Do Popular Diets Impact Fertility?
Abstract
:1. Introduction
2. Methodology
3. Diets
3.1. Mediterranean Diet
3.2. Dash Diet
3.3. Plant-Based Diets: Vegetarian and Vegan Diets
3.4. Keto Diet
3.5. Western Diet
4. Macronutrients
4.1. Fat
4.2. Protein
4.3. Carbohydrates
5. Micronutrients
5.1. Folic Acid and Vitamin B12
5.2. Vitamin D
5.3. Phytoestrogens
5.4. Antioxidants
5.5. Gluten
6. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chiu, Y.; Chavarro, J.E.; Souter, I. Diet and Female Fertility: Doctor, what should I Eat? Fertil. Steril. 2018, 110, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Emokpae, M.A.; Brown, S.I. Effects of Lifestyle Factors on Fertility: Practical Recommendations for Modification. Reprod. Fertil. 2021, 2, R13–R26. [Google Scholar] [CrossRef] [PubMed]
- Atkins, P.; Bowler, I. Food in Society: Economy, Culture, Geography; Routledge: London, UK, 2016. [Google Scholar]
- Cembranel, F.; Wagner, K.J.P.; González-Chica, D.A.; D’Orsi, E. Education and Income Levels are Associated with Energy and Micronutrient Intake. Int. J. Vitam. Nutr. Res. 2019, 90, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Cruwys, T.; Bevelander, K.E.; Hermans, R.C. Social Modeling of Eating: A Review of when and Why Social Influence Affects Food Intake and Choice. Appetite 2015, 86, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Azzam, A. Is the World Converging to a ‘Western Diet’? Public Health Nutr. 2021, 24, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Pingali, P. Westernization of Asian Diets and the Transformation of Food Systems: Implications for Research and Policy. Food Policy 2007, 32, 281–298. [Google Scholar] [CrossRef]
- Kovic, Y.; Noel, J.K.; Ungemack, J.A.; Burleson, J.A. The Impact of Junk Food Marketing Regulations on Food Sales: An Ecological Study. Obes. Rev. 2018, 19, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Kopp, W. How Western Diet and Lifestyle Drive the Pandemic of Obesity and Civilization Diseases. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2221–2236. [Google Scholar] [CrossRef]
- Balwan, W.K.; Kour, S. Lifestyle Diseases: The Link between Modern Lifestyle and Threat to Public Health. Saudi J. Med. Pharm. Sci. 2021, 7, 179–184. [Google Scholar] [CrossRef]
- Korp, P. Problems of the Healthy Lifestyle Discourse. Sociol. Compass 2010, 4, 800–810. [Google Scholar] [CrossRef]
- Fiorindi, C.; Dinu, M.; Gavazzi, E.; Scaringi, S.; Ficari, F.; Nannoni, A.; Sofi, F.; Giudici, F. Adherence to Mediterranean Diet in Patients with Inflammatory Bowel Disease. Clin. Nutr. ESPEN 2021, 46, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Kamiński, M.; Skonieczna-Żydecka, K.; Nowak, J.K.; Stachowska, E. Global and Local Diet Popularity Rankings, their Secular Trends, and Seasonal Variation in Google Trends Data. Nutrition 2020, 79, 110759. [Google Scholar] [CrossRef] [PubMed]
- Keys, A.; Menotti, A.; Karvonen, M.J.; Aravanis, C.; Blackburn, H.; Buzina, R.; Djordjevic, B.S.; Dontas, A.S.; Fidanza, F.; Keys, M.H. The Diet and 15-Year Death Rate in the Seven Countries Study. Am. J. Epidemiol. 2017, 185, 1130–1142. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet: A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean Diet Nutrients to Turn the Tide Against Insulin Resistance and Related Diseases. Nutrients 2020, 12, 1066. [Google Scholar] [CrossRef] [PubMed]
- Livshits, A.; Seidman, D.S. Fertility Issues in Women with Diabetes. Women’s Health 2009, 5, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Al Awlaqi, A.; Alkhayat, K.; Hammadeh, M.E. Metabolic Syndrome and Infertility in Women. Int. J. Womens Health Reprod. Sci. 2016, 4, 89–95. [Google Scholar] [CrossRef]
- Toledo, E.; Lopez-del Burgo, C.; Ruiz-Zambrana, A.; Donazar, M.; Navarro-Blasco, Í.; Martínez-González, M.A.; de Irala, J. Dietary Patterns and Difficulty Conceiving: A Nested Case–control Study. Fertil. Steril. 2011, 96, 1149–1153. [Google Scholar] [CrossRef] [PubMed]
- Karayiannis, D.; Kontogianni, M.D.; Mendorou, C.; Mastrominas, M.; Yiannakouris, N. Adherence to the Mediterranean Diet and IVF Success Rate among Non-Obese Women Attempting Fertility. Hum. Reprod. 2018, 33, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Ricci, E.; Bravi, F.; Noli, S.; Somigliana, E.; Cipriani, S.; Castiglioni, M.; Chiaffarino, F.; Vignali, M.; Gallotti, B.; Parazzini, F. Mediterranean Diet and Outcomes of Assisted Reproduction: An Italian Cohort Study. Obstet. Gynecol. 2019, 221, 627.e1–627.e14. [Google Scholar] [CrossRef]
- Vujkovic, M.; de Vries, J.H.; Lindemans, J.; Macklon, N.S.; van der Spek, P.J.; Steegers, E.A.; Steegers-Theunissen, R.P. The Preconception Mediterranean Dietary Pattern in Couples Undergoing in Vitro Fertilization/Intracytoplasmic Sperm Injection Treatment Increases the Chance of Pregnancy. Fertil. Steril. 2010, 94, 2096–2101. [Google Scholar] [CrossRef] [PubMed]
- Kermack, A.J.; Lowen, P.; Wellstead, S.J.; Fisk, H.L.; Montag, M.; Cheong, Y.; Osmond, C.; Houghton, F.D.; Calder, P.C.; Macklon, N.S. Effect of a 6-Week “Mediterranean” Dietary Intervention on in Vitro Human Embryo Development: The Preconception Dietary Supplements in Assisted Reproduction Double-Blinded Randomized Controlled Trial. Fertil. Steril. 2020, 113, 260–269. [Google Scholar] [CrossRef]
- Sun, H.; Lin, Y.; Lin, D.; Zou, C.; Zou, X.; Fu, L.; Meng, F.; Qian, W. Mediterranean Diet Improves Embryo Yield in IVF: A Prospective Cohort Study. Reprod. Biol. Endocrinol. 2019, 17, 73. [Google Scholar] [CrossRef] [PubMed]
- Gaskins, A.J.; Nassan, F.L.; Chiu, Y.; Arvizu, M.; Williams, P.L.; Keller, M.G.; Souter, I.; Hauser, R.; Chavarro, J.E.; EARTH Study Team. Dietary Patterns and Outcomes of Assisted Reproduction. Obstet. Gynecol. 2019, 220, 567.e1–567.e18. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Mitsunami, M.; Wang, S.; Mínguez-Alarcón, L.; Ribas-Maynou, J.; Yeste, M.; Souter, I.; Chavarro, J.E.; Hauser, R.; Williams, P.L. Women’s Adherence to Healthy Dietary Patterns and Outcomes of Infertility Treatment. JAMA Netw. Open 2023, 6, e2329982. [Google Scholar] [CrossRef]
- Winter, H.G.; Rolnik, D.L.; Mol, B.W.; Torkel, S.; Alesi, S.; Mousa, A.; Habibi, N.; Silva, T.R.; Oi Cheung, T.; Thien Tay, C. Can Dietary Patterns Impact Fertility Outcomes? A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2589. [Google Scholar] [CrossRef]
- Muffone, A.R.M.; de Oliveira Lübke, P.D.; Rabito, E.I. Mediterranean Diet and Infertility: A Systematic Review with Meta-Analysis of Cohort Studies. Nutr. Rev. 2023, 81, 775–789. [Google Scholar] [CrossRef]
- Montano, L.; Ceretti, E.; Donato, F.; Bergamo, P.; Zani, C.; Viola, G.C.V.; Notari, T.; Pappalardo, S.; Zani, D.; Ubaldi, S. Effects of a Lifestyle Change Intervention on Semen Quality in Healthy Young Men Living in Highly Polluted Areas in Italy: The FASt Randomized Controlled Trial. Eur. Urol. Focus. 2022, 8, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-Style Diet and Risk of Coronary Heart Disease and Stroke in Women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef]
