Cytokine and Microbiome Changes in Adolescents with Anorexia Nervosa at Admission, Discharge, and One-Year Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Sample Collection
2.3. Statistical Analysis
3. Results
3.1. Cytokine Levels
3.2. Correlations between Cytokines and Associations with Clinical Variables over Time
3.3. Associations with Intestinal Microbiota
4. Discussion
4.1. Cytokines
4.2. Gut Microbiota
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
IL-15 | IL-6 | IL-1β | TNFα | ||||||
---|---|---|---|---|---|---|---|---|---|
Δ Discharge and Admission | Δ Follow-Up and Admission | Δ Discharge and Admission | Δ Follow-Up and Admission | Δ Discharge and Admission | Δ Follow-Up and Admission | Δ Discharge and Admission | Δ Follow-Up and Admission | ||
Anaerostipes | Correlation coefficient | 0.349 | |||||||
sig. (p-value) | 0.034 | ||||||||
n | 37 | ||||||||
Anerotruncus | Correlation coefficient | 0.562 | |||||||
sig. (p-value) | <0.001 | ||||||||
n | 37 | ||||||||
Bacteroides | Correlation coefficient | 0.338 | |||||||
sig. (p-value) | 0.029 | ||||||||
n | 42 | ||||||||
Collinsella | Correlation coefficient | 0.348 | |||||||
sig. (p-value) | 0.032 | ||||||||
n | 38 | ||||||||
Dialister | Correlation coefficient | −0.365 | |||||||
sig. (p-value) | 0.018 | ||||||||
n | 42 | ||||||||
Erysipelatoclostridium | Correlation coefficient | −0.345 | |||||||
sig. (p-value) | 0.025 | ||||||||
n | |||||||||
Faecalibacterium | Correlation coefficient | 0.338 | |||||||
sig. (p-value) | 0.038 | ||||||||
n | 38 | ||||||||
Family XIII AD3011 | Correlation coefficient | −0.320 | 0.407 | 0.427 | |||||
sig. (p-value) | 0.039 | 0.011 | 0.008 | ||||||
n | 42 | 38 | 37 | ||||||
Lachnospiraceae ND3007 | Correlation coefficient | −0.323 | −0.364 | −0.476 | |||||
sig. (p-value) | 0.048 | 0.018 | 0.001 | ||||||
n | 38 | 42 | 42 |
References
- Herpertz-Dahlmann, B. Adolescent eating disorders: Update on definitions, symptomatology, epidemiology, and comorbidity. Child Adolesc. Psychiatr. Clin. 2015, 24, 177–196. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Van Eeden, A.E.; van Hoeken, D.; Hoek, H.W. Incidence, prevalence and mortality of anorexia nervosa and bulimia nervosa. Curr. Opin. Psychiatry 2021, 34, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Hoang, U.; Goldacre, M.; James, A. Mortality following hospital discharge with a diagnosis of eating disorder: National record linkage study, England, 2001–2009. Int. J. Eat. Disord. 2014, 47, 507–515. [Google Scholar] [PubMed]
- Gonzalez, A.; Clarke, S.; Kohn, M. Eating disorders in adolescents. Aust. Fam. Physician 2007, 36, 614–619. [Google Scholar] [PubMed]
- Schmidt, U.; Adan, R.; Böhm, I.; Campbell, I.C.; Dingemans, A.; Ehrlich, S.; Elzakkers, I.; Favaro, A.; Giel, K.; Harrison, A. Eating disorders: The big issue. Lancet Psychiatry 2016, 3, 313–315. [Google Scholar] [PubMed]
- Watson, H.J.; Yilmaz, Z.; Thornton, L.M.; Hübel, C.; Coleman, J.R.; Gaspar, H.A.; Bryois, J.; Hinney, A.; Leppä, V.M.; Mattheisen, M. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 2019, 51, 1207–1214. [Google Scholar]
- Hübel, C.; Marzi, S.J.; Breen, G.; Bulik, C.M. Epigenetics in eating disorders: A systematic review. Mol. Psychiatry 2019, 24, 901–915. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, P.; Maj, M. Dysfunctions of leptin, ghrelin, BDNF and endocannabinoids in eating disorders: Beyond the homeostatic control of food intake. Psychoneuroendocrinology 2013, 38, 312–330. [Google Scholar] [CrossRef]
- Solstrand Dahlberg, L.; Wiemerslage, L.; Swenne, I.; Larsen, A.; Stark, J.; Rask-Andersen, M.; Salonen-Ros, H.; Larsson, E.-M.; Schiöth, H.B.; Brooks, S.J. Adolescents newly diagnosed with eating disorders have structural differences in brain regions linked with eating disorder symptoms. Nord. J. Psychiatry 2017, 71, 188–196. [Google Scholar]
- Stice, E.; Shaw, H.E. Role of body dissatisfaction in the onset and maintenance of eating pathology: A synