Postprandial Antioxidative Response to Ingestion of Formulated Date- and Fruit-Based Nutritional Bars by Healthy Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation of DBBs and FBBs
2.2. Phytochemical Analysis of DBBs and FBBs
2.3. Participants
2.4. Anthropometric Measurements
2.5. Study Design and Experimental Trails
2.6. Antioxidant Biomarkers in Blood Samples
2.6.1. Plasma Total Phenolic Content
2.6.2. Levels of T-AOC, MDA, and SOD in Plasma
2.7. Statistical Analysis
3. Results
3.1. Free and Bound Phenolic Contents in DBBs and FBBs
3.2. Characteristics of the Study Participants
3.3. Responses of Antioxidant Biomarkers in the Blood of the Study Participants
3.4. Statistical Correlation Coefficients among Oxidative Stress Biomarkers
3.5. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lushchak, V.I. Free Radicals, Reactive Oxygen Species, Oxidative Stress and Its Classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Peng, C.; Zhao, Y.; Zhong, L.; Cai, H.; Kan, B.; Zhang, Y.; Xue, S.; Qiao, W.; Zhao, Q. Plasma Fluorescent Oxidation Products and Bone Mineral Density among Male Veterans: A Cross-Sectional Study. J. Clin. Densitom. 2022, 25, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhu, L.; Zhang, D.; Li, N.; Li, Q.; Dai, P.; Mao, Y.; Li, X.; Ma, J.; Huang, S. Oxidative Stress-Related Biomarkers in Postmenopausal Osteoporosis: A Systematic Review and Meta-Analyses. Dis. Markers 2016, 2016, 7067984. [Google Scholar] [CrossRef] [PubMed]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, M.; Lee, S.-G.; Davis, C.G.; Koo, S.I.; Chun, O.K. Dietary Total Antioxidant Capacity Is Associated with Diet and Plasma Antioxidant Status in Healthy Young Adults. J. Acad. Nutr. Diet. 2012, 112, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Orsi, L.; Margaritte-Jeannin, P.; Andrianjafimasy, M.; Dumas, O.; Mohamdi, H.; Bouzigon, E.; Demenais, F.; Matran, R.; Zerimech, F.; Nadif, R. Genome-Wide Association Study of Fluorescent Oxidation Products Accounting for Tobacco Smoking Status in Adults from the French Egea Study. Antioxidants 2022, 11, 802. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Willett, W.C.; Rifai, N.; Rimm, E.B. Plasma Fluorescent Oxidation Products as Potential Markers of Oxidative Stress for Epidemiologic Studies. Am. J. Epidemiol. 2007, 166, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Tüccar, T.; Akbulut, G. The Role of Meal Consumption on Postprandial Oxidative Stress and Inflammation. J. Gazi Univ. Health Sci. Inst. 2020, 2, 30–37. [Google Scholar]
- Arrigo, T.; Leonardi, S.; Cuppari, C.; Manti, S.; Lanzafame, A.; D’Angelo, G.; Gitto, E.; Marseglia, L.; Salpietro, C. Role of the Diet as a Link between Oxidative Stress and Liver Diseases. World J. Gastroenterol. 2015, 21, 384. [Google Scholar] [CrossRef]
- Fisher-Wellman, K.H.; Bloomer, R.J. Exacerbated Postprandial Oxidative Stress Induced by the Acute Intake of a Lipid Meal Compared to Isoenergetically Administered Carbohydrate, Protein, and Mixed Meals in Young, Healthy Men. J. Am. Coll. Nutr. 2010, 29, 373–381. [Google Scholar] [CrossRef]
- Askari, M.; Mozaffari, H.; Darooghegi Mofrad, M.; Jafari, A.; Surkan, P.J.; Amini, M.R.; Azadbakht, L. Effects of Garlic Supplementation on Oxidative Stress and Antioxidative Capacity Biomarkers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phytother. Res. 2021, 35, 3032–3045. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.; Peluso, I. Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Curr. Pharm. Des. 2016, 22, 6701–6715. [Google Scholar] [CrossRef] [PubMed]
- Elisabetta Maccarronello, A.; Cardullo, N.; Margarida Silva, A.; Di Francesco, A.; Costa, P.C.; Rodrigues, F.; Muccilli, V. From Waste to Bioactive Compounds: A Response Surface Methodology Approach to Extract Antioxidants from Pistacia Vera Shells for Postprandial Hyperglycaemia Management. Food Chem. 2024, 443, 138504. [Google Scholar] [CrossRef] [PubMed]
- Research and Markets. Snack Bar Market—Forecasts from 2020 to 2025. Available online: https://www.researchandmarkets.com/tag/energy-bar (accessed on 4 February 2023).