- Appel, L.J.; Brands, M.W.; Daniels, S.R.; Karanja, N.; Elmer, P.J.; Sacks, F.M. Dietary Approaches to Prevent and Treat Hypertension: A Scientific Statement from the American Heart Association. Hypertension 2006, 47, 296–308. [Google Scholar] [CrossRef]
- Kazemi, M.; Jarrett, B.Y.; Vanden Brink, H.; Lin, A.W.; Hoeger, K.M.; Spandorfer, S.D.; Lujan, M.E. Obesity, Insulin Resistance, and Hyperandrogenism Mediate the Link between Poor Diet Quality and Ovarian Dysmorphology in Reproductive-Aged Women. Nutrients 2020, 12, 1953. [Google Scholar] [CrossRef] [PubMed]
- Asemi, Z.; Esmaillzadeh, A. DASH Diet, Insulin Resistance, and Serum Hs-CRP in Polycystic Ovary Syndrome: A Randomized Controlled Clinical Trial. Horm. Metab. Res. 2015, 47, 232–238. [Google Scholar] [PubMed]
- Foroozanfard, F.; Rafiei, H.; Samimi, M.; Gilasi, H.R.; Gorjizadeh, R.; Heidar, Z.; Asemi, Z. The Effects of Dietary Approaches to Stop Hypertension Diet on Weight Loss, anti-Müllerian Hormone and Metabolic Profiles in Women with Polycystic Ovary Syndrome: A Randomized Clinical Trial. Clin. Endocrinol. 2017, 87, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Efrat, M.; Stein, A.; Pinkas, H.; Unger, R.; Birk, R. Dietary Patterns are Positively Associated with Semen Quality. Fertil. Steril. 2018, 109, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz, A.; Morze, J.; Przybyłowicz, M.; Przybyłowicz, K.E. Association of the Dietary Approaches to Stop Hypertension, Physical Activity, and their Combination with Semen Quality: A Cross-Sectional Study. Nutrients 2019, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Cutillas-Tolín, A.; Adoamnei, E.; Navarrete-Muñoz, E.M.; Vioque, J.; Moñino-García, M.; Jørgensen, N.; Chavarro, J.E.; Mendiola, J.; Torres-Cantero, A.M. Adherence to Diet Quality Indices in Relation to Semen Quality and Reproductive Hormones in Young Men. Hum. Reprod. 2019, 34, 1866. [Google Scholar] [CrossRef] [PubMed]
- Salas-Huetos, A.; Mínguez-Alarcón, L.; Mitsunami, M.; Arvizu, M.; Ford, J.B.; Souter, I.; Yeste, M.; Chavarro, J.E.; EARTH Study Team. Paternal Adherence to Healthy Dietary Patterns in Relation to Sperm Parameters and Outcomes of Assisted Reproductive Technologies. Fertil. Steril. 2022, 117, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Williamson, C.S. Nutrition in Pregnancy. Nutr. Bull. 2006, 31, 28–59. [Google Scholar] [CrossRef]
- Rizzo, G.; Laganà, A.S.; Rapisarda, A.M.C.; La Ferrera, G.M.G.; Buscema, M.; Rossetti, P.; Nigro, A.; Muscia, V.; Valenti, G.; Sapia, F. Vitamin B12 among Vegetarians: Status, Assessment and Supplementation. Nutrients 2016, 8, 767. [Google Scholar] [CrossRef]
- Griffith, J.; Omar, H. Association between Vegetarian Diet and Menstrual Problems in Young Women: A Case Presentation and Brief Review. J. Pediatr. Adolesc. Gynecol. 2003, 16, 319–323. [Google Scholar] [CrossRef]
- Pedersen, A.B.; Bartholomew, M.J.; Dolence, L.A.; Aljadir, L.P.; Netteburg, K.L.; Lloyd, T. Menstrual Differences due to Vegetarian and Non Vegetarian Diets. Am. J. Clin. Nutr. 1991, 53, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Pirke, K.M.; Schweiger, U.; Laessle, R.; Dickhaut, B.; Schweiger, M.; Waechtler, M. Dieting Influences the Menstrual Cycle: Vegetarian Versus Nonvegetarian Diet. Fertil. Steril. 1986, 46, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Barr, S.I.; Janelle, K.C.; Prior, J.C. Vegetarian Vs Nonvegetarian Diets, Dietary Restraint, and Subclinical Ovulatory Disturbances: Prospective 6-Mo Study. Am. J. Clin. Nutr. 1994, 60, 887–894. [Google Scholar] [CrossRef]
- Lim, S.X.; Loy, S.L.; Colega, M.T.; Lai, J.S.; Godfrey, K.M.; Lee, Y.S.; Tan, K.H.; Yap, F.; Shek, L.P.; Chong, Y.S. Prepregnancy Adherence to Plant-Based Diet Indices and Exploratory Dietary Patterns in Relation to Fecundability. Am. J. Clin. Nutr. 2022, 115, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Samimisedeh, P.; Afshar, E.J.; Ejtahed, H.; Qorbani, M. The Impact of Vegetarian Diet on Sperm Quality, Sex Hormone Levels and Fertility: A Systematic Review and Meta-analysis. J. Hum. Nutr. Diet. 2024, 37, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Yisahak, S.F.; Hinkle, S.N.; Mumford, S.L.; Li, M.; Andriessen, V.C.; Grantz, K.L.; Zhang, C.; Grewal, J. Vegetarian Diets during Pregnancy, and Maternal and Neonatal Outcomes. Int. J. Epidemiol. 2021, 50, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Zhao, Y.; Wang, S. Is a Vegetarian Diet Safe to Follow during Pregnancy? A Systematic Review and Meta-Analysis of Observational Studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 2586–2596. [Google Scholar] [CrossRef] [PubMed]
- Kljajic, M.; Hammadeh, M.E.; Wagenpfeil, G.; Baus, S.; Sklavounos, P.; Solomayer, E.; Kasoha, M. Impact of the Vegan Diet on Sperm Quality and Sperm Oxidative Stress Values: A Preliminary Study. J. Hum. Reprod. Sci. 2021, 14, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Orzylowska, E.M.; Jacobson, J.D.; Bareh, G.M.; Ko, E.Y.; Corselli, J.U.; Chan, P.J. Food Intake Diet and Sperm Characteristics in a Blue Zone: A Loma Linda Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 203, 112–115. [Google Scholar] [CrossRef]
- Franzago, M.; Sabovic, I.; Franchi, S.; De Santo, M.; Piomboni, P.; Vitacolonna, E.; Stuppia, L.; Foresta, C. Sperm DNA Methylation at Metabolism-Related Genes in Vegan Subjects. Front. Endocrinol. 2021, 12, 633943. [Google Scholar] [CrossRef]
- Chamorro, R.; Gonzalez, M.F.; Aliaga, R.; Gengler, V.; Balladares, C.; Barrera, C.; Bascuñan, K.A.; Bazinet, R.P.; Valenzuela, R. Diet, Plasma, Erythrocytes, and Spermatozoa Fatty Acid Composition Changes in Young Vegan Men. Lipids 2020, 55, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Bianco, A.; Grimaldi, K.A. The Ketogenic Diet and Sport: A Possible Marriage? Exerc. Sport. Sci. Rev. 2015, 43, 153–162. [Google Scholar] [CrossRef] [PubMed]
- McGaugh, E.; Barthel, B. A Review of Ketogenic Diet and Lifestyle. Mo. Med. 2022, 119, 84. [Google Scholar]
- Alharbi, A.; Al-Sowayan, N.S. The Effect of Ketogenic-Diet on Health. Food Nutr. Sci. 2020, 11, 301–313. [Google Scholar] [CrossRef]
- Abbasi, J. Interest in the Ketogenic Diet Grows for Weight Loss and Type 2 Diabetes. JAMA 2018, 319, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Pandurevic, S.; Mancini, I.; Mitselman, D.; Magagnoli, M.; Teglia, R.; Fazzeri, R.; Dionese, P.; Cecchetti, C.; Caprio, M.; Moretti, C. Efficacy of very Low-Calorie Ketogenic Diet with the Pronokal® Method in Obese Women with Polycystic Ovary Syndrome: A 16-Week Randomized Controlled Trial. Endocr. Connect. 2023, 12, e220536. [Google Scholar] [CrossRef] [PubMed]
- Meneghini, C.; Bianco, C.; Galanti, F.; Tamburelli, V.; Dal Lago, A.; Licata, E.; Gallo, M.; Fabiani, C.; Corno, R.; Miriello, D. The Impact of Nutritional Therapy in the Management of Overweight/Obese PCOS Patient Candidates for IVF. Nutrients 2023, 15, 4444. [Google Scholar] [CrossRef]
- Mavropoulos, J.C.; Yancy, W.S.; Hepburn, J.; Westman, E.C. The Effects of a Low-Carbohydrate, Ketogenic Diet on the Polycystic Ovary Syndrome: A Pilot Study. Nutr. Metab. 2005, 2, 35. [Google Scholar] [CrossRef] [PubMed]
- Palafox-Gómez, C.; Ortiz, G.; Madrazo, I.; López-Bayghen, E. Adding a Ketogenic Dietary Intervention to IVF Treatment in Patients with Polycystic Ovary Syndrome Improves Implantation and Pregnancy. Reprod. Toxicol. 2023, 119, 108420. [Google Scholar] [CrossRef]
- Magagnini, M.C.; Condorelli, R.A.; Cimino, L.; Cannarella, R.; Aversa, A.; Calogero, A.E.; La Vignera, S. Does the Ketogenic Diet Improve the Quality of Ovarian Function in Obese Women? Nutrients 2022, 14, 4147. [Google Scholar] [CrossRef]
- Cincione, R.I.; Losavio, F.; Ciolli, F.; Valenzano, A.; Cibelli, G.; Messina, G.; Polito, R. Effects of Mixed of a Ketogenic Diet in Overweight and Obese Women with Polycystic Ovary Syndrome. Int. J. Environ. Res. Public Health 2021, 18, 12490. [Google Scholar] [CrossRef]
- Li, J.; Bai, W.; Jiang, B.; Bai, L.; Gu, B.; Yan, S.; Li, F.; Huang, B. Ketogenic Diet in Women with Polycystic Ovary Syndrome and Liver Dysfunction Who are Obese: A Randomized, Open-label, Parallel-group, Controlled Pilot Trial. J. Obstet. Gynaecol. Res. 2021, 47, 1145–1152. [Google Scholar] [CrossRef]
- Zou, W.; Slone, J.; Cao, Y.; Huang, T. Mitochondria and their Role in Human Reproduction. DNA Cell Biol. 2020, 39, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Kulak, D.; Polotsky, A.J. Should the Ketogenic Diet be Considered for Enhancing Fertility? Maturitas 2013, 74, 10–13. [Google Scholar] [CrossRef]
- Rugiel, M.; Setkowicz-Janeczko, Z.; Kosiek, W.; Rauk, Z.; Kawon, K.; Chwiej, J. Does Ketogenic Diet used in Pregnancy Affect the Nervous System Development in Offspring?— FTIR Microspectroscopy Study. ACS Chem. Neurosci. 2023, 14, 2775–2791. [Google Scholar] [CrossRef]
- Budak, Ö.; Bostancı, M.S.; Kurtoğlu, E.; Toprak, V. Decreased Ovarian Reserve and Ovarian Morphological Alterations in Female Rat Offspring Exposed to a Ketogenic Maternal Diet. Rev. Da Assoc. Médica Bras. 2021, 67, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Barry, D.; Ellul, S.; Watters, L.; Lee, D.; Haluska Jr, R.; White, R. The Ketogenic Diet in Disease and Development. Int. J. Dev. Neurosci. 2018, 68, 53–58. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Colaci, D.S.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Dietary Patterns and Semen Quality in Young Men. Hum. Reprod. 2012, 27, 2899–2907. [Google Scholar] [CrossRef] [PubMed]
- Nazni, P. Association of Western Diet & Lifestyle with Decreased Fertility. Indian J. Med. Res. 2014, 140, S78–S81. [Google Scholar]
- Bodden, C.; Hannan, A.J.; Reichelt, A.C. Of ‘junk Food’ and ‘brain Food’: How Parental Diet Influences Offspring Neurobiology and Behaviour. Trends Endocrinol. Metab. 2021, 32, 566–578. [Google Scholar] [CrossRef]
- Carrera-Bastos, P.; Fontes-Villalba, M.; O’Keefe, J.H.; Lindeberg, S.; Cordain, L. The Western Diet and Lifestyle and Diseases of Civilization. Res. Rep. Clin. Cardiol. 2011, 2, 15–35. [Google Scholar] [CrossRef]
- Kulkarni, S.D.; Patil, A.N.; Gudi, A.; Homburg, R.; Conway, G.S. Changes in Diet Composition with Urbanization and its Effect on the Polycystic Ovarian Syndrome Phenotype in a Western Indian Population. Fertil. Steril. 2019, 112, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Shahdadian, F.; Ghiasvand, R.; Abbasi, B.; Feizi, A.; Saneei, P.; Shahshahan, Z. Association between Major Dietary Patterns and Polycystic Ovary Syndrome: Evidence from a Case-Control Study. Appl. Physiol. Nutr. Metab. 2019, 44, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global Nutrition Transition and the Pandemic of Obesity in Developing Countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Foley, E.; Marsh, C. Polycystic Ovary Syndrome: Is a Western Diet Sabotaging our Best Efforts at Management? Fertil. Steril. 2019, 112, 653–654. [Google Scholar] [CrossRef] [PubMed]
- Pathak, G.; Nichter, M. Polycystic Ovary Syndrome in Globalizing India: An Ecosocial Perspective on an Emerging Lifestyle Disease. Soc. Sci. Med. 2015, 146, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.V.; Takahashi, D.; Mishler, E.; Slayden, O.D.; Roberts, C.T.; Hennebold, J.; True, C. Individual and Combined Effects of 5-Year Exposure to Hyperandrogenemia and Western-Style Diet on Metabolism and Reproduction in Female Rhesus Macaques. Hum. Reprod. 2021, 36, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Frye, B.M.; Register, T.C.; Appt, S.E.; Vitolins, M.Z.; Uberseder, B.; Chen, H.; Shively, C.A. Differential Effects of Western Versus Mediterranean Diets and Psychosocial Stress on Ovarian Function in Female Monkeys (Macaca Fascicularis). Psychoneuroendocrinology 2023, 153, 106107. [Google Scholar] [CrossRef] [PubMed]
- Ravisankar, S.; Ting, A.Y.; Murphy, M.J.; Redmayne, N.; Wang, D.; McArthur, C.A.; Takahashi, D.L.; Kievit, P.; Chavez, S.L.; Hennebold, J.D. Short-Term Western-Style Diet Negatively Impacts Reproductive Outcomes in Primates. JCI Insight 2021, 6, e138312. [Google Scholar] [CrossRef]
- Ravisankar, S.; Murphy, M.J.; Redmayne-Titley, N.; Davis, B.; Luo, F.; Takahashi, D.; Hennebold, J.D.; Chavez, S.L. Long-Term Hyperandrogenemia and/Or Western-Style Diet in Rhesus Macaque Females Impairs Preimplantation Embryogenesis. Endocrinology 2022, 163, bqac019. [Google Scholar] [CrossRef]
- Bishop, C.V.; Stouffer, R.L.; Takahashi, D.L.; Mishler, E.C.; Wilcox, M.C.; Slayden, O.D.; True, C.A. Chronic Hyperandrogenemia and Western-Style Diet Beginning at Puberty Reduces Fertility and Increases Metabolic Dysfunction during Pregnancy in Young Adult, Female Macaques. Hum. Reprod. 2018, 33, 694–705. [Google Scholar] [CrossRef] [PubMed]
- Rhee, J.S.; Saben, J.L.; Mayer, A.L.; Schulte, M.B.; Asghar, Z.; Stephens, C.; Chi, M.M.; Moley, K.H. Diet-Induced Obesity Impairs Endometrial Stromal Cell Decidualization: A Potential Role for Impaired Autophagy. Hum. Reprod. 2016, 31, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chou, Y.; Chao, J.C.; Hsu, C.; Cha, T.; Tsao, C. The Association between Dietary Patterns and Semen Quality in a General Asian Population of 7282 Males. PLoS ONE 2015, 10, e0134224. [Google Scholar] [CrossRef] [PubMed]
- Jurewicz, J.; Radwan, M.; Sobala, W.; Radwan, P.; Bochenek, M.; Hanke, W. Dietary Patterns and their Relationship with Semen Quality. Am. J. Men’s Health 2018, 12, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz, A.; Przybyłowicz, K.E.; Przybyłowicz, M. Dietary Patterns and Poor Semen Quality Risk in Men: A Cross-Sectional Study. Nutrients 2018, 10, 1162. [Google Scholar] [CrossRef] [PubMed]
- Nassan, F.L.; Jensen, T.K.; Priskorn, L.; Halldorsson, T.I.; Chavarro, J.E.; Jørgensen, N. Association of Dietary Patterns with Testicular Function in Young Danish Men. JAMA Netw. Open 2020, 3, e1921610. [Google Scholar] [CrossRef] [PubMed]
- Arab, A.; Rafie, N.; Mansourian, M.; Miraghajani, M.; Hajianfar, H. Dietary Patterns and Semen Quality: A Systematic Review and Meta-analysis of Observational Studies. Andrology 2018, 6, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Cutillas-Tolín, A.; Mínguez-Alarcón, L.; Mendiola, J.; López-Espín, J.J.; Jørgensen, N.; Navarrete-Muñoz, E.M.; Torres-Cantero, A.M.; Chavarro, J.E. Mediterranean and Western Dietary Patterns are Related to Markers of Testicular Function among Healthy Men. Hum. Reprod. 2015, 30, 2945–2955. [Google Scholar] [CrossRef] [PubMed]
- Eslamian, G.; Amirjannati, N.; Rashidkhani, B.; Sadeghi, M.; Hekmatdoost, A. Intake of Food Groups and Idiopathic Asthenozoospermia: A Case–control Study. Hum. Reprod. 2012, 27, 3328–3336. [Google Scholar] [CrossRef]
- Eslamian, G.; Amirjannati, N.; Rashidkhani, B.; Sadeghi, M.; Baghestani, A.; Hekmatdoost, A. Adherence to the Western Pattern is Potentially an Unfavorable Indicator of Asthenozoospermia Risk: A Case-Control Study. J. Am. Coll. Nutr. 2016, 35, 50–58. [Google Scholar] [CrossRef]
- Rakhra, V.; Galappaththy, S.L.; Bulchandani, S.; Cabandugama, P.K. Obesity and the Western Diet: How we Got Here. Mo. Med. 2020, 117, 536. [Google Scholar] [PubMed]
- Min, M.U.; Li-Fa, X.U.; Dong, H.U.; Jing, W.U.; Ming-Jie, B. Dietary Patterns and Overweight/Obesity: A Review Article. Iran. J. Public. Health 2017, 46, 869. [Google Scholar]
- Mahutte, N.; Kamga-Ngande, C.; Sharma, A.; Sylvestre, C. Obesity and Reproduction. J. Obstet. Gynaecol. Can. 2018, 40, 950–966. [Google Scholar] [CrossRef] [PubMed]
- Fontana, R.; Della Torre, S. The Deep Correlation between Energy Metabolism and Reproduction: A View on the Effects of Nutrition for Women Fertility. Nutrients 2016, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Çekici, H.; Akdevelioğlu, Y. The Association between Trans Fatty Acids, Infertility and Fetal Life: A Review. Hum. Fertil. 2018, 22, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Alesi, S.; Villani, A.; Mantzioris, E.; Takele, W.W.; Cowan, S.; Moran, L.J.; Mousa, A. Anti-Inflammatory Diets in Fertility: An Evidence Review. Nutrients 2022, 14, 3914. [Google Scholar] [CrossRef] [PubMed]
- Hohos, N.M.; Skaznik-Wikiel, M.E. High-Fat Diet and Female Fertility. Endocrinology 2017, 158, 2407–2419. [Google Scholar] [CrossRef] [PubMed]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. Dietary Fatty Acid Intakes and the Risk of Ovulatory Infertility. Am. J. Clin. Nutr. 2007, 85, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Wise, L.A.; Wesselink, A.K.; Tucker, K.L.; Saklani, S.; Mikkelsen, E.M.; Cueto, H.; Riis, A.H.; Trolle, E.; McKinnon, C.J.; Hahn, K.A. Dietary Fat Intake and Fecundability in 2 Preconception Cohort Studies. Am. J. Epidemiol. 2018, 187, 60–74. [Google Scholar] [CrossRef]
- Eskew, A.M.; Wormer, K.C.; Matthews, M.L.; Norton, H.J.; Papadakis, M.A.; Hurst, B.S. The Association between Fatty Acid Index and in Vitro Fertilization Outcomes. J. Assist. Reprod. Genet. 2017, 34, 1627–1632. [Google Scholar] [CrossRef]
- Morrison, J.A.; Glueck, C.J.; Wang, P. Dietary Trans Fatty Acid Intake is Associated with Increased Fetal Loss. Fertil. Steril. 2008, 90, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Risérus, U. Trans Fatty Acids and Insulin Resistance. Atheroscler. Suppl. 2006, 7, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Abodi, M.; De Cosmi, V.; Parazzini, F.; Agostoni, C. Omega-3 Fatty Acids Dietary Intake for Oocyte Quality in Women Undergoing Assisted Reproductive Techniques: A Systematic Review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 275, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Mumford, S.L.; Browne, R.W.; Kim, K.; Nichols, C.; Wilcox, B.; Silver, R.M.; Connell, M.T.; Holland, T.L.; Kuhr, D.L.; Omosigho, U.R. Preconception Plasma Phospholipid Fatty Acids and Fecundability. J. Clin. Endocrinol. Metab. 2018, 103, 4501–4510. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.; Karmon, A.E.; Gaskins, A.J.; Arvizu, M.; Williams, P.L.; Souter, I.; Rueda, B.R.; Hauser, R.; Chavarro, J.E.; EARTH Study Team. Serum Omega-3 Fatty Acids and Treatment Outcomes among Women Undergoing Assisted Reproduction. Hum. Reprod. 2018, 33, 156–165. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Arvizu, M.; Mínguez-Alarcón, L.; Mitsunami, M.; Ribas-Maynou, J.; Yeste, M.; Ford, J.B.; Souter, I.; Chavarro, J.E.; EARTH Study Team. Women’s and Men’s Intake of Omega-3 Fatty Acids and their Food Sources and Assisted Reproductive Technology Outcomes. Obstet. Gynecol. 2022, 227, 246.e1–246.e11. [Google Scholar] [CrossRef] [PubMed]
- Stanhiser, J.; Jukic, A.; McConnaughey, D.R.; Steiner, A.Z. Omega-3 Fatty Acid Supplementation and Fecundability. Hum. Reprod. 2022, 37, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zeng, L.; Bao, T.; Ge, J. Effectiveness of Omega-3 Fatty Acid for Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Reprod. Biol. Endocrinol. 2018, 16, 27. [Google Scholar] [CrossRef]
- Melo, V.; Silva, T.; Silva, T.; Freitas, J.; Sacramento, J.; Vazquez, M.; Araujo, E. Omega-3 Supplementation in the Treatment of Polycystic Ovary Syndrome (PCOS)–a Review of Clinical Trials and Cohort. Endocr. Regul. 2022, 56, 66–79. [Google Scholar] [CrossRef]
- Attaman, J.A.; Toth, T.L.; Furtado, J.; Campos, H.; Hauser, R.; Chavarro, J.E. Dietary Fat and Semen Quality among Men Attending a Fertility Clinic. Hum. Reprod. 2012, 27, 1466–1474. [Google Scholar] [CrossRef]
- Chavarro, J.E.; Furtado, J.; Toth, T.L.; Ford, J.; Keller, M.; Campos, H.; Hauser, R. Trans–fatty Acid Levels in Sperm are Associated with Sperm Concentration among Men from an Infertility Clinic. Fertil. Steril. 2011, 95, 1794–1797. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.K.; Heitmann, B.L.; Jensen, M.B.; Halldorsson, T.I.; Andersson, A.; Skakkebæk, N.E.; Joensen, U.N.; Lauritsen, M.P.; Christiansen, P.; Dalgård, C. High Dietary Intake of Saturated Fat is Associated with Reduced Semen Quality among 701 Young Danish Men from the General Population. Am. J. Clin. Nutr. 2013, 97, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Chavarro, J.E.; Mínguez-Alarcón, L.; Mendiola, J.; Cutillas-Tolín, A.; López-Espín, J.J.; Torres-Cantero, A.M. Trans Fatty Acid Intake is Inversely Related to Total Sperm Count in Young Healthy Men. Hum. Reprod. 2014, 29, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Innis, S.; Assocition, A.D. Position of the American Dietetic Association and Dietitians of Canada: Dietary Fatty Acids. J. Am. Diet. Assoc. 2007, 107, 1599–1611. [Google Scholar] [PubMed]
- Lenzi, A.; Gandini, L.; Maresca, V.; Rago, R.; Sgro, P.; Dondero, F.; Picardo, M. Fatty Acid Composition of Spermatozoa and Immature Germ Cells. Mol. Hum. Reprod. 2000, 6, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Sæther, T.; Tran, T.N.; Rootwelt, H.; Christophersen, B.O.; Haugen, T.B. Expression and Regulation of Δ5-Desaturase, Δ6-Desaturase, Stearoyl-Coenzyme A (CoA) Desaturase 1, and Stearoyl-CoA Desaturase 2 in Rat Testis. Biol. Reprod. 2003, 69, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Larque, E.; García-Ruiz, P.; Perez-Llamas, F.; Zamora, S.; Gil, A. Dietary Trans Fatty Acids Alter the Compositions of Microsomes and Mitochondria and the Activities of Microsome Δ6-Fatty Acid Desaturase and Glucose-6-Phosphatase in Livers of Pregnant Rats. J. Nutr. 2003, 133, 2526–2531. [Google Scholar] [CrossRef] [PubMed]
- Safarinejad, M.R.; Hosseini, S.Y.; Dadkhah, F.; Asgari, M.A. Relationship of Omega-3 and Omega-6 Fatty Acids with Semen Characteristics, and Anti-Oxidant Status of Seminal Plasma: A Comparison between Fertile and Infertile Men. Clin. Nutr. 2010, 29, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Safarinejad, M.R. Effect of Omega-3 Polyunsaturated Fatty Acid Supplementation on Semen Profile and Enzymatic Anti-oxidant Capacity of Seminal Plasma in Infertile Men with Idiopathic Oligoasthenoteratospermia: A Double-blind, Placebo-controlled, Randomised Study. Andrologia 2011, 43, 38–47. [Google Scholar] [CrossRef]
- Hosseini, B.; Nourmohamadi, M.; Hajipour, S.; Taghizadeh, M.; Asemi, Z.; Keshavarz, S.A.; Jafarnejad, S. The Effect of Omega-3 Fatty Acids, EPA, and/Or DHA on Male Infertility: A Systematic Review and Meta-Analysis. J. Diet. Suppl. 2019, 16, 245–256. [Google Scholar] [CrossRef]
- Falsig, A.; Gleerup, C.S.; Knudsen, U.B. The Influence of Omega-3 Fatty Acids on Semen Quality Markers: A Systematic PRISMA Review. Andrology 2019, 7, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, V.; Shahverdi, A.H.; Moghadasian, M.H.; Alizadeh, A.R. Dietary Fatty Acids Affect Semen Quality: A Review. Andrology 2015, 3, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Eslamian, G.; Amirjannati, N.; Rashidkhani, B.; Sadeghi, M.; Baghestani, A.; Hekmatdoost, A. Dietary Fatty Acid Intakes and Asthenozoospermia: A Case-Control Study. Fertil. Steril. 2015, 103, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Mínguez-Alarcón, L.; Chavarro, J.E.; Mendiola, J.; Roca, M.; Tanrikut, C.; Vioque, J.; Jørgensen, N.; Torres-Cantero, A.M. Fatty Acid Intake in Relation to Reproductive Hormones and Testicular Volume among Young Healthy Men. Asian J. Androl. 2017, 19, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Geller, R.J.; Wesselink, A.K.; Koenig, M.R.; Eisenberg, M.L.; Tucker, K.L.; Hatch, E.E.; Wise, L.A. Association of Male Fatty Acid Intake with Fecundability among Couples Planning Pregnancy. Hum. Reprod. 2023, 38, 1601–1612. [Google Scholar] [CrossRef] [PubMed]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.; Willett, W.C. A Prospective Study of Dairy Foods Intake and Anovulatory Infertility. Hum. Reprod. 2007, 22, 1340–1347. [Google Scholar] [CrossRef]
- Janiszewska, J.; Ostrowska, J.; Szostak-Węgierek, D. Milk and Dairy Products and their Impact on Carbohydrate Metabolism and Fertility—A Potential Role in the Diet of Women with Polycystic Ovary Syndrome. Nutrients 2020, 12, 3491. [Google Scholar] [CrossRef] [PubMed]
- Rajaeieh, G.; Marasi, M.; Shahshahan, Z.; Hassanbeigi, F.; Safavi, S.M. The Relationship between Intake of Dairy Products and Polycystic Ovary Syndrome in Women Who Referred to Isfahan University of Medical Science Clinics in 2013. International J. Prev. Med. 2014, 5, 687. [Google Scholar]
- Gdansky, E.; Diamant, Y.Z.; Laron, Z.; Silbergeld, A.; Kaplan, B.; Eshet, R. Increased Number of IGF-I Receptors on Erythrocytes of Women with Polycystic Ovarian Syndrome. Clin. Endocrinol. 1997, 47, 185–190. [Google Scholar] [CrossRef]
- Wolford, S.T.; Argoudelis, C.J. Measurement of Estrogens in Cow’s Milk, Human Milk, and Dairy Products. J. Dairy Sci. 1979, 62, 1458–1463. [Google Scholar] [CrossRef]
- Veldhuis, J.D.; Frystyk, J.; Iranmanesh, A.; Ørskov, H. Testosterone and Estradiol Regulate Free Insulin-Like Growth Factor I (IGF-I), IGF Binding Protein 1 (IGFBP-1), and Dimeric IGF-I/IGFBP-1 Concentrations. J. Clin. Endocrinol. Metab. 2005, 90, 2941–2947. [Google Scholar] [CrossRef] [PubMed]
- Salas-Huetos, A.; Bulló, M.; Salas-Salvadó, J. Dietary Patterns, Foods and Nutrients in Male Fertility Parameters and Fecundability: A Systematic Review of Observational Studies. Hum. Reprod. Update 2017, 23, 371–389. [Google Scholar] [CrossRef] [PubMed]
- Skoracka, K.; Eder, P.; Łykowska-Szuber, L.; Dobrowolska, A.; Krela-Kaźmierczak, I. Diet and Nutritional Factors in Male (in) Fertility—Underestimated Factors. J. Clin. Med. 2020, 9, 1400. [Google Scholar] [CrossRef] [PubMed]
- Afeiche, M.C.; Bridges, N.D.; Williams, P.L.; Gaskins, A.J.; Tanrikut, C.; Petrozza, J.C.; Hauser, R.; Chavarro, J.E. Dairy Intake and Semen Quality among Men Attending a Fertility Clinic. Fertil. Steril. 2014, 101, 1280–1287.e2. [Google Scholar] [CrossRef] [PubMed]
- Villalpando, I.; Lira, E.; Medina, G.; Garcia-Garcia, E.; Echeverria, O. Insulin-Like Growth Factor 1 is Expressed in Mouse Developing Testis and Regulates Somatic Cell Proliferation. Exp. Biol. Med. 2008, 233, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.J.; Roser, J.F. Insulin-Like Growth Factor-I (IGF-I) Protects Cultured Equine Leydig Cells from Undergoing Apoptosis. Anim. Reprod. Sci. 2010, 122, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Souter, I.; Chiu, Y.; Batsis, M.; Afeiche, M.C.; Williams, P.L.; Hauser, R.; Chavarro, J.E.; EARTH Study Team. The Association of Protein Intake (Amount and Type) with Ovarian Antral Follicle Counts among Infertile Women: Results from the EARTH Prospective Study Cohort. BJOG: Int. J. Obstet. Gynaecol. 2017, 124, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. Protein Intake and Ovulatory Infertility. Obstet. Gynecol. 2008, 198, 210.e1–210.e7. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Yisahak, S.F.; Nobles, C.J.; Andriessen, V.C.; DeVilbiss, E.A.; Sjaarda, L.A.; Alohali, A.; Perkins, N.J.; Mumford, S.L. Low Intake of Vegetable Protein is Associated with Altered Ovulatory Function among Healthy Women of Reproductive Age. J. Clin. Endocrinol. Metab. 2021, 106, e2600–e2612. [Google Scholar] [CrossRef]
- Beaton, L.K.; McVeigh, B.L.; Dillingham, B.L.; Lampe, J.W.; Duncan, A.M. Soy Protein Isolates of Varying Isoflavone Content do Not Adversely Affect Semen Quality in Healthy Young Men. Fertil. Steril. 2010, 94, 1717–1722. [Google Scholar] [CrossRef]
- Abdollahi, N.; Nouri, M.; Leilami, K.; Mustafa, Y.F.; Shirani, M. The Relationship between Plant and Animal Based Protein with Semen Parameters: A Cross-Sectional Study in Infertile Men. Clin. Nutr. ESPEN 2022, 49, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. A Prospective Study of Dietary Carbohydrate Quantity and Quality in Relation to Risk of Ovulatory Infertility. Eur. J. Clin. Nutr. 2009, 63, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Willis, S.K.; Wise, L.A.; Wesselink, A.K.; Rothman, K.J.; Mikkelsen, E.M.; Tucker, K.L.; Trolle, E.; Hatch, E.E. Glycemic Load, Dietary Fiber, and Added Sugar and Fecundability in 2 Preconception Cohorts. Am. J. Clin. Nutr. 2020, 112, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Hong, X.; Zhang, H.; Dai, Q.; Huang, K.; Zhang, X.; Liu, Y.; Wu, J.; Wang, Q.; Shen, H. Pre-Pregnancy Maternal Fasting Plasma Glucose Levels in Relation to Time to Pregnancy among the Couples Attempting First Pregnancy. Hum. Reprod. 2019, 34, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- McGrice, M.; Porter, J. The Effect of Low Carbohydrate Diets on Fertility Hormones and Outcomes in Overweight and Obese Women: A Systematic Review. Nutrients 2017, 9, 204. [Google Scholar] [CrossRef] [PubMed]
