The Effect of Therapeutic Doses of Culinary Spices in Metabolic Syndrome: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Population
2.3. Inclusion and Exclusion Criteria
2.4. Screening Assessments
2.5. Intervention
2.6. Anthropometric Measurements
2.7. Dietary Assessment
2.8. Physical Activity Assessment
2.9. Biochemical Assessments
2.10. Blood Pressure
2.11. Statistical Analysis
3. Results
3.1. Recruitment and Randomization
3.2. Population Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659. [Google Scholar] [CrossRef] [PubMed]
- Sowers, J.R. Obesity as a cardiovascular risk factor. Am. J. Med. 2003, 115, 37–41. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, P.C.; Feskens, E.J.; Nagelkerke, N.J.; Menotti, A.; Nissinen, A.; Kromhout, D. The relation between blood pressure and mortality due to coronary heart disease among men in different parts of the world. N. Engl. J. Med. 2000, 342, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Eastern Stroke Coronary Heart Disease Collaborative. Blood pressure, cholesterol, and stroke in eastern Asia. Lancet 1998, 352, 1801–1807. [Google Scholar] [CrossRef]
- Tonkin, A. The metabolic syndrome–a growing problem. Eur. Heart J. Suppl. 2004, 6, A37–A42. [Google Scholar] [CrossRef]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Models Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C. Diagnosis and management of the metabolic syndrome. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.J.; Schmeltz, L.R. Metabolic syndrome management. Expert. Opin. Pharmacother. 2007, 8, 2059–2075. [Google Scholar] [CrossRef]
- Obarzanek, E.; Sacks, F.M.; Vollmer, W.M.; Bray, G.A.; Miller, E.R.; Lin, P.-H.; Karanja, N.M.; Most-Windhauser, M.M.; Moore, T.J.; Swain, J.F. Effects on blood lipids of a blood pressure–lowering diet: The Dietary Approaches to Stop Hypertension (DASH) Trial. Am. J. Clin. Nutr. 2001, 74, 80–89. [Google Scholar] [CrossRef]
- Sheard, N.F.; Clark, N.G.; Brand-Miller, J.C.; Franz, M.J.; Pi-Sunyer, F.X.; Mayer-Davis, E.; Kulkarni, K.; Geil, P. Dietary carbohydrate (amount and type) in the prevention and management of diabetes. Diabetes Care 2004, 27, 2266–2271. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhang, H.; Ye, J. Traditional Chinese medicine in treatment of metabolic syndrome. Endocr. Metab. Immune Disord.-Drug Targets 2008, 8, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tran, V.H.; Duke, C.C.; Roufogalis, B.D. Preventive and protective properties of Zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: A brief review. Evid.-Based Complement. Altern. Med. 2012, 2012, 516870. [Google Scholar] [CrossRef] [PubMed]
- Jungbauer, A.; Medjakovic, S. Anti-inflammatory properties of culinary herbs and spices that ameliorate the effects of metabolic syndrome. Maturitas 2012, 71, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Ziegenfuss, T.N.; Hofheins, J.E.; Mendel, R.W.; Landis, J.; Anderson, R.A. Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women. J. Int. Soc. Sports Nutr. 2006, 3, 45. [Google Scholar] [CrossRef] [PubMed]
- Najmi, A.; Haque, S.; Naseeruddin, M.; Khan, R. Effect of Nigella sativa oil on various clinical and biochemical parameters of metabolic syndrome. Int. J. Diabetes Dev. Ctries 2008, 16, 85–87. [Google Scholar]
