J.; Griffiths, W.J.; Setchell, K.D.R.; Mano, N.; Goto, J. Analysis of Bile Acids. In Steroid Analysis; Makin, H., Gower, D., Eds.; Springer: Dordrecht, The Netherlands, 2010; p. 837. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis, 14th ed.; Association of Analytical Chemists: Washington, DC, USA, 1984; pp. 249–252. [Google Scholar]
- Fellmann, L.; Nascimento, A.R.; Tibiriça, E.; Bousquet, P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol. Ther. 2013, 137, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.J.; Liu, J.; Guo, Y.L.; Xu, R.X.; Sun, J.; Li, J.J. Dyslipidemia in rat fed with high-fat diet is not associated with PCSK9-LDL-receptor pathway but ageing. J. Geriatr. Cardiol. 2013, 10, 361–368. [Google Scholar] [CrossRef]
- Lairon, D. Dietary fibres: Effects on lipid metabolism and mechanisms of action. Eur. J. Clin. Nutr. 1996, 50, 125–133. [Google Scholar] [PubMed]
- Devi, M.A.; Venkataraman, L.V. Hypocholesterolemic effect of blue-green algae Spirulina platensis in albino rats. Ann. Nutr. Rep. Int. 1983, 28, 519–530. [Google Scholar]
- Kato, T.; Takemoto, K.; Katayama, H.; Kuwabara, Y. Effects of Spirulina (Spirulina platensis) on dietary hypercholesterolemia in rats. J. Jpn. Soc. Nutr. Food Sci. 1984, 37, 323–332. [Google Scholar] [CrossRef]
- Dobiášová, M. Atherogenic Index of Plasma [Log(Triglycerides/HDL-Cholesterol)]: Theoretical and Practical Implications. Clin. Chem. 2004, 50, 1113–1115. [Google Scholar] [CrossRef]
- Kathak, R.R.; Sumon, A.H.; Molla, N.H.; Hasan, M.; Miah, R.; Tuba, H.R.; Habib, A.; Ali, N. The association between elevated lipid profile and liver enzymes: A study on Bangladeshi adults. Sci. Rep. 2022, 12, 1711. [Google Scholar] [CrossRef]
- Deb, S.; Puthanveetil, P.; Sakharkar, P. A Population-Based Cross-Sectional Study of the Association between Liver Enzymes and Lipid Levels. Int. J. Hepatol. 2018, 2018, 1286170. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R. Biochemical mechanisms of fatty liver and bioactive foods: Fatty liver, diagnosis, nutrition therapy. In Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease; Watson, R.R., Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 623–625. [Google Scholar]
- Lasker, S.; Rahman, M.M.; Parvez, F.; Zamila, M.; Miah, P.; Nahar, K.; Kabir, F.; Sharmin, S.B.; Subhan, N.; Ahsan, G.U.; et al. High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Sci. Rep. 2019, 9, 20026. [Google Scholar] [CrossRef]
- Mazokopakis, E.E.; Papadomanolaki, M.G.; Fousteris, A.A.; Kotsiris, D.A.; Lampadakis, I.M.; Ganotakis, E.S. The hepatoprotective and hypolipidemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population with non-alcoholic fatty liver disease: A prospective pilot study. Ann. Gastroenterol. 2014, 27, 387–394. [Google Scholar] [PubMed]
- Colla, L.M.; Muccillo-Baisch, A.L.; Costa, J.A.V. Spirulina platensis effects on the levels of total cholesterol, HDL and triacylglycerols in rabbits fed with a hypercholesterolemic diet. Braz. Arch. Biol. Tech. 2008, 51, 405–411. [Google Scholar] [CrossRef]
- Nagaoka, S.; Shimizu, K.; Kaneko, H.; Shibayama, F.; Morikawa, K.; Kanamaru, Y.; Otsuka, A.; Hirahashi, T.; Kato, T. A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J. Nutr. 2005, 135, 2425–2430. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y. Bile acid metabolism and signaling. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [CrossRef] [PubMed]
- Guzior, D.V.; Quinn, R.A. Review: Microbial transformations of human bile acids. Microbiome 2021, 9, 140. [Google Scholar] [CrossRef]
