Effect of Spirulina Nigrita® Supplementation on Indices of Exercise-Induced Muscle Damage after Eccentric Protocol of Upper Limbs in Apparently Healthy Volunteers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Baseline Measurements
2.2. Participants
2.3. Supplementation
2.4. Anthropometry
2.5. Estimation of Physical Activity
2.6. Estimation of Dietary Intake
2.7. Eccentric Exercise Protocol
2.8. Measurement of EIMD Indices
2.9. Blood Collection and Isolation of Biological Samples
2.10. Biochemical Analyses
2.11. Statistical Analysis
3. Results
3.1. Participants Basic Characteristics
3.2. Effect of Spirulina Supplementation on Isometric Exercise Performance
3.3. Effect of Spirulina Supplementation on Delayed-Onset Muscle Soreness (DOMS)
3.4. Effect of Spirulina Supplementation on Upper Limb Mobility
3.5. Effect of Spirulina Supplementation on Arm Circumference
3.6. Effect of Spirulina Supplementation on CK and LDH
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Markus, I.; Constantini, K.; Hoffman, J.R.; Bartolomei, S.; Gepner, Y. Exercise-Induced Muscle Damage: Mechanism, Assessment and Nutritional Factors to Accelerate Recovery. Eur. J. Appl. Physiol. 2021, 121, 969–992. [Google Scholar] [CrossRef] [PubMed]
- Stožer, A.; Vodopivc, P.; Bombek, L.K. Pathophysiology of Exercise-Induced Muscle Damage and Its Structural, Functional, Metabolic, and Clinical Consequences. Physiol. Res. 2020, 69, 565–598. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Li, Y.L. Inflammation Balance in Skeletal Muscle Damage and Repair. Front. Immunol. 2023, 14, 1133355. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.J.; Twist, C.; Cobley, J.N.; Howatson, G.; Close, G.L. Exercise-Induced Muscle Damage: What Is It, What Causes It and What Are the Nutritional Solutions? Eur. J. Sport Sci. 2019, 19, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Neubauer, O.; Gatta, P.A.D.; Nosaka, K. Muscle Damage and Inflammation during Recovery from Exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Methenitis, S.; Stergiou, I.; Antonopoulou, S.; Nomikos, T. Can Exercise-Induced Muscle Damage Be a Good Model for the Investigation of the Anti-Inflammatory Properties of Diet in Humans? Biomedicines 2021, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, G.; Mikkelsen, U.R.; Raastad, T.; Peake, J.M. Leucocytes, Cytokines and Satellite Cells: What Role Do They Play in Muscle Damage and Regeneration Following Eccentric Exercise? Exerc. Immunol. Rev. 2012, 18, 42–97. [Google Scholar]
- Hyldahl, R.D.; Hubal, M.J. Lengthening Our Perspective: Morphological, Cellular, and Molecular Responses to Eccentric Exercise. Muscle Nerve 2014, 49, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Tidball, J.G. Regulation of Muscle Growth and Regeneration by the Immune System. Nat. Rev. Immunol. 2017, 17, 165–178. [Google Scholar] [CrossRef]
- Duchesne, E.; Dufresne, S.S.; Dumont, N.A. Impact of Inflammation and Anti-Inflammatory Modalities on Skeletal Muscle Healing: From Fundamental Research to the Clinic. Phys. Ther. 2017, 97, 807–817. [Google Scholar] [CrossRef]
- Petrella, J.K.; Kim, J.S.; Mayhew, D.L.; Cross, J.M.; Bamman, M.M. Potent Myofiber Hypertrophy during Resistance Training in Humans Is Associated with Satellite Cell-Mediated Myonuclear Addition: A Cluster Analysis. J. Appl. Physiol. 2008, 104, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, P.M.; Hubal, M.J. Exercise-Induced Muscle Damage in Humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef]
- Gurney, T.; Spendiff, O. Algae Supplementation for Exercise Performance: Current Perspectives and Future Directions for Spirulina and Chlorella. Front. Nutr. 2022, 9, 865741. [Google Scholar] [CrossRef] [PubMed]
- Hirahashi, T.; Matsumoto, M.; Hazeki, K.; Saeki, Y.; Ui, M.; Seya, T. Activation of the Human Innate Immune System by Spirulina: Augmentation of Interferon Production and NK Cytotoxicity by Oral Administration of Hot Water Extract of Spirulina platensis. Int. Immunopharmacol. 2002, 2, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Gogna, S.; Kaur, J.; Sharma, K.; Prasad, R.; Singh, J.; Bhadariya, V.; Kumar, P.; Jarial, S. Spirulina-An Edible Cyanobacterium with Potential Therapeutic Health Benefits and Toxicological Consequences. J. Am. Nutr. Assoc. 2023, 42, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Lee, Y.J.; Ryu, H.K.; Kim, M.H.; Chung, H.W.; Kim, W.Y. A Randomized Double-Blind, Placebo-Controlled Study to Establish the Effects of Spirulina in Elderly Koreans. Ann. Nutr. Metab. 2008, 52, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.K.; Hsieh, C.C.; Hsu, J.J.; Yang, Y.K.; Chou, H.N. Preventive Effects of Spirulina platensis on Skeletal Muscle Damage under Exercise-Induced Oxidative Stress. Eur. J. Appl. Physiol. 2006, 98, 220–226. [Google Scholar] [CrossRef]
- Brito, A.D.F.; Silva, A.S.; de Oliveira, C.V.C.; de Souza, A.A.; Ferreira, P.B.; de Souza, I.L.L.; da Cunha Araujo, L.C.; da Silva Félix, G.; de Souza Sampaio, R.; Tavares, R.L.; et al. Spirulina platensis Prevents Oxidative Stress and Inflammation Promoted by Strength Training in Rats: Dose-Response Relation Study. Sci. Rep. 2020, 10, 6392. [Google Scholar] [CrossRef]
- Kalafati, M.; Jamurtas, A.Z.; Nikolaidis, M.G.; Paschalis, V.; Theodorou, A.A.; Sakellariou, G.K.; Koutedakis, Y.; Kouretas, D. Ergogenic and Antioxidant Effects of Spirulina Supplementation in Humans. Med. Sci. Sports Exerc. 2010, 42, 142–151. [Google Scholar] [CrossRef]
- Gurney, T.; Spendiff, O. Spirulina Supplementation Improves Oxygen Uptake in Arm Cycling Exercise. Eur. J. Appl. Physiol. 2020, 120, 2657–2664. [Google Scholar] [CrossRef]