- Azimi, P.; Ghiasvand, R.; Feizi, A.; Hariri, M.; Abbasi, B. Effects of cinnamon, cardamom, saffron, and ginger consumption on markers of glycemic control, lipid profile, oxidative stress, and inflammation in type 2 diabetes patients. Rev. Diabet. Stud. RDS 2014, 11, 258. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 2003, 17, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef]
- Khan, A.; Safdar, M.; Khan, M.M.A.; Khattak, K.N.; Anderson, R.A. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003, 26, 3215–3218. [Google Scholar] [CrossRef]
- Surh, Y.-J.; Park, K.-K.; Chun, K.-S.; Lee, L.; Lee, E.; Lee, S.S. Anti-tumor-promoting activities of selected pungent phenolic substances present in ginger. J. Environ. Pathol. Toxicol. Oncol. 1999, 18, 131–139. [Google Scholar] [PubMed]
- Marx, W.M.; Teleni, L.; McCarthy, A.L.; Vitetta, L.; McKavanagh, D.; Thomson, D.; Isenring, E. Ginger (Zingiber officinale) and chemotherapy-induced nausea and vomiting: A systematic literature review. Nutr. Rev. 2013, 71, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Mashhadi, N.S.; Ghiasvand, R.; Askari, G.; Feizi, A.; Hariri, M.; Darvishi, L.; Barani, A.; Taghiyar, M.; Shiranian, A.; Hajishafiee, M. Influence of ginger and cinnamon intake on inflammation and muscle soreness endued by exercise in Iranian female athletes. Int. J. Prev. Med. 2013, 4, S11. [Google Scholar] [PubMed]
- Bonita, R.; De Courten, M.; Dwyer, T.; Jamrozik, K.; Winkelmann, R. The WHO Stepwise Approach to Surveillance (STEPS) of NCD Risk Faktors; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Eknoyan, G. Adolphe Quetelet (1796–1874)-the average man and indices of obesity. Nephrol. Dial. Transplant. 2008, 23, 47–51. [Google Scholar] [CrossRef] [PubMed]
- International Physical Activity Questionnaire Committee. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ); International Physical Activity Questionnaire Committee, 2005; Volume 15, p. 2010. [Google Scholar]
- Navael Reza, A.; Fatemeh, R.; Mehrdad, S.; Mehdi, P.; Farzad, J. Investigation of the effect of ginger on the lipid levels. A double blind controlled clinical trial. Altern. Med. Rev. 2008, 13, 358. [Google Scholar]
- Andallu, B.; Radhika, B.; Suryakantham, V. Effect of aswagandha, ginger and mulberry on hyperglycemia and hyperlipidemia. Plant Foods Hum. Nutr. 2003, 58, 1–7. [Google Scholar] [CrossRef]
- Khandouzi, N.; Shidfar, F.; Rajab, A.; Rahideh, T.; Hosseini, P.; Mir Taheri, M. The effects of ginger on fasting blood sugar, hemoglobin a1c, apolipoprotein B, apolipoprotein a-I and malondialdehyde in type 2 diabetic patients. Iran. J. Pharm. Res. IJPR 2015, 14, 131. [Google Scholar] [PubMed]
- Jafarnejad, S.; Keshavarz, S.A.; Mahbubi, S.; Saremi, S.; Arab, A.; Abbasi, S.; Djafarian, K. Effect of ginger (Zingiber officinale) on blood glucose and lipid concentrations in diabetic and hyperlipidemic subjects: A meta-analysis of randomized controlled trials. J. Funct. Foods 2017, 29, 127–134. [Google Scholar] [CrossRef]
- Attari, V.E.; Mahluji, S.; Jafarabadi, M.A.; Ostadrahimi, A. Effects of Supplementation with Ginger (Zingiber officinale Roscoe) on Serum Glucose, Lipid Profile and Oxidative Stress in Obese Women: A Randomized, Placebo-Controlled Clinical Trial. Pharm. Sci. 2015, 21, 184–191. [Google Scholar] [CrossRef]