- GEBM. Global Energy Bar Market Size by Type (Activity Bars, Endurance Bars, Oat Bars, Protein Bars), by Distribution Channel (Convenience Stores, Hypermarkets & Supermarkets, Online Sales Channel), Report Id: 16434; GEBM: Tampa, FL, USA, 2022; p. 202. [Google Scholar]
- Vijayanand, P.; Yadav, A.R.; Balasubramanyam, N.; Narasimham, P. Storage Stability of Guava Fruit Bar Prepared Using a New Process. LWT—Food Sci. Technol. 2000, 33, 132–137. [Google Scholar] [CrossRef]
- Parn, O.J.; Bhat, R.; Yeoh, T.K.; Al-Hassan, A.A. Development of Novel Fruit Bars by Utilizing Date Paste. Food Biosci. 2015, 9, 20–27. [Google Scholar] [CrossRef]
- Ayad, A.A.; Williams, L.L.; Gad El-Rab, D.A.; Ayivi, R.; Colleran, H.L.; Aljaloud, S.; Ibrahim, S.A. A Review of the Chemical Composition, Nutritional and Health Benefits of Dates for Their Potential Use in Energy Nutrition Bars for Athletes. Cogent Food Agric. 2020, 6, 1809309. [Google Scholar] [CrossRef]
- Barakat, H.; Alfheeaid, H.A. Date Palm Fruit (Phoenix dactylifera) and Its Promising Potential in Developing Functional Energy Bars: Review of Chemical, Nutritional, Functional, and Sensory Attributes. Nutrients 2023, 15, 2134. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Nadeem, M.; Qureshi, T.M.; Qayyum, A.; Suhaib, M.; Zeb, F.; Ijaz-ul-Haq, A.Q.; Ashokkumar, M. Addition of Oat Enhanced the Physico-Chemical, Nutritional and Sensory Qualities of Date Fruit Based Snack Bars. J. Food Nutr. Res. 2018, 6, 271–276. [Google Scholar]
- Shaheen, B.; Nadeem, M.; Kauser, T.; Mueen-ud-Din, G.; Mahmood, S. Preparation and Nutritional Evaluation of Date Based Fiber Enriched Fruit Bars. Pak. J. Nutr. 2013, 12, 1061–1065. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Teoh, A.; Massarotto, C.; Wibisono, R.; Wadhwa, S. Comparative Analysis of Fruit-Based Functional Snack Bars. Food Chem. 2010, 119, 1369–1379. [Google Scholar] [CrossRef]
- Sawaya, W.N.; Khatchadourian, H.A.; Khalil, J.K.; Safi, W.M.; Al-Shalhat, A. Growth and Compositional Changes During the Various Developmental Stages of Some Saudi Arabian Date Cultivars. J. Food Sci. 1982, 47, 1489–1492. [Google Scholar] [CrossRef]
- Razali, N.S.M.; Wenyin, B.; Arjunan, R.D.; Hashim, H.; Abdullah, A. Total Phenolic Content and Antioxidant Activities of Date Fruit Extracts. Malays. Appl. Biol. 2019, 48, 103–108. [Google Scholar]
- Eid, N.M.; Al-Awadi, B.; Vauzour, D.; Oruna-Concha, M.J.; Spencer, J.P. Effect of Cultivar Type and Ripening on the Polyphenol Content of Date Palm Fruit. J. Agric. Food Chem. 2013, 61, 2453–2460. [Google Scholar] [CrossRef] [PubMed]
- Hamad, I.; AbdElgawad, H.; Al Jaouni, S.; Zinta, G.; Asard, H.; Hassan, S.; Hegab, M.; Hagagy, N.; Selim, S. Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars from Saudi Arabia to Assess Their Nutritional Quality. Molecules 2015, 20, 13620–13641. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Magied, N.; Ahmed, A.G.; Abo Zid, N. Possible Ameliorative Effect of Aqueous Extract of Date (Phoenix dactylifera) Pits in Rats Exposed to Gamma Radiation. Int. J. Radiat. Biol. 2018, 94, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.J.; Kuerban, A.; Razvi, S.S.; Mehanna, M.G.; Khan, K.A.; Almulaiky, Y.Q.; Faidallah, H.M. In Vivo Evaluation of Hypolipidemic and Antioxidative Effect of ‘Ajwa’ (Phoenix dactylifera L.) Date Seed-Extract in High-Fat Diet-Induced Hyperlipidemic Rat Model. Biomed. Pharmacother. 2018, 107, 675–680. [Google Scholar] [CrossRef] [PubMed]
- El-Far, A.H.; Oyinloye, B.E.; Sepehrimanesh, M.; Allah, M.A.G.; Abu-Reidah, I.; Shaheen, H.M.; Razeghian-Jahromi, I.; Noreldin, A.E.; Al Jaouni, S.K.; Mousa, S.A. Date Palm (Phoenix dactylifera): Novel Findings and Future Directions for Food and Drug Discovery. Curr. Drug Discov. Technol. 2019, 16, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Al-Yahya, M.; Raish, M.; AlSaid, M.S.; Ahmad, A.; Mothana, R.A.; Al-Sohaibani, M.; Al-Dosari, M.S.; Parvez, M.K.; Rafatullah, S. ‘Ajwa’dates (Phoenix dactylifera L.) Extract Ameliorates Isoproterenol-Induced Cardiomyopathy through Downregulation of Oxidative, Inflammatory and Apoptotic Molecules in Rodent Model. Phytomedicine 2016, 23, 1240–1248. [Google Scholar] [CrossRef]
- Moslemi, E.; Dehghan, P.; Khani, M.; Sarbakhsh, P.; Sarmadi, B. The Effects of Date Seed (Phoenix dactylifera) Supplementation on Exercise-Induced Oxidative Stress and Aerobic and Anaerobic Performance Following High-Intensity Interval Training Sessions: A Randomised, Double-Blind, Placebo-Controlled Trial. Br. J. Nutr. 2023, 129, 1151–1162. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; Perez-Martinez, P.; Delgado-Lista, J.; Yubero-Serrano, E.M.; Camargo, A.; Delgado-Casado, N.; Cruz-Teno, C.; Santos-Gonzalez, M.; Rodriguez-Cantalejo, F.; Castano, J.P.; et al. Mediterranean Diet Supplemented with Coenzyme Q10 Induces Postprandial Changes in P53 in Response to Oxidative DNA Damage in Elderly Subjects. Age 2012, 34, 389–403. [Google Scholar] [CrossRef]
- Karatzi, K.; Papamichael, C.; Karatzis, E.; Papaioannou, T.G.; Voidonikola, P.T.; Vamvakou, G.D.; Lekakis, J.; Zampelas, A. Postprandial Improvement of Endothelial Function by Red Wine and Olive Oil Antioxidants: A Synergistic Effect of Components of the Mediterranean Diet. J. Am. Coll. Nutr. 2008, 27, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Shen, X.; Zhang, Y.; Vuong, A.M.; Yang, S. Postprandial Changes of Oxidative Stress Biomarkers in Healthy Individuals. Front. Nutr. 2022, 9, 1007304. [Google Scholar] [CrossRef] [PubMed]
- Baxevanis, G.K.; Sakketou, E.-K.I.; Tentolouris, N.K.; Karathanos, V.T.; Fragkiadakis, G.A.; Kanellos, P.T. Tahini Consumption Improves Metabolic and Antioxidant Status Biomarkers in the Postprandial State in Healthy Males. Eur. Food Res. Technol. 2021, 247, 2721–2728. [Google Scholar] [CrossRef]
- Urquiaga, I.; Ávila, F.; Echeverria, G.; Perez, D.; Trejo, S.; Leighton, F. A Chilean Berry Concentrate Protects against Postprandial Oxidative Stress and Increases Plasma Antioxidant Activity in Healthy Humans. Oxid. Med. Cell. Longev. 2017, 2017, 8361493. [Google Scholar] [CrossRef] [PubMed]
- Arslan, F.D.; Koseoglu, M.; Atay, A.; Yigit, Y.; Akcay, Y.; Sozmen, E. Evaluation of Postprandial Total Antioxidant Activity in Normal and Overweight Individuals. J. Clin. Anal. Med. 2017, 8, 134–137. [Google Scholar]
- Zhang, Y.; Cai, S.; Ma, S.; Zhao, S.; Yi, J.; Zhou, L. Water Caltrop (Trapa quadrispinosa Roxb.) Husk Improves Oxidative Stress and Postprandial Blood Glucose in Diabetes: Phenolic Profiles, Antioxidant Activities and Alpha-Glycosidase Inhibition of Different Fractions with in Vitro and in Silico Analyses. Antioxidants 2022, 11, 1873. [Google Scholar] [CrossRef] [PubMed]
- Alfheeaid, H.A.; Barakat, H.; Althwab, S.A.; Musa, K.H.; Malkova, D. Nutritional and Physicochemical Characteristics of Innovative High Energy and Protein Fruit- and Date-Based Bars. Foods 2023, 12, 2777. [Google Scholar] [CrossRef] [PubMed]
- Bettaieb, I.; Bourgou, S.; Wannes, W.A.; Hamrouni, I.; Limam, F.; Marzouk, B. Essential Oils, Phenolics, and Antioxidant Activities of Different Parts of Cumin (Cuminum cyminum L.). J. Agric. Food Chem. 2010, 58, 10410–10418. [Google Scholar] [CrossRef] [PubMed]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Phenolic Content and Antioxidant Activities of Selected Potato Varieties and Their Processing by-Products. J. Funct. Foods 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Serafini, M.; Maiani, G.; Ferro-Luzzi, A. Alcohol-Free Red Wine Enhances Plasma Antioxidant Capacity in Humans1. J. Nutr. 1998, 128, 1003–1007. [Google Scholar] [CrossRef]
- Steel, R. Analysis of Variance II: Multiway Classifications; McGraw-Hill: New York, NY, USA, 1997; pp. 204–252. [Google Scholar]
- Wolever, T.M.S. Effect of Blood Sampling Schedule and Method of Calculating the Area under the Curve on Validity and Precision of Glycaemic Index Values. Br. J. Nutr. 2004, 91, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.I.; Farooq, M.; Syed, Q.A. Nutritional and Biological Characteristics of the Date Palm Fruit (Phoenix dactylifera L.)—A Review. Food Biosci. 2020, 34, 100509. [Google Scholar] [CrossRef]
- Assirey, E.A.R. Nutritional Composition of Fruit of 10 Date Palm (Phoenix dactylifera L.) Cultivars Grown in Saudi Arabia. J. Taibah Univ. Sci. 2015, 9, 75–79. [Google Scholar] [CrossRef]
- Amadou, I. Date Fruits: Nutritional Composition of Dates (Balanites aegyptiaca Delile and Phoenix dactylifera L.). In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 215–233. [Google Scholar]