- Pappas, A.; Tsiokanos, A.; Fatouros, I.G.; Poulios, A.; Kouretas, D.; Goutzourelas, N.; Giakas, G.; Jamurtas, A.Z. The Effects of Spirulina Supplementation on Redox Status and Performance Following a Muscle Damaging Protocol. Int. J. Mol. Sci. 2021, 22, 3559. [Google Scholar] [CrossRef] [PubMed]
- Franca, G.A.M.; Silva, A.S.; Costa, M.J.C.; Moura Junior, J.S.; Nóbrega, T.K.S.; Gonçalves, M.C.R.; Asciutti, I.S.R. Spirulina Does Not Decrease Muscle Damage nor Oxdidative Stress in Cycling Athletes with Adequate Nutritional Status. Biol. Sport 2010, 27, 249–253. [Google Scholar] [CrossRef]
- Paschalis, V.; Nikolaidis, M.G.; Theodorou, A.A.; Giakas, G.; Jamurtas, A.Z.; Koutedakis, Y. Eccentric Exercise Affects the Upper Limbs More than the Lower Limbs in Position Sense and Reaction Angle. J. Sports Sci. 2010, 28, 33–43. [Google Scholar] [CrossRef]
- Chen, T.C.; Lin, K.Y.; Chen, H.L.; Lin, M.J.; Nosaka, K. Comparison in Eccentric Exercise-Induced Muscle Damage among Four Limb Muscles. Eur. J. Appl. Physiol. 2011, 111, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A Study of Concurrent and Construct Validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Milias, G.A.; Pitsavos, C.; Stefanadis, C. MedDietScore: A Computer Program That Evaluates the Adherence to the Mediterranean Dietary Pattern and Its Relation to Cardiovascular Disease Risk. Comput. Methods Programs Biomed. 2006, 83, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Vasilopoulou, E.; Hollman, P.; Chamalides, C.; Foufa, E.; Kaloudis, T.; Kromhout, D.; Miskaki, P.; Petrochilou, I.; Poulima, E.; et al. Nutritional Composition and Flavonoid Content of Edible Wild Greens and Green Pies: A Potential Rich Source of Antioxidant Nutrients in the Mediterranean Diet. Food Chem. 2000, 70, 319–323. [Google Scholar] [CrossRef]
- Lau, W.Y.; Blazevich, A.J.; Newton, M.J.; Xuan Wu, S.S.; Nosaka, K. Assessment of Muscle Pain Induced by Elbow-Flexor Eccentric Exercise. J. Athl. Train. 2015, 50, 1140–1148. [Google Scholar] [CrossRef]
- Nosaka, K.; Newton, M.; Sacco, P.; Chapman, D.; Lavender, A. Partial Protection against Muscle Damage by Eccentric Actions at Short Muscle Lengths. Med. Sci. Sports Exerc. 2005, 37, 746–753. [Google Scholar] [CrossRef]
- Ansdell, P.; Brownstein, C.G.; Skarabot, J.; Hicks, K.M.; Simoes, D.C.M.; Thomas, K.; Howatson, G.; Hunter, S.K.; Goodall, S. Menstrual Cycle-Associated Modulations in Neuromuscular Function and Fatigability of the Knee Extensors in Eumenorrheic Women. J. Appl. Physiol. 2019, 126, 1701–1712. [Google Scholar] [CrossRef]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxid. Med. Cell. Longev. 2017, 2017, 3247528. [Google Scholar] [CrossRef] [PubMed]
- Karkos, P.D.; Leong, S.C.; Karkos, C.D.; Sivaji, N.; Assimakopoulos, D.A. Spirulina in Clinical Practice: Evidence-Based Human Applications. Evid.-Based Complement. Altern. Med. 2011, 2011, 531053. [Google Scholar] [CrossRef]
- Wu, J.; Gu, X.; Yang, D.; Xu, S.; Wang, S.; Chen, X.; Wang, Z. Bioactive Substances and Potentiality of Marine Microalgae. Food Sci. Nutr. 2021, 9, 5279–5292. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, S.M.; Khosravi-Darani, K.; Mozafari, M.R. Nutritional and Medical Applications of Spirulina Microalgae. Mini-Rev. Med. Chem. 2013, 13, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Sotiroudis, T.G.; Sotiroudis, G.T. Health Aspects of Spirulina (Arthrospira) Microalga Food Supplement. J. Serbian Chem. Soc. 2013, 78, 395–405. [Google Scholar] [CrossRef]
- Torre-Villalvazo, I.; Alemán-Escondrillas, G.; Valle-Ríos, R.; Noriega, L.G. Protein Intake and Amino Acid Supplementation Regulate Exercise Recovery and Performance through the Modulation of MTOR, AMPK, FGF21, and Immunity. Nutr. Res. 2019, 72, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Khemtong, C.; Kuo, C.H.; Chen, C.Y.; Jaime, S.J.; Condello, G. Does Branched-Chain Amino Acids (Bcaas) Supplementation Attenuate Muscle Damage Markers and Soreness after Resistance Exercise in Trained Males? A Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 1880. [Google Scholar] [CrossRef] [PubMed]
- Chaouachi, M.; Gautier, S.; Carnot, Y.; Guillemot, P.; Pincemail, J.; Moison, Y.; Collin, T.; Groussard, C.; Vincent, S. Spirulina Supplementation Prevents Exercise-Induced Lipid Peroxidation, Inflammation and Skeletal Muscle Damage in Elite Rugby Players. J. Hum. Nutr. Diet. 2022, 35, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Calella, P.; Cerullo, G.; Di Dio, M.; Liguori, F.; Di Onofrio, V.; Gallè, F.; Liguori, G. Antioxidant, Anti-Inflammatory and Immunomodulatory Effects of Spirulina in Exercise and Sport: A Systematic Review. Front. Nutr. 2022, 9, 1048258. [Google Scholar] [CrossRef]
- Hyldahl, R.D.; Chen, T.C.; Nosaka, K. Mechanisms and Mediators of the Skeletal Muscle Repeated Bout Effect. Exerc. Sport Sci. Rev. 2017, 45, 24–33. [Google Scholar] [CrossRef]
- Johnson, M.; Hassinger, L.; Davis, J.; Devor, S.T.; DiSilvestro, R.A. A Randomized, Double Blind, Placebo Controlled Study of Spirulina Supplementation on Indices of Mental and Physical Fatigue in Men. Int. J. Food Sci. Nutr. 2016, 67, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.R.; Fragala, M.S.; Volek, J.S.; Denegar, C.R.; Anderson, J.M.; Comstock, B.A.; Dunn-Lewis, C.; Hooper, D.R.; Szivak, T.K.; Luk, H.Y.; et al. Sex Differences in Creatine Kinase after Acute Heavy Resistance Exercise on Circulating Granulocyte Estradiol Receptors. Eur. J. Appl. Physiol. 2012, 112, 3335–3340. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.Z.; Machado, M.; Hackney, A.C.; De Oliveira, W.; Luz, C.P.N.; Pereira, R. Sex Differences in Serum Ck Activity but Not in Glomerular Filtration Rate after Resistance Exercise: Is There a Sex Dependent Renal Adaptative Response? J. Physiol. Sci. 2014, 64, 31–36. [Google Scholar] [CrossRef] [PubMed]
Basic Characteristics | Placebo | Spirulina | p |
---|---|---|---|
n | 14 (8 males, 6 females) | ||
Age (years) | 24.4 ± 3.9 | ||
BMI (Kg∙m−2) | 23.0 ± 2.3 | 23.5 ± 2.5 | 0.03 |
Fat (%) | 20.8 ± 4.9 | 21.7 ± 5.6 | 0.29 |
WC (cm) | 79.6 ± 11 | 80.9 ± 12 | 0.18 |
SBP (mmHg) | 115 ± 13 | 117 ± 22 | 0.53 |
DBP (mmHg) | 67.0 ± 8.8 | 69.7 ± 7.1 | 0.29 |
HR (bpm) | 75.5 ± 14.4 | 73.8 ± 12.2 | 0.63 |
METS (Mets-minute) | 1393 ± 1014 | 1570 ± 1028 | 0.69 |
Dietary Intake | Placebo | Spirulina | p |
---|---|---|---|
Energy (Kcal) | 1945 ± 430 | 2001 ± 415 | 0.61 |
Carbs (%) | 44.4 ± 5.8 | 46.8 ± 7.0 | 0.25 |
Protein (g/Kg bw) | 1.1 ± 0.28 | 1.1 ± 0.24 | 0.58 |
Protein (%) | 15.9 ± 2.7 | 15.2 ± 2.3 | 0.23 |
Fat (%) | 38.1 ± 4.2 | 36.9 ± 6.0 | 0.54 |
Fiber (g) | 20.5 ± 6.9 | 23.0 ± 7.8 | 0.12 |
Folate (mg) | 355 ± 188 | 356 ± 117 | 0.69 |
CK (IU/L) | PreEx | PostEx | 24 h | 48 h | 72 h | Ptime | |
---|---|---|---|---|---|---|---|
Total | PL | 96 (54–151) 0.00% | 97 (61–183) 3.5% (−5.8–14.1%) | 112 (94–242) 9.7% * (−0.54–120.5%) | 134 (75–274) 15.8% (−11.9–203.5) | 134 * (75–680) 45.8% * (−2.9–322.8%) | 0.006 |
SPI | 86 (66–121) 0.00% | 101 (63–135) 20.2% (−9.9–30.3%) | 88 (62–272) 6.8% (−4.9–110.9%) | 95 * (74–523) 54.8% * (−11.4–424.9%) | 101 * (71–1143) 54.9% * (−11.3–551.0%) | 0.106 | |
Males | PL | 109 (81–211) 0.00% | 133 (95–220) 3.46% (−5.8–15.2%) | 213 (112–687) 17.89% (−10.9–124.5%) | 269 (110–832) 133.9% (−2.5–270.4%) | 500 * (106–1002) 260.5%* (−11.5–385.8%) | 0.102 |
SPI | 107 (82–183) 0.00% | 120 * (100–226) 24.0% * (15.8–33.4%) | 186 (96–564) 89.1% (−3.8–314.2%) | 407 (85–1262) 261.4%* (−3.6–644.4%) | 708 * (85–1893) 278.7%* (−8.4–1291.8%) | 0.308 | |
Females | PL | 62 (52–129) 0.00% | 61.5 (50–151) 2.7% (−8.9–15.5%) | 103 (64–140) 6.7% (0.64–95.7%) | 76 (64–145) 2.4% (−24.8–101.0%) | 79 (67–145) 8.89% (−20.9–92.7%) | 0.621 |
SPI | 68 (53–86) 0.00% | 60.5 (52–88) −9.25% (−28.8–31.2%) | 61 (52–74) 5.33% (−19.3–8.4%) | 80 (59–106) 37.4% (−25.5–65.6%) | 80.0 (55–124) 37.4% (−27.0–88.4%) | 0.513 |
LDH (IU/L) | PreEx | PostEx | 24 h | 48 h | 72 h | Ptime | |
---|---|---|---|---|---|---|---|
Total | PL | 140 (128–178) 0 | 153 (113–200) 5.2% (−8.1–22.0%) | 160 (131–185) 1.1% (−3.3–23.0%) | 148 (118–200) 7.7% (−10.6–36.3) | 141 (124–189) 6.3% (−7.1–35.6%) | 0.84 |
SPI | 138 (121–188) 0 | 154 (121–195) 5.9% (−4.6–18.1%) | 148 (119–201) –1.9% (−10.8–14.5%) | 158 (127–204) 7.5% (–5.8–40.4%) | 153 (116–262) 13.6% (−5.9–74.0%) | 0.67 | |
Males | PL | 154 (132–180) 0% | 154 (111–223) 8.1% (−10.7–19.7%) | 166 (135–202) 5.1% * (0.87–48.2%) | 169 (141–255) 24.6% * (6.8–106.9%) | 168 (135–258) 25.5% * (−1.5–95.9%) | 0.13 |
SPI | 139 (122–180) 0% | 164 (103–200) 2.2% (−17.9–15.4%) | 176 (129–225) 7.9% (−11.2–56.4%) | 191 * (158–258) 28.0% * (13.4–99.8%) | 215* (140–409) 45,65% * (1.6–130.9%) | 0.04 | |
Females | PL | 131 (103–161) 0% | 153 (119–169) 1.4% (−8.8–25.3%) | 157 (118–175) −2.4% (−15.8–16.3%) | 118 (108–152) −10.2% (−12.2–5.0%) | 132 (100–146) −2.2% (−2.2–13.4%) | 0.34 |
SPI | 134 (117–197) 0% | 154 (128–193) 8.1% (−1.9–20.1%) | 131 (112–164) −5.6% (−11.3–2.0%) | 126 * (117–140) −6.9% * (−22.3–1.5%) | 126 (99–165) 2.6% (−27.1–16.0%) | 0.045 |
Placebo–Spirulina Median (25th/75th Percentile) | Spirulina–Placebo | p | |
---|---|---|---|
PT iAUC PL | −62 (−80/−28) | −48 (−58/−10) | 0.21 |
PT iAUC SPI | −39 (−70/−10) | −50 (−125/−30) | 0.32 |
Delta PT iAUC | −6.5 (−22/42) | −27 (−64/−19) | 0.053 |
FANG iAUC PL | 25 (6/37) | 31 (6/60) | 0.62 |
FANG iAUC SPI | 31 (21/33) | 37 (25/74) | 0.26 |
Delta FAng iAUC | 6.5 (−9/21) | 20 (−11/45) | 0.53 |
EANG iAUC PL | −15 (−31/−4) | −9 (−18/−4) | 0.62 |
EANG iAUC SPI | −6 (−22/−1) | −16 (−16.5/−15) | 0.10 |
Delta EANG iAUC | 3 (−1.5/25) | −13 (−45/−5.5) | 0.01 |
ROM iAUC PL | −53 (−108/−35) | −56 (−64/−19) | 0.16 |
ROM iAUC SPI | −34 (−53/−27) | −52 (−91/−40) | 0.16 |
Delta ROM iAUC | 0 (−5/74) | −25 (−62/−2) | 0.038 |
VAS iAUC PL | 100 (61/130) | 92 (67/121) | 0.71 |
VAS iAUC SPI | 90 (89/149) | 95 (70/158) | 0.90 |
Delta VAS iAUC | −8 (−16/60) | 23 (−21/90) | 0.62 |
ArmCir iAUC PL | 1 (0/2) | −0.15 (−1.55/1.25) | 0.32 |
ArmCir iAUC SPI | 0.05 (−0.1/1.4) | 2.45 (−0.85/3.3) | 0.32 |
Delta ArmCir iAUC | −0.9 (−1.95/0.6) | 1.85 (−2/5) | 0.16 |
CK iAUC PL | 232 (−6/370) | 25 (−29/747) | 0.73 |
CK iAUC SPI | 46 (5/357) | 38 (−77/7212) | 0.84 |
Delta CK iAUC | 8 (−227/52) | 49 (−15/5738) | 0.23 |
LDH iAUC PL | 98 (−97/313) | 17 (−58/365) | 1.00 |
LDH iAUC SPI | 15 (−140/214) | 64 (−149/720) | 0.71 |
Delta LDH iAUC | 61 (−298/210) | 82 (−165/457) | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krokidas, A.; Gakis, A.G.; Aktypi, O.; Antonopoulou, S.; Nomikos, T. Effect of Spirulina Nigrita® Supplementation on Indices of Exercise-Induced Muscle Damage after Eccentric Protocol of Upper Limbs in Apparently Healthy Volunteers. Nutrients 2024, 16, 1651. https://doi.org/10.3390/nu16111651
Krokidas A, Gakis AG, Aktypi O, Antonopoulou S, Nomikos T. Effect of Spirulina Nigrita® Supplementation on Indices of Exercise-Induced Muscle Damage after Eccentric Protocol of Upper Limbs in Apparently Healthy Volunteers. Nutrients. 2024; 16(11):1651. https://doi.org/10.3390/nu16111651
Chicago/Turabian StyleKrokidas, Anastasios, Athanasios G. Gakis, Ourania Aktypi, Smaragdi Antonopoulou, and Tzortzis Nomikos. 2024. "Effect of Spirulina Nigrita® Supplementation on Indices of Exercise-Induced Muscle Damage after Eccentric Protocol of Upper Limbs in Apparently Healthy Volunteers" Nutrients 16, no. 11: 1651. https://doi.org/10.3390/nu16111651
APA StyleKrokidas, A., Gakis, A. G., Aktypi, O., Antonopoulou, S., & Nomikos, T. (2024). Effect of Spirulina Nigrita® Supplementation on Indices of Exercise-Induced Muscle Damage after Eccentric Protocol of Upper Limbs in Apparently Healthy Volunteers. Nutrients, 16(11), 1651. https://doi.org/10.3390/nu16111651