- Wei, C.-K.; Tsai, Y.-H.; Korinek, M.; Hung, P.-H.; El-Shazly, M.; Cheng, Y.-B.; Wu, Y.-C.; Hsieh, T.-J.; Chang, F.-R. 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice. Int. J. Mol. Sci. 2017, 18, 168. [Google Scholar] [CrossRef]
- Li, Y.; Tran, V.H.; Duke, C.C.; Roufogalis, B.D. Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes. Planta Medica 2012, 78, 1549–1555. [Google Scholar] [CrossRef] [PubMed]
- Platel, K.; Srinivasan, K. Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Mol. Nutr. Food Res. 2000, 44, 42–46. [Google Scholar] [CrossRef]
- Han, L.-K.; Gong, X.-J.; Kawano, S.; Saito, M.; Kimura, Y.; Okuda, H. Antiobesity actions of Zingiber officinale Roscoe. Yakugaku Zasshi J. Pharm. Soc. Jpn. 2005, 125, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Satoh, K.; Murata, P.; Makino, B.; Sakakibara, I.; Kase, Y.; Ishige, A.; Higuchi, M.; Sasaki, H. Component of Zingiber officinale that improves the enhancement of small intestinal transport. Planta Medica 2002, 68, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.-H.; Tseng, Y.-H.; Kuo, Y.-W.; Lee, M.-C.; Chen, H.-L. Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people—A placebo-controlled, diet-controlled trial. Nutrition 2011, 27, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, B.; Judith, O.; Keidar, S.; Ben-Yaish, L.; Kaplan, M.; Aviram, M. Increased uptake of LDL by oxidized macrophages is the result of an initial enhanced LDL receptor activity and of a further progressive oxidation of LDL. Free Radic. Biol. Med. 1997, 23, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, B.; Rosenblat, M.; Hayek, T.; Coleman, R.; Aviram, M. Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice. J. Nutr. 2000, 130, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, U.; Sharma, J.; Zafar, R. The protective action of ethanolic ginger (Zingiber officinale) extract in cholesterol fed rabbits. J. Ethnopharmacol. 1998, 61, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Singh, M.; Jain, P.; Bordia, A. Protective effect of ginger, Zingiber officinale Rosc on experimental atherosclerosis in rabbits. Indian J. Exp. Biol. 2004, 42, 736–738. [Google Scholar]
- Baker, W.L.; Gutierrez-Williams, G.; White, C.M.; Kluger, J.; Coleman, C.I. Effect of cinnamon on glucose control and lipid parameters. Diabetes Care 2008, 31, 41–43. [Google Scholar] [CrossRef]
- Allen, R.W.; Schwartzman, E.; Baker, W.L.; Coleman, C.I.; Phung, O.J. Cinnamon use in type 2 diabetes: An updated systematic review and meta-analysis. Ann. Fam. Med. 2013, 11, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Crawford, P. Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: A randomized, controlled trial. J. Am. Board Fam. Med. 2009, 22, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Li, H.; Sun, J.; Wang, S. Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats. J. Ethnopharmacol. 2013, 150, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Camacho, S.; Michlig, S.; de Senarclens-Bezençon, C.; Meylan, J.; Meystre, J.; Pezzoli, M.; Markram, H.; Le Coutre, J. Anti-obesity and anti-hyperglycemic effects of cinnamaldehyde via altered ghrelin secretion and functional impact on food intake and gastric emptying. Sci. Rep. 2015, 5, 7919. [Google Scholar] [CrossRef] [PubMed]
- Saifudin, A.; Kadota, S.; Tezuka, Y. Protein tyrosine phosphatase 1B inhibitory activity of Indonesian herbal medicines and constituents of Cinnamomum burmannii and Zingiber aromaticum. J. Nat. Med. 2013, 67, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Rahmati, M.; Akhondi, M. Effect of 6 Weeks of High-Intensity Interval Training with Cinnamon Supplementation on Serum Apelin Concentration and Insulin Resistance in Overweight Boys. Horiz. Med. Sci. 2016, 22, 177–183. [Google Scholar] [CrossRef]
- Magistrelli, A.; Chezem, J.C. Effect of ground cinnamon on postprandial blood glucose concentration in normal-weight and obese adults. J. Acad. Nutr. Diet. 2012, 112, 1806–1809. [Google Scholar] [CrossRef]
- Anderson, R.A. Chromium and polyphenols from cinnamon improve insulin sensitivity: Plenary Lecture. Proc. Nutr. Soc. 2008, 67, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Vafa, M.; Mohammadi, F.; Shidfar, F.; Sormaghi, M.S.; Heidari, I.; Golestan, B.; Amiri, F. Effects of cinnamon consumption on glycemic status, lipid profile and body composition in type 2 diabetic patients. Int. J. Prev. Med. 2012, 3, 531. [Google Scholar]
- Zhang, W.; Xu, Y.-C.; Guo, F.-J.; Meng, Y.; Li, M.-L. Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chin. Med. J. 2008, 121, 2124. [Google Scholar] [CrossRef]
- Jarvill-Taylor, K.J.; Anderson, R.A.; Graves, D.J. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. J. Am. Coll. Nutr. 2001, 20, 327–336. [Google Scholar] [CrossRef]
- Mang, B.; Wolters, M.; Schmitt, B.; Kelb, K.; Lichtinghagen, R.; Stichtenoth, D.; Hahn, A. Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. Eur. J. Clin. Investig. 2006, 36, 340–344. [Google Scholar] [CrossRef]
- Anderson, R.A.; Bryden, N.A.; Polansky, M.M.; Thorp, J.W. Effects of carbohydrate loading and underwater exercise on circulating cortisol, insulin and urinary losses of chromium and zinc. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 63, 146–150. [Google Scholar] [CrossRef]
- Freedman, M.R.; Horwitz, B.A.; Stern, J.S. Effect of adrenalectomy and glucocorticoid replacement on development of obesity. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1986, 250, R595–R607. [Google Scholar] [CrossRef]
- Pittler, M.; Stevinson, C.; Ernst, E. Chromium picolinate for reducing body weight: Meta-analysis of randomized trials. Int. J. Obes. 2003, 27, 522. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Zhan, Z.; Luo, R.; Guo, X.; Guo, Q.; Zhou, J.; Kong, J.; Davis, P.A.; Stoecker, B.J. Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J. Tradit. Complement. Med. 2016, 6, 332–336. [Google Scholar] [CrossRef]
- Meddah, B.; Ducroc, R.; Faouzi, M.E.A.; Eto, B.; Mahraoui, L.; Benhaddou-Andaloussi, A.; Martineau, L.C.; Cherrah, Y.; Haddad, P.S. Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. J. Ethnopharmacol. 2009, 121, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Zarka, R.; de las Heras, B.; Hoult, J. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Medica 1995, 61, 33–36. [Google Scholar] [CrossRef]
- Heshmati, J.; Namazi, N.; Memarzadeh, M.-R.; Taghizadeh, M.; Kolahdooz, F. Nigella sativa oil affects glucose metabolism and lipid concentrations in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Food Res. Int. 2015, 70, 87–93. [Google Scholar] [CrossRef]
- Shafiq, H.; Ahmad, A.; Masud, T.; Kaleem, M. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa. Iran. J. Basic Med. Sci. 2014, 17, 967. [Google Scholar]
- Heshmati, J.; Namazi, N. Effects of black seed (Nigella sativa) on metabolic parameters in diabetes mellitus: A systematic review. Complement. Ther. Med. 2015, 23, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.M.; Hamdan, N.S.; Mahmud, R.; Imam, M.U.; Saini, S.M.; Rashid, S.N.A.; Ghafar, S.A.A.; Ab Latiff, L.; Ismail, M. A randomised controlled trial on hypolipidemic effects of Nigella sativa seeds powder in menopausal women. J. Transl. Med. 2014, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Xu, F.; Ninomiya, K.; Matsuda, H.; Yoshikawa, M. Nigellamines A3, A4, A5, and C, new dolabellane-type diterpene alkaloids, with lipid metabolism-promoting activities from the Egyptian medicinal food black cumin. Chem. Pharm. Bull. 2004, 52, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Liu, Y.; Wang, X.; Jiao, R.; Ma, K.Y.; Li, Y.M.; Wang, L.; Man, S.W.; Sang, S.; Huang, Y. Plasma cholesterol-lowering activity of gingerol-and shogaol-enriched extract is mediated by increasing sterol excretion. J. Agric. Food Chem. 2014, 62, 10515–10521. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Al-Naqeep, G.; Chan, K.W. Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats. Free Radic. Biol. Med. 2010, 48, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Ibraheim, Z. Effect of Nigella sativa seeds and total oil on some blood parameters in female volunteers. Saudi Pharm. J. 2002, 10, 54–59. [Google Scholar]
- Shah, A.S.; Khan, G.M.; Badshah, A.; Shah, S.U.; Shah, K.U.; Mirza, S.A.; Khan, K.A. Nigella sativa provides protection against metabolic syndrome. Afr. J. Biotechnol. 2012, 11, 10919–10925. [Google Scholar]
- Mahluji, S.; Attari, V.E.; Mobasseri, M.; Payahoo, L.; Ostadrahimi, A.; Golzari, S.E.J. Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int. J. Food Sci. Nutr. 2013, 64, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Akilen, R.; Tsiami, A.; Devendra, D.; Robinson, N. Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic Type 2 diabetic patients in the UK: A randomized, placebo-controlled, double-blind clinical trial. Diabet. Med. 2010, 27, 1159–1167. [Google Scholar] [CrossRef]
- Arablou, T.; Aryaeian, N.; Valizadeh, M.; Sharifi, F.; Hosseini, A.; Djalali, M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int. J. Food Sci. Nutr. 2014, 65, 515–520. [Google Scholar] [CrossRef]
- Mozaffari-Khosravi, H.; Talaei, B.; Jalali, B.-A.; Najarzadeh, A.; Mozayan, M.R. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Complement. Ther. Med. 2014, 22, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Vanschoonbeek, K.; Thomassen, B.J.; Senden, J.M.; Wodzig, W.K.; van Loon, L.J. Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J. Nutr. 2006, 136, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Akilen, R.; Pimlott, Z.; Tsiami, A.; Robinson, N. Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes. Nutrition 2013, 29, 1192–1196. [Google Scholar] [CrossRef] [PubMed]
- Qidwai, W.; Ashfaq, T. Effect of dietary supplementation of black seed (N. sativa L.) on lipid profile of patients suffering from diabetes. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2014, 13, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Abraham, K.; Wöhrlin, F.; Lindtner, O.; Heinemeyer, G.; Lampen, A. Toxicology and risk assessment of coumarin: Focus on human data. Mol. Nutr. Food Res. 2010, 54, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.; O’kennedy, R.; Thornes, R. The rarity of liver toxicity in patients treated with coumarin (1,2-benzopyrone). Hum. Toxicol. 1989, 8, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, E.; Visser, J.; Koen, N.; Musekiwa, A. A systematic review and meta-analysis of the effect and safety of ginger in the treatment of pregnancy-associated nausea and vomiting. Nutr. J. 2014, 13, 20. [Google Scholar] [CrossRef]
- Dugoua, J.-J.; Seely, D.; Perri, D.; Cooley, K.; Forelli, T.; Mills, E.; Koren, G. From type 2 diabetes to antioxidant activity: A systematic review of the safety and efficacy of common and cassia cinnamon bark. Can. J. Physiol. Pharmacol. 2007, 85, 837–847. [Google Scholar] [CrossRef]
Parameter | Black Seed (Mean ± SD) | Cinnamon (Mean ± SD) | Ginger (Mean ± SD) | Placebo (Mean ± SD) | ||||
---|---|---|---|---|---|---|---|---|
Age (years) | 26.59 | ±8.07 | 27.84 | ±12.04 | 26.10 | ±9.57 | 28.82 | ±11.70 |
Weight (Kgs) | 92.74 | ±24.45 | 82.06 | ±20.18 | 100.60 | ±21.12 | 93.77 | ±19.17 |
BMI (Kg/m2) | 34.78 | ±9.28 | 33.53 | ±9.96 | 36.07 | ±6.47 | 33.94 | ±5.84 |
HbA1c (%) | 5.50 | ±0.67 | 6.45 | ±1.83 | 5.91 | ±0.69 | 6.33 | ±1.16 |
FBG (mg/dL) | 93.69 | ±8.47 | 99.06 | ±42.62 | 82.64 | ±15.03 | 78.26 | ±26.78 |
Systolic BP (mmHg) | 115.48 | ±17.72 | 121.68 | ±15.65 | 119.05 | ±17.75 | 122.50 | ±16.79 |
Diastolic BP (mmHG) | 76.72 | ±13.44 | 81.36 | ±11.25 | 83.48 | ±13.42 | 81.86 | ±9.53 |
LDL (mg/dL) | 95.52 | ±22.61 | 110.32 | ±33.39 | 94.28 | ±33.14 | 70.52 | ±28.25 |
HDL (mg/dL) | 36.81 | ±10.60 | 41.36 | ±12.76 | 34.81 | ±10.05 | 34.81 | ±12.88 |
Triglyceride (mg/dL) | 101.29 | ±33.00 | 116.63 | ±79.37 | 113.50 | ±91.97 | 71.98 | ±29.91 |
Cholesterol (mg/dL) | 160.86 | ±33.04 | 158.15 | ±33.19 | 153.24 | ±47.38 | 121.51 | ±37.95 |
Waist Circ (cm) | 98.61 | ±17.64 | 96.56 | ±13.77 | 105.46 | ±14.93 | 102.08 | ±11.92 |
WHR | 0.97 | ±0.06 | 0.96 | ±0.06 | 1.02 | ±0.06 | 0.99 | ±0.07 |
Fat Mass (kg) | 40.96 | ±17.26 | 32.23 | ±14.55 | 44.65 | ±13.01 | 38.30 | ±14.65 |
Fat-Free Mass (kg) | 49.65 | ±9.38 | 49.44 | ±13.01 | 55.96 | ±12.09 | 56.78 | ±12.20 |
Visceral Fat Area (cm2) | 137.41 | ±33.66 | 111.98 | ±46.43 | 154.72 | ±30.13 | 139.83 | ±36.84 |
Body Fat Percentage | 43.21 | ±9.24 | 19.62 | ±22.27 | 44.04 | ±7.24 | 40.52 | ±10.32 |
Skeletal Muscle Mass (kg) | 28.82 | ±7.31 | 27.58 | ±7.56 | 31.34 | ±7.35 | 31.24 | ±6.99 |
Variable | Group | Baseline | Week 6 | Week 12 | ΔW0–W12 | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
Systolic BP | Blackseed | 115.483 | (2.974) | 114.655 | (2.974) | 112.864 | (3.017) | −2.619 | 0.434 |
Cinnamon | 121.68 | (3.203) | 115.8 | (3.203) | 114.64 | (3.203) | −7.04 | ||
Ginger | 119.048 | (3.495) | 115.857 | (3.495) | 116.857 | (3.495) | −2.191 | ||
Placebo | 122.5 | (3.414) | 120.045 | (3.414) | 122.545 | (3.414) | 0.045 | ||
Diastolic BP | Blackseed | 76.724 | (2.215) | 75.828 | (2.215) | 77.571 | (2.266) | 0.847 | 0.299 |
Cinnamon | 81.36 | (2.386) | 79.72 | (2.386) | 77.8 | (2.386) | −3.56 | ||
Ginger | 83.476 | (2.603) | 78.381 | (2.603) | 79.381 | (2.603) | −4.095 | ||
Placebo | 81.864 | (2.543) | 75.636 | (2.543) | 80.727 | (2.543) | −1.137 | ||
Total | Blackseed | 160.859 | (7.392) | 153.787 | (7.392) | 147.804 | (7.392) | −13.055 | 0.031 |
Cholesterol | Cinnamon | 158.147 | (7.962) | 148.248 | (7.962) | 157.839 | (7.962) | −0.308 | |
Ginger | 153.233 | (8.687) | 159.063 | (8.687) | 141.743 | (8.687) | −11.49 | ||
Placebo | 121.508 | (8.487) | 145.13 | (8.487) | 129.371 | (8.487) | 7.863 | ||
HDL | Blackseed | 36.811 | (2.408) | 36.811 | (2.408) | 41.033 | (2.408) | 4.222 | 0.2 |
Cinnamon | 41.363 | (2.593) | 41.364 | (2.593) | 49.123 | (2.593) | 7.76 | ||
Ginger | 34.807 | (2.83) | 34.808 | (2.83) | 35.424 | (2.83) | 0.617 | ||
Placebo | 34.805 | (2.764) | 34.945 | (2.794) | 36.513 | (2.764) | 1.708 | ||
LDL | Blackseed | 95.524 | (5.284) | 92.123 | (5.284) | 93.382 | (5.284) | −2.142 | <0.001 |
Cinnamon | 110.32 | (5.691) | 96.251 | (5.691) | 113.741 | (5.691) | 3.421 | ||
Ginger | 94.282 | (6.21) | 98.299 | (6.21) | 88.968 | (6.21) | −5.314 | ||
Placebo | 70.515 | (6.067) | 86.663 | (6.067) | 76.921 | (6.067) | 6.406 | ||
Triglycerides | Blackseed | 101.288 | (11.1) | 93.579 | (11.1) | 93.204 | (11.1) | −8.084 | 0.137 |
Cinnamon | 116.635 | (11.955) | 112.715 | (11.955) | 112.318 | (11.955) | −4.317 | ||
Ginger | 113.498 | (13.044) | 108.89 | (13.044) | 95.871 | (13.044) | −17.627 | ||
Placebo | 71.98 | (12.744) | 91.082 | (12.744) | 82.625 | (12.744) | 10.645 | ||
Fasting | Blackseed | 93.694 | (4.946) | 90.722 | (4.946) | 86.268 | (4.946) | −7.426 | <0.001 |
Blood | Cinnamon | 99.057 | (5.328) | 96.206 | (5.328) | 97.787 | (5.328) | −1.27 | |
Glucose | Ginger | 82.635 | (5.813) | 86.004 | (5.813) | 79.232 | (5.813) | −3.403 | |
Placebo | 78.258 | (5.679) | 94.028 | (5.679) | 86.817 | (5.679) | 8.559 | ||
HbA1c | Blackseed | 5.5 | (0.215) | 5.576 | (0.215) | 5.492 | (0.216) | −0.008 | <0.001 |
Cinnamon | 6.448 | (0.231) | 7.096 | (0.231) | 5.852 | (0.231) | −0.596 | ||
Ginger | 5.91 | (0.252) | 5.729 | (0.252) | 5.619 | (0.252) | −0.291 | ||
Placebo | 6.327 | (0.246) | 6.35 | (0.246) | 6.368 | (0.246) | 0.041 |
Variable | Group | Baseline | Week 6 | Week 12 | ΔW0–W12 | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
Weight | Blackseed | 92.741 | (3.986) | 93.134 | (3.986) | 93.597 | (3.986) | 0.856 | 0.278 |
Cinnamon | 82.056 | (4.293) | 78.516 | (4.3) | 81.684 | (4.293) | −0.372 | ||
Ginger | 99.272 | (4.693) | 99.41 | (4.684) | 99.586 | (4.684) | 0.314 | ||
Placebo | 93.773 | (4.576) | 95.507 | (4.576) | 95.818 | (4.576) | 2.045 | ||
BMI | Blackseed | 34.776 | (1.562) | 34.938 | (1.562) | 35.046 | (1.562) | 0.27 | 0.221 |
Cinnamon | 33.532 | (1.683) | 32.427 | (1.688) | 34.972 | (1.683) | 1.44 | ||
Ginger | 35.681 | (1.843) | 35.652 | (1.836) | 35.862 | (1.836) | 0.181 | ||
Placebo | 33.941 | (1.794) | 34.605 | (1.794) | 34.191 | (1.794) | 0.25 | ||
Waist | Blackseed | 98.61 | (3.085) | 95.839 | (3.085) | 88.046 | (3.085) | −10.564 | 0.051 |
Circumference | Cinnamon | 96.559 | (3.322) | 90.353 | (3.322) | 89.427 | (3.322) | −7.132 | |
Ginger | 105.46 | (3.625) | 101.316 | (3.625) | 99.286 | (3.625) | −6.174 | ||
Placebo | 102.075 | (3.542) | 101.336 | (3.542) | 102.364 | (3.542) | 0.289 | ||
WHR | Blackseed | 0.965 | (0.012) | 0.953 | (0.012) | 0.965 | (0.012) | 0 | 0.073 |
Cinnamon | 0.956 | (0.013) | 0.953 | (0.013) | 0.962 | (0.013) | 0.006 | ||
Ginger | 1.014 | (0.014) | 1.005 | (0.014) | 1.004 | (0.014) | −0.01 | ||
Placebo | 0.99 | (0.013) | 0.98 | (0.013) | 1.001 | (0.013) | 0.011 | ||
Fat mass | Blackseed | 40.962 | (2.818) | 40.683 | (2.818) | 41.338 | (2.818) | 0.376 | 0.076 |
Cinnamon | 32.232 | (3.035) | 29.904 | (3.039) | 32.696 | (3.035) | 0.464 | ||
Ginger | 43.766 | (3.316) | 43.876 | (3.311) | 44.138 | (3.311) | 0.372 | ||
Placebo | 38.295 | (3.235) | 39.541 | (3.235) | 38.441 | (3.235) | 0.146 | ||
Body fat % | Blackseed | 43.214 | (2.513) | 42.697 | (2.513) | 43.167 | (2.523) | −0.047 | 0.17 |
Cinnamon | 19.622 | (2.706) | 18.881 | (2.711) | 21.886 | (2.706) | 2.264 | ||
Ginger | 43.662 | (2.958) | 43.605 | (2.953) | 43.9 | (2.953) | 0.238 | ||
Placebo | 40.523 | (2.885) | 40.818 | (2.885) | 40.586 | (2.885) | 0.063 | ||
Visceral | Blackseed | 137.41 | (6.79) | 136.866 | (6.79) | 136.493 | (6.868) | −0.917 | 0.427 |
Fat Area | Cinnamon | 111.976 | (7.313) | 113.104 | (7.343) | 122.324 | (7.313) | 10.348 | |
Ginger | 152.706 | (8.019) | 150.529 | (7.979) | 153.01 | (7.979) | 0.304 | ||
Placebo | 139.832 | (7.796) | 139.309 | (7.796) | 141.736 | (7.796) | 1.904 | ||
Fat-Free Mass | Blackseed | 49.652 | (2.069) | 51.283 | (2.069) | 50.545 | (2.069) | 0.893 | 0.815 |
Cinnamon | 49.444 | (2.229) | 48.622 | (2.237) | 48.98 | (2.229) | −0.464 | ||
Ginger | 55.516 | (2.443) | 55.533 | (2.432) | 55.448 | (2.432) | −0.068 | ||
Placebo | 56.783 | (2.376) | 57.791 | (2.376) | 57.332 | (2.376) | 0.549 | ||
Skeletal | Blackseed | 28.821 | (1.79) | 29.29 | (1.79) | 29.46 | (1.855) | 0.639 | 0.442 |
Muscle Mass | Cinnamon | 27.584 | (1.928) | 26.826 | (1.954) | 30.972 | (1.928) | 3.388 | |
Ginger | 31.908 | (2.137) | 33.3 | (2.104) | 31.019 | (2.104) | −0.889 | ||
Placebo | 31.236 | (2.056) | 31.736 | (2.056) | 31.768 | (2.056) | 0.532 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Dhaheri, A.S.; Alkhatib, D.H.; Feehan, J.; Cheikh Ismail, L.; Apostolopoulos, V.; Stojanovska, L. The Effect of Therapeutic Doses of Culinary Spices in Metabolic Syndrome: A Randomized Controlled Trial. Nutrients 2024, 16, 1685. https://doi.org/10.3390/nu16111685
Al Dhaheri AS, Alkhatib DH, Feehan J, Cheikh Ismail L, Apostolopoulos V, Stojanovska L. The Effect of Therapeutic Doses of Culinary Spices in Metabolic Syndrome: A Randomized Controlled Trial. Nutrients. 2024; 16(11):1685. https://doi.org/10.3390/nu16111685
Chicago/Turabian StyleAl Dhaheri, Ayesha S., Dana Hasan Alkhatib, Jack Feehan, Leila Cheikh Ismail, Vasso Apostolopoulos, and Lily Stojanovska. 2024. "The Effect of Therapeutic Doses of Culinary Spices in Metabolic Syndrome: A Randomized Controlled Trial" Nutrients 16, no. 11: 1685. https://doi.org/10.3390/nu16111685
APA StyleAl Dhaheri, A. S., Alkhatib, D. H., Feehan, J., Cheikh Ismail, L., Apostolopoulos, V., & Stojanovska, L. (2024). The Effect of Therapeutic Doses of Culinary Spices in Metabolic Syndrome: A Randomized Controlled Trial. Nutrients, 16(11), 1685. https://doi.org/10.3390/nu16111685