- Jabeen, S.; Javed, F.; Hettiarachchy, N.S.; Sahar, A.; Sameen, A.; Khan, M.R.; Siddeeg, A.; Riaz, A.; Aadil, R.M. Development of Energy-Rich Protein Bars and in Vitro Determination of Angiotensin I-Converting Enzyme Inhibitory Antihypertensive Activities. Food Sci. Nutr. 2022, 10, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Irshad, A.; Solangi, K.A.; Marri, A.; Shaikh, N.; Khan, A.; Dawood, M. Fortification of Date Bars with Different Protein Sources and Their Nutritional Profiling: Nutritional Value of Date Bars. Pak. J. Sci. Ind. Res. B Biol. Sci. 2022, 65, 129–134. [Google Scholar]
- Baurina, A.V.; Baurin, D.V.; Shakir, I.V.; Panfilov, V.I. Use of Sunflower Protein in Snack Bars. Chem. Eng. Trans. 2021, 87, 1–6. [Google Scholar]
- Ranjha, M.M.A.N.; Amjad, S.; Ashraf, S.; Khawar, L.; Safdar, M.N.; Jabbar, S.; Nadeem, M.; Mahmood, S.; Murtaza, M.A. Extraction of Polyphenols from Apple and Pomegranate Peels Employing Different Extraction Techniques for the Development of Functional Date Bars. Int. J. Fruit Sci. 2020, 20, S1201–S1221. [Google Scholar] [CrossRef]
- Rehman, W.U.; Shah, U.; Rabi, K.; Munir, M.; Saleeem, A.; Iqbal, A.; Shah, F.; Shah, S.; Khan, Z.U.; Hamayun, M. Development Fiber Enriched Date Bars from Natural Resources. Fresenius Environ. Bull. 2020, 29, 6126–6133. [Google Scholar]
- Nadeem, M.; Rehman, S.U.; Mahmood Qureshi, T.; Nadeem Riaz, M.; Mehmood, A.; Wang, C. Development, Characterization, and Flavor Profile of Nutrient Dense Date Bars. J. Food Process. Preserv. 2018, 42, e13622. [Google Scholar] [CrossRef]
- Haddad, E.H.; Gaban-Chong, N.; Oda, K.; Sabaté, J. Effect of a Walnut Meal on Postprandial Oxidative Stress and Antioxidants in Healthy Individuals. Nutr. J. 2014, 13, 4. [Google Scholar] [CrossRef]
- Reverri, E.J.; Randolph, J.M.; Steinberg, F.M.; Kappagoda, C.T.; Edirisinghe, I.; Burton-Freeman, B.M. Black Beans, Fiber, and Antioxidant Capacity Pilot Study: Examination of Whole Foods vs. Functional Components on Postprandial Metabolic, Oxidative Stress, and Inflammation in Adults with Metabolic Syndrome. Nutrients 2015, 7, 6139–6154. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Gu, L.; Wu, X.; Jacob, R.A.; Sotoudeh, G.; Kader, A.A.; Cook, R.A. Plasma Antioxidant Capacity Changes Following a Meal as a Measure of the Ability of a Food to Alter in Vivo Antioxidant Status. J. Am. Coll. Nutr. 2007, 26, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Prior, R.L. Postprandial Increases in Serum Antioxidant Capacity in Older Women. J. Appl. Physiol. 2000, 89, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide Dismutases: Dual Roles in Controlling Ros Damage and Regulating Ros Signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Hermsdorff, H.H.M.; Puchau, B.; Volp, A.C.P.; Barbosa, K.B.F.; Bressan, J.; Zulet, M.Á.; Martínez, J.A. Dietary Total Antioxidant Capacity Is Inversely Related to Central Adiposity as Well as to Metabolic and Oxidative Stress Markers in Healthy Young Adults. Nutr. Metab. 