- Augustin, L.S.; Franceschi, S.; Jenkins, D.; Kendall, C.; La Vecchia, C. Glycemic Index in Chronic Disease: A Review. Eur. J. Clin. Nutr. 2002, 56, 1049–1071. [Google Scholar] [CrossRef] [PubMed]
- Sakumoto, T.; Tokunaga, Y.; Tanaka, H.; Nohara, M.; Motegi, E.; Shinkawa, T.; Nakaza, A.; Higashi, M. Insulin Resistance/Hyperinsulinemia and Reproductive Disorders in Infertile Women. Reprod. Med. Biol. 2010, 9, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Cena, H.; Chiovato, L.; Nappi, R.E. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. J. Clin. Endocrinol. Metab. 2020, 105, e2695–e2709. [Google Scholar] [CrossRef] [PubMed]
- Schliep, K.C.; Schisterman, E.F.; Mumford, S.L.; Pollack, A.Z.; Perkins, N.J.; Ye, A.; Zhang, C.J.; Stanford, J.B.; Porucznik, C.A.; Hammoud, A.O. Energy-Containing Beverages: Reproductive Hormones and Ovarian Function in the BioCycle Study. Am. J. Clin. Nutr. 2013, 97, 621–630. [Google Scholar] [CrossRef]
- Badri-Fariman, M.; Naeini, A.A.; Mirzaei, K.; Moeini, A.; Hosseini, M.; Bagheri, S.E.; Daneshi-Maskooni, M. Association between the Food Security Status and Dietary Patterns with Polycystic Ovary Syndrome (PCOS) in Overweight and Obese Iranian Women: A Case-Control Study. J. Ovarian Res. 2021, 14, 134. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Afeiche, M.C.; Gaskins, A.J.; Williams, P.L.; Mendiola, J.; Jørgensen, N.; Swan, S.H.; Chavarro, J.E. Sugar-Sweetened Beverage Intake in Relation to Semen Quality and Reproductive Hormone Levels in Young Men. Hum. Reprod. 2014, 29, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Braga, D.P.d.A.F.; Halpern, G.; Rita de Cássia, S.F.; Setti, A.S.; Iaconelli Jr, A.; Borges Jr, E. Food Intake and Social Habits in Male Patients and its Relationship to Intracytoplasmic Sperm Injection Outcomes. Fertil. Steril. 2012, 97, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. Use of Multivitamins, Intake of B Vitamins, and Risk of Ovulatory Infertility. Fertil. Steril. 2008, 89, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Kadir, M.; Hood, R.B.; Mínguez-Alarcón, L.; Maldonado-Cárceles, A.B.; Ford, J.B.; Souter, I.; Chavarro, J.E.; Gaskins, A.J.; EARTH Study Team. Folate Intake and Ovarian Reserve among Women Attending a Fertility Center. Fertil. Steril. 2022, 117, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Gaskins, A.J.; Afeiche, M.C.; Wright, D.L.; Toth, T.L.; Williams, P.L.; Gillman, M.W.; Hauser, R.; Chavarro, J.E. Dietary Folate and Reproductive Success among Women Undergoing Assisted Reproduction. Obstet. Gynecol. 2014, 124, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W.; García, F.A.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; Landefeld, C.S. Folic Acid Supplementation for the Prevention of Neural Tube Defects: US Preventive Services Task Force Recommendation Statement. JAMA 2017, 317, 183–189. [Google Scholar] [PubMed]
- Tariq, H.; Zahid, N.; Amir, D.; Ashraf, M.; Aftab, M.A.; Yousaf, S.; Rehman, R. Estimation of Folic Acid/Micro Nutrients Levels; does it Reflect Sperm Parameters. Int. J. Clin. Pract. 2021, 75, e13790. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Lu, X.; Li, J.; Zhang, J. Effects of Folic Acid on Oligozoospermia with MTHFR Polymorphisms in Term of Seminal Parameters, DNA Fragmentation, and Live Birth Rate: A Double-blind, Randomized, Placebo-controlled Trial. Andrology 2020, 8, 110–116. [Google Scholar] [CrossRef]
- Irani, M.; Amirian, M.; Sadeghi, R.; Le Lez, J.; Roudsari, R.L. The Effect of Folate and Folate Plus Zinc Supplementation on Endocrine Parameters and Sperm Characteristics in Sub-Fertile Men: A Systematic Review and Meta-Analysis. Urol. J. 2017, 14, 4069–4078. [Google Scholar]
- Thornburgh, S.; Gaskins, A.J. B Vitamins, Polycystic Ovary Syndrome, and Fertility. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 554–559. [Google Scholar] [CrossRef]
- La Vecchia, I.; Paffoni, A.; Castiglioni, M.; Ferrari, S.; Bortolus, R.; Ferraris Fusarini, C.; Bettinardi, N.; Somigliana, E.; Parazzini, F. Folate, Homocysteine and Selected Vitamins and Minerals Status in Infertile Women. Eur. J. Contracept. Reprod. Health Care 2017, 22, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Boxmeer, J.C.; Macklon, N.S.; Lindemans, J.; Beckers, N.G.; Eijkemans, M.J.; Laven, J.S.; Steegers, E.A.; Steegers-Theunissen, R.P. IVF Outcomes are Associated with Biomarkers of the Homocysteine Pathway in Monofollicular Fluid. Hum. Reprod. 2009, 24, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Gaskins, A.J.; Chiu, Y.; Williams, P.L.; Ford, J.B.; Toth, T.L.; Hauser, R.; Chavarro, J.E.; EARTH Study Team. Association between Serum Folate and Vitamin B-12 and Outcomes of Assisted Reproductive Technologies. Am. J. Clin. Nutr. 2015, 102, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Candito, M.; Magnaldo, S.; Bayle, J.; Dor, J.; Gillet, Y.; Bongain, A.; Obberghen, E.V. Clinical B12 Deficiency in One Case of Recurrent Spontaneous Pregnancy Loss. Clin. Chem. Lab. Med. 2003, 41, 1026–1027. [Google Scholar] [CrossRef] [PubMed]
- Hübner, U.; Alwan, A.; Jouma, M.; Tabbaa, M.; Schorr, H.; Herrmann, W. Low Serum Vitamin B12 is Associated with Recurrent Pregnancy Loss in Syrian Women. Clin. Chem. Lab. Med. 2008, 46, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M. Vitamin B12 Deficiency, Infertility and Recurrent Fetal Loss. J. Reprod. Med. 2001, 46, 209–212. [Google Scholar] [PubMed]
- Murphy, L.E.; Mills, J.L.; Molloy, A.M.; Qian, C.; Carter, T.C.; Strevens, H.; Wide-Swensson, D.; Giwercman, A.; Levine, R.J. Folate and Vitamin B12 in Idiopathic Male Infertility. Asian J. Androl. 2011, 13, 856. [Google Scholar] [CrossRef] [PubMed]
- Monasso, G.S.; Hoang, T.T.; Mancano, G.; Fernández-Barrés, S.; Dou, J.; Jaddoe, V.W.; Page, C.M.; Johnson, L.; Bustamante, M.; Bakulski, K.M. A Meta-Analysis of Epigenome-Wide Association Studies on Pregnancy Vitamin B12 Concentrations and Offspring DNA Methylation. Epigenetics 2023, 18, 2202835. [Google Scholar] [CrossRef]
- González Rodríguez, L.G.; López Sobaler, A.M.; Perea Sánchez, J.M.; Ortega, R.M. Nutrición Y Fertilidad. Nutr. Hosp. 2018, 35, 7–10. [Google Scholar] [CrossRef]
- Sinclair, S. Male Infertility: Nutritional and Environmental Considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar]
- Chatterjee, S.; Chowdhury, R.G.; Khan, B. Medical Management of Male Infertility. J. Indian Med. Assoc. 2006, 104, 76–77. [Google Scholar]
- Banihani, S.A. Vitamin B12 and Semen Quality. Biomolecules 2017, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Hirwe, R.; Jathar, V.S.; Desai, S.; Satoskar, R.S. Vitamin B12 and Potential Fertility in Male Lactovegetarians. J. Biosoc. Sci. 1976, 8, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Jathar, V.S.; Hirwe, R.; Desai, S.; Satoskar, R.S. Dietetic Habits and Quality of Semen in Indian Subjects. Andrologia 1976, 8, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Najafipour, R.; Moghbelinejad, S.; Aleyasin, A.; Jalilvand, A. Effect of B9 and B12 Vitamin Intake on Semen Parameters and Fertility of Men with MTHFR Polymorphisms. Andrology 2017, 5, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Benedik, E. Sources of vitamin D for humans. Int. J. Vitam. Nutr. Res. 2021, 92, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wolf, S.; Xu, J. Vitamin D in Follicular Development and Oocyte Maturation. Reproduction 2021, 161, R129–R137. [Google Scholar] [CrossRef]
- Ashour, H.; Gamal, S.M.; Sadek, N.B.; Rashed, L.A.; Hussein, R.E.; Kamar, S.S.; Ateyya, H.; Mehesen, M.N.; ShamsEldeen, A.M. Vitamin D Supplementation Improves Uterine Receptivity in a Rat Model of Vitamin D Deficiency: A Possible Role of HOXA-10/FKBP52 Axis. Front. Physiol. 2021, 12, 744548. [Google Scholar] [CrossRef] [PubMed]
- Voulgaris, N.; Papanastasiou, L.; Piaditis, G.; Angelousi, A.; Kaltsas, G.; Mastorakos, G.; Kassi, E. Vitamin D and Aspects of Female. Fertil. Horm. 2017, 16, 5–21. [Google Scholar]
- Cozzolino, M.; Busnelli, A.; Pellegrini, L.; Riviello, E.; Vitagliano, A. How Vitamin D Level Influences in Vitro Fertilization Outcomes: Results of a Systematic Review and Meta-Analysis. Fertil. Steril. 2020, 114, 1014–1025. [Google Scholar] [CrossRef]
- Somigliana, E.; Sarais, V.; Reschini, M.; Ferrari, S.; Makieva, S.; Cermisoni, G.C.; Paffoni, A.; Papaleo, E.; Vigano, P. Single Oral Dose of Vitamin D3 Supplementation Prior to in Vitro Fertilization and Embryo Transfer in Normal Weight Women: The SUNDRO Randomized Controlled Trial. Obstet. Gynecol. 2021, 225, 283.e1–283.e10. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.K.; Shi, J.; Li, R.H.; Yeung, W.S.; Ng, E.H. 100 YEARS OF VITAMIN D: Effect of Serum Vitamin D Level before Ovarian Stimulation on the Cumulative Live Birth Rate of Women Undergoing in Vitro Fertilization: A Retrospective Analysis. Endocr. Connect. 2022, 11, e210444. [Google Scholar] [CrossRef]
- Iliuta, F.; Pijoan, J.I.; Lainz, L.; Exposito, A.; Matorras, R. Women’s Vitamin D Levels and IVF Results: A Systematic Review of the Literature and Meta-Analysis, Considering Three Categories of Vitamin Status (Replete, Insufficient and Deficient). Hum. Fertil. 2022, 25, 228–246. [Google Scholar] [CrossRef]
- Jukic, A.M.Z.; Harmon, Q.E. Accumulating Evidence for Vitamin D and Conception. Fertil. Steril. 2020, 113, 330–331. [Google Scholar] [CrossRef] [PubMed]
- Fung, J.L.; Hartman, T.J.; Schleicher, R.L.; Goldman, M.B. Association of Vitamin D Intake and Serum Levels with Fertility: Results from the Lifestyle and Fertility Study. Fertil. Steril. 2017, 108, 302–311. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Chavarro, J.E. Diet and Fertility: A Review. Obstet. Gynecol. 2018, 218, 379–389. [Google Scholar] [CrossRef]
- Morgante, G.; Darino, I.; Spanò, A.; Luisi, S.; Luddi, A.; Piomboni, P.; Governini, L.; De Leo, V. PCOS Physiopathology and Vitamin D Deficiency: Biological Insights and Perspectives for Treatment. J. Clin. Med. 2022, 11, 4509. [Google Scholar] [CrossRef] [PubMed]
- Menichini, D.; Facchinetti, F. Effects of Vitamin D Supplementation in Women with Polycystic Ovary Syndrome: A Review. Gynecol. Endocrinol. 2019, 36, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lerchbaum, E.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Pilz, S.; Obermayer-Pietsch, B.; Trummer, C. Effects of Vitamin D Supplementation on Surrogate Markers of Fertility in PCOS Women: A Randomized Con-trolled Trial. Nutrients 2021, 13, 547. [Google Scholar] [CrossRef]
- Cito, G.; Cocci, A.; Micelli, E.; Gabutti, A.; Russo, G.I.; Coccia, M.E.; Franco, G.; Serni, S.; Carini, M.; Natali, A. Vitamin D and Male Fertility: An Updated Review. World J. Mens. Health 2020, 38, 164. [Google Scholar] [CrossRef]
- Adamczewska, D.; Słowikowska-Hilczer, J.; Walczak-Jędrzejowska, R. The Association between Vitamin D and the Components of Male Fertility: A Systematic Review. Biomedicines 2022, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Maghsoumi-Norouzabad, L.; Zare Javid, A.; Mansoori, A.; Dadfar, M.; Serajian, A. The Effects of Vitamin D3 Supplementation on Spermatogram and Endocrine Factors in Asthenozoospermia Infertile Men: A Randomized, Triple Blind, Placebo-Controlled Clinical Trial. Reprod. Biol. Endocrinol. 2021, 19, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tania, C.; Tobing, E.R.P.L.; Tansol, C.; Prasetiyo, P.D.; Wallad, C.K.; Hariyanto, T.I. Vitamin D Supplementation for Improving Sperm Parameters in Infertile Men: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Arab. J. Urol. 2023, 21, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Blomberg Jensen, M.; Lawaetz, J.G.; Petersen, J.H.; Juul, A.; Jørgensen, N. Effects of Vitamin D Supplementation on Semen Quality, Reproductive Hormones, and Live Birth Rate: A Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2018, 103, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Baroni, L. Soy, Soy Foods and their Role in Vegetarian Diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef] [PubMed]
- Kohama, T.; Kobayashi, H.; Inoue, M. The Effect of Soybeans on the Anovulatory Cycle. J. Med. Food 2005, 8, 550–551. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, J.C.; Afeiche, M.C.; Gaskins, A.J.; Mínguez-Alarcón, L.; Williams, P.L.; Wright, D.L.; Toth, T.L.; Hauser, R.; Chavarro, J.E. Soy Food Intake and Treatment Outcomes of Women Undergoing Assisted Reproductive Technology. Fertil. Steril. 2015, 103, 749–755.e2. [Google Scholar] [CrossRef]
- Unfer, V.; Casini, M.L.; Gerli, S.; Costabile, L.; Mignosa, M.; Di Renzo, G.C. Phytoestrogens may Improve the Pregnancy Rate in in Vitro Fertilization–embryo Transfer Cycles: A Prospective, Controlled, Randomized Trial. Fertil. Steril. 2004, 82, 1509–1513. [Google Scholar] [CrossRef]
- Unfer, V.; Casini, M.L.; Costabile, L.; Mignosa, M.; Gerli, S.; Di Renzo, G.C. High Dose of Phytoestrogens can Reverse the Antiestrogenic Effects of Clomiphene Citrate on the Endometrium in Patients Undergoing Intrauterine Insemination: A Randomized Trial. J. Soc. Gynecol. Investig. 2004, 11, 323–328. [Google Scholar] [CrossRef]
- Mumford, S.L.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Barr, D.B.; Rybak, M.E.; Maisog, J.M.; Parker, D.L.; Pfeiffer, C.M.; Louis, G.M.B. Higher Urinary Lignan Concentrations in Women but Not Men are Positively Associated with Shorter Time to Pregnancy. J. Nutr. 2014, 144, 352–358. [Google Scholar] [CrossRef]
- Jacobsen, B.K.; Jaceldo-Siegl, K.; Knutsen, S.F.; Fan, J.; Oda, K.; Fraser, G.E. Soy Isoflavone Intake and the Likelihood of Ever Becoming a Mother: The Adventist Health Study-2. Int. J. Womens Health 2014, 6, 377–384. [Google Scholar] [CrossRef] [PubMed]
- D’Adamo, C.R.; Sahin, A. Soy Foods and Supplementation: A Review of Commonly Perceived Health Benefits and Risks. Altern. Ther. Health Med. 2014, 20, 39–51. [Google Scholar] [PubMed]
- Mitchell, J.H.; Cawood, E.; Kinniburgh, D.; Provan, A.; Collins, A.R.; Irvine, D.S. Effect of a Phytoestrogen Food Supplement on Reproductive Health in Normal Males. Clin. Sci. 2001, 100, 613–618. [Google Scholar] [CrossRef]
- Chavarro, J.E.; Toth, T.L.; Sadio, S.M.; Hauser, R. Soy Food and Isoflavone Intake in Relation to Semen Quality Parameters among Men from an Infertility Clinic. Int. J. Womens Health 2008, 23, 2584–2590. [Google Scholar] [CrossRef] [PubMed]
- Mínguez-Alarcón, L.; Afeiche, M.C.; Chiu, Y.; Vanegas, J.C.; Williams, P.L.; Tanrikut, C.; Toth, T.L.; Hauser, R.; Chavarro, J.E. Male Soy Food Intake was Not Associated with in Vitro Fertilization Outcomes among Couples Attending a Fertility Center. Andrology 2015, 3, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Anwar, H.; Hussain, G.; Mustafa, I. Antioxidants from Natural Sources. In Antioxidants in Foods and Its Applications; IntechOpen: Rijeka, Croatia, 2018; Volume 3. [Google Scholar]
- Agarwal, A.; Gupta, S.; Sikka, S. The Role of Free Radicals and Antioxidants in Reproduction. Curr. Opin. Obstet. Gynecol. 2006, 18, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Rana, M.; Qiu, E.; AlBunni, H.; Bui, A.D.; Henkel, R. Role of Oxidative Stress, Infection and Inflammation in Male Infertility. Andrologia 2018, 50, e13126. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Majzoub, A.; Agarwal, A. Oxidative Stress and Sperm Function: A Systematic Review on Evaluation and Management. Arab. J. Urol. 2019, 17, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Zhao, Q.; Li, Y.; Zheng, Z.; Kong, X.; Shu, C.; Liu, Y.; Shi, Y. The Role of Oxidative Stress in Ovarian Aging: A Review. J. Ovarian Res. 2022, 15, 100. [Google Scholar] [CrossRef]
- Murri, M.; Luque-Ramírez, M.; Insenser, M.; Ojeda-Ojeda, M.; Escobar-Morreale, H.F. Circulating Markers of Oxidative Stress and Polycystic Ovary Syndrome (PCOS): A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2013, 19, 268–288. [Google Scholar] [CrossRef]
- Jackson, L.W.; Schisterman, E.F.; Dey-Rao, R.; Browne, R.; Armstrong, D. Oxidative Stress and Endometriosis. Oxid. Med. Cell Longev. 2005, 20, 2014–2020. [Google Scholar] [CrossRef]
- Gupta, S.; Agarwal, A.; Banerjee, J.; Alvarez, J.G. The Role of Oxidative Stress in Spontaneous Abortion and Recurrent Pregnancy Loss: A Systematic Review. Obstet. Gynecol. Surv. 2007, 62, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Showell, M.G.; Mackenzie-Proctor, R.; Jordan, V.; Hart, R.J. Antioxidants for Female Subfertility. Cochrane Database Syst. Rev. 2020, 27, CD007807. [Google Scholar]
- de Ligny, W.; Smits, R.M.; Mackenzie-Proctor, R.; Jordan, V.; Fleischer, K.; de Bruin, J.P.; Showell, M.G. Antioxidants for Male Subfertility. Cochrane Database Syst. Rev. 2022, 2022, CD007411. [Google Scholar]
- Buhling, K.; Schumacher, A.; Zu Eulenburg, C.; Laakmann, E. Influence of Oral Vitamin and Mineral Supplementation on Male Infertility: A Meta-Analysis and Systematic Review. Reprod. Biomed. Online 2019, 39, 269–279. [Google Scholar] [CrossRef]
- Arhin, S.K.; Ocansey, S.; Barnes, P.; Botchey, C.P.K.; Taylor-Adbulai, H.B. Efficacy of Combined Antioxidant Therapy in Male Subfertility-A Systematic Review and Meta-Analysis. Cell Mol. Biol. 2021, 67, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Stephansson, O.; Falconer, H.; Ludvigsson, J.F. Risk of Endometriosis in 11 000 Women with Celiac Disease. Hum. Reprod. 2011, 26, 2896–2901. [Google Scholar] [CrossRef] [PubMed]
- Bold, J.; Rostami, K. Non-Coeliac Gluten Sensitivity and Reproductive Disorders. Gastroenterol. Hepatol. Bed Bench 2015, 8, 294. [Google Scholar] [PubMed]
- Castaño, M.; Gómez-Gordo, R.; Cuevas, D.; Núñez, C. Systematic Review and Meta-Analysis of Prevalence of Coeliac Disease in Women with Infertility. Nutrients 2019, 11, 1950. [Google Scholar] [CrossRef]
- Alecsandru, D.; López-Palacios, N.; Castaño, M.; Aparicio, P.; García-Velasco, J.A.; Núñez, C. Exploring Undiagnosed Celiac Disease in Women with Recurrent Reproductive Failure: The Gluten-free Diet could Improve Reproductive Outcomes. Am. J. Reprod. Immunol. 2020, 83, e13209. [Google Scholar] [CrossRef]
- Rostami, K.; Bold, J.; Parr, A.; Johnson, M.W. Gluten-Free Diet Indications, Safety, Quality, Labels, and Challenges. Nutrients 2017, 9, 846. [Google Scholar] [CrossRef] [PubMed]
- Melini, V.; Melini, F. Gluten-Free Diet: Gaps and Needs for a Healthier Diet. Nutrients 2019, 11, 170. [Google Scholar] [CrossRef] [PubMed]
- Farthing, M.; Edwards, C.; Rees, L.H.; Dawson, A.M. Male Gonadal Function in Coeliac Disease: 1. Sexual Dysfunction, Infertility, and Semen Quality. Gut 1982, 23, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Green, J.; Edwards, C.; Goble, H.L.; Dawson, A.M. Reversible Insensitivity to Androgens in Men with Untreated Gluten Enteropathy. Lancet 1977, 309, 280–282. [Google Scholar] [CrossRef] [PubMed]
- Heller, C.G.; Clermont, Y. Spermatogenesis in Man: An Estimate of its Duration. Science 1963, 140, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.P. Considerations in Evaluating Human Spermatogenesis on the Basis of Total Sperm Per Ejaculate. J. Androl. 2009, 30, 626–641. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.; Klinger, H.P.; Atkin, N.B. Human Oögenesis. Cytogenetics 2004, 1, 42–51. [Google Scholar] [CrossRef]
- Volek, J.S.; VanHeest, J.L.; Forsythe, C.E. Diet and Exercise for Weight Loss: A Review of Current Issues. Sports Med. 2005, 35, 1–9. [Google Scholar] [CrossRef]
- Bjerve, K.S.; Brubakk, A.M.; Fougner, K.J.; Johnsen, H.; Midthjell, K.; Vik, T. Omega-3 Fatty Acids: Essential Fatty Acids with Important Biological Effects, and Serum Phospholipid Fatty Acids as Markers of Dietary Ω3-Fatty Acid Intake. Am. J. Clin. Nutr. 1993, 57, 801S–806S. [Google Scholar] [CrossRef]
- Crider, K.S.; Devine, O.; Qi, Y.P.; Yeung, L.F.; Sekkarie, A.; Zaganjor, I.; Wong, E.; Rose, C.E.; Berry, R.J. Systematic Review and Bayesian Meta-Analysis of the Dose-Response Relationship between Folic Acid Intake and Changes in Blood Folate Concentrations. Nutrients 2019, 11, 71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvaleda-Mateu, M.; Rodríguez-Varela, C.; Labarta, E. Do Popular Diets Impact Fertility? Nutrients 2024, 16, 1726. https://doi.org/10.3390/nu16111726
Salvaleda-Mateu M, Rodríguez-Varela C, Labarta E. Do Popular Diets Impact Fertility? Nutrients. 2024; 16(11):1726. https://doi.org/10.3390/nu16111726
Chicago/Turabian StyleSalvaleda-Mateu, Maria, Cristina Rodríguez-Varela, and Elena Labarta. 2024. "Do Popular Diets Impact Fertility?" Nutrients 16, no. 11: 1726. https://doi.org/10.3390/nu16111726
APA StyleSalvaleda-Mateu, M., Rodríguez-Varela, C., & Labarta, E. (2024). Do Popular Diets Impact Fertility? Nutrients, 16(11), 1726. https://doi.org/10.3390/nu16111726