- Guo, G.L.; Chiang, J.Y.L. Is CYP2C70 the key to new mouse models to understand bile acids in humans? J. Lipid Res. 2020, 61, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dawson, P.A. Animal models to study bile acid metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 895–911. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R. Cholesterol Lowering Drugs. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Stanciu, M.C.; Nichifor, M.; Teaca, C.A. Bile Acid Sequestrants Based on Natural and Synthetic Gels. Gels 2023, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Eyssen, H.J.; De Pauw, G.; Van Eldere, J. Formation of hyodeoxycholic acid from muricholic acid and hyocholic acid by an unidentified gram-positive rod termed HDCA-1 isolated from rat intestinal microflora. Appl. Environ. Microbiol. 1999, 65, 3158–3163. [Google Scholar] [CrossRef]
Group | Atherogenicity Coefficient (AC) | Cardiovascular Risk Ratio (CRR) (%, w/w) |
---|---|---|
I | 0.85 ± 0.09 | 1.86 ± 0.09 |
II | 0.25 ± 0.09 | 1.23 ± 0.09 |
III | 2.66 ± 0.36 # | 3.67 ± 0.36 # |
IV | 1.83 ± 0.13 * | 2.83 ± 0.13 * |
V | 1.73 ± 0.13 * | 2.73 ± 0.13 * |
Group | Total Caloric Value (MJ/kg) | Protein (%, w/w) | Lipids (%, w/w) | Cholesterol (mg/g) |
---|---|---|---|---|
I | 14.6 ± 0.04 | 19.7 ± 0.10 | 1.90 ± 0.07 | 0.43 ± 0.02 |
II | 14.7 ± 0.04 | 22.6 ± 0.07 | 2.38 ± 0.03 | 0.50 ± 0.02 |
III | 18.7 ± 0.08 # | 15.5 ± 0.17 # | 11.6 ± 0.04 # | 14.7 ± 0.42 # |
IV | 18.5 ± 0.05 | 16.6 ± 0.01 **** | 11.5 ± 0.01 | 15.9 ± 0.51 |
V | 19.2 ± 0.03 **** | 17.4 ± 0.04 **** | 13.2 ± 0.04 **** | 13.6 ± 0.06 |
Content of Bile Acids (mg/g) in Different Animal Groups | |||||
---|---|---|---|---|---|
Bile Acid | I | II | III | IV | V |
β-Muricholic | 0.82 ± 0.01 | 0.79 ± 0.02 | 4.32 ± 0.09 # | 3.96 ± 0.05 | 4.70 ± 0.17 * |
Cholic | 0.19 ± 0.01 | 0.28 ± 0.01 | 1.23 ± 0.04 # | 2.24 ± 0.19 **** | 1.91 ± 0.08 *** |
Hyocholic | 0.92 ± 0.01 | 0.78 ± 0.01 | 0.66 ± 0.04 # | 0.60 ± 0.01 | 0.63 ± 0.01 |
Hyodeoxycholic | 1.22 ± 0.01 | 0.96 ± 0.01 | 1.87 ± 0.12 # | 2.01 ± 0.03 | 2.17 ± 0.08 * |
Deoxycholic | 0.66 ± 0.01 | 0.53 ± 0.03 | 13.04 ± 0.61 # | 9.63 ± 0.50 **** | 11.4 ± 0.36 * |
Litocholic | 0.56 ± 0.01 | 0.54 ± 0.03 | 1.20 ± 0.03 # | 0.81 ± 0.02 **** | 1.07 ± 0.03 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciola, N.A.; De Cicco, P.; Milanović, M.; Milovanović, I.; Mišan, A.; Kojić, D.; Simeunović, J.; Blagojević, D.; Popović, T.; Arsić, A.; et al. Role of Arthrospira Platensis in Preventing and Treating High-Fat Diet-Induced Hypercholesterolemia in Adult Rats. Nutrients 2024, 16, 1827. https://doi.org/10.3390/nu16121827
Cacciola NA, De Cicco P, Milanović M, Milovanović I, Mišan A, Kojić D, Simeunović J, Blagojević D, Popović T, Arsić A, et al. Role of Arthrospira Platensis in Preventing and Treating High-Fat Diet-Induced Hypercholesterolemia in Adult Rats. Nutrients. 2024; 16(12):1827. https://doi.org/10.3390/nu16121827
Chicago/Turabian StyleCacciola, Nunzio Antonio, Paola De Cicco, Maja Milanović, Ivan Milovanović, Aleksandra Mišan, Danijela Kojić, Jelica Simeunović, Dajana Blagojević, Tamara Popović, Aleksandra Arsić, and et al. 2024. "Role of Arthrospira Platensis in Preventing and Treating High-Fat Diet-Induced Hypercholesterolemia in Adult Rats" Nutrients 16, no. 12: 1827. https://doi.org/10.3390/nu16121827
APA StyleCacciola, N. A., De Cicco, P., Milanović, M., Milovanović, I., Mišan, A., Kojić, D., Simeunović, J., Blagojević, D., Popović, T., Arsić, A., Pilija, V., Mandić, A., Borrelli, F., & Milić, N. (2024). Role of Arthrospira Platensis in Preventing and Treating High-Fat Diet-Induced Hypercholesterolemia in Adult Rats. Nutrients, 16(12), 1827. https://doi.org/10.3390/nu16121827