2011, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Donato, A.J.; Eskurza, I.; Silver, A.E.; Levy, A.S.; Pierce, G.L.; Gates, P.E.; Seals, D.R. Direct Evidence of Endothelial Oxidative Stress with Aging in Humans: Relation to Impaired Endothelium-Dependent Dilation and Upregulation of Nuclear Factor-Κb. Circ. Res. 2007, 100, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- El Assar, M.; Angulo, J.; Rodríguez-Mañas, L. Oxidative Stress and Vascular Inflammation in Aging. Free Radic. Biol. Med. 2013, 65, 380–401. [Google Scholar] [CrossRef]
- Wonisch, W.; Falk, A.; Sundl, I.; Winklhofer-Roob, B.M.; Lindschinger, M. Oxidative Stress Increases Continuously with Bmi and Age with Unfavourable Profiles in Males. Aging Male 2012, 15, 159–165. [Google Scholar] [CrossRef]
Bars | Free PC [mg GAE g−1] | Bound PC [mg GAE g−1] |
---|---|---|
DBBs | 10.15 ± 1.61 b | 6.19 ± 0.99 a |
FBBs | 12.98 ± 1.23 a | 3.57 ± 0.83 b |
Age (years) | 21.4 ± 0.9 |
Height (cm) | 170.0 ± 1.3 |
Body weight (kg) | 66.3 ± 1.7 |
BMI (kg m−2) | 22.9 ± 0.4 |
Body fat mass (kg) | 14.5 ± 1.1 |
Total body water | 37.9 ± 0.9 |
Body fat-free mass (kg) | 29.2 ± 0.8 |
TPC | T-AOC | MDA | SOD | ||
---|---|---|---|---|---|
Sampling time | Pearson’s correlation | 0.183 * | 0.221 ** | −0.163 * | 0.008 |
Sig. (2-tailed) | 0.021 | 0.005 | 0.040 | 0.915 | |
TPC | Pearson’s correlation | −0.095 | −0.113 | −0.073 | |
Sig. (2-tailed) | 0.234 | 0.155 | 0.357 | ||
T-AOC | Pearson’s correlation | 0.279 ** | 0.709 ** | ||
Sig. (2-tailed) | 0.000 | 0.000 | |||
MDA | Pearson’s correlation | 0.298 ** | |||
Sig. (2-tailed) | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alolyan, M.A.; Alfheeaid, H.A.; Alhowail, A.H.; Alamri, M.M.; Alghasham, M.S.; Alzunaidy, N.A.; Barakat, H. Postprandial Antioxidative Response to Ingestion of Formulated Date- and Fruit-Based Nutritional Bars by Healthy Individuals. Nutrients 2024, 16, 1794. https://doi.org/10.3390/nu16111794
Alolyan MA, Alfheeaid HA, Alhowail AH, Alamri MM, Alghasham MS, Alzunaidy NA, Barakat H. Postprandial Antioxidative Response to Ingestion of Formulated Date- and Fruit-Based Nutritional Bars by Healthy Individuals. Nutrients. 2024; 16(11):1794. https://doi.org/10.3390/nu16111794
Chicago/Turabian StyleAlolyan, Manahel A., Hani A. Alfheeaid, Ahmad H. Alhowail, Majed M. Alamri, Modhi S. Alghasham, Nada A. Alzunaidy, and Hassan Barakat. 2024. "Postprandial Antioxidative Response to Ingestion of Formulated Date- and Fruit-Based Nutritional Bars by Healthy Individuals" Nutrients 16, no. 11: 1794. https://doi.org/10.3390/nu16111794
APA StyleAlolyan, M. A., Alfheeaid, H. A., Alhowail, A. H., Alamri, M. M., Alghasham, M. S., Alzunaidy, N. A., & Barakat, H. (2024). Postprandial Antioxidative Response to Ingestion of Formulated Date- and Fruit-Based Nutritional Bars by Healthy Individuals. Nutrients, 16(11), 1794. https://doi.org/10.3390/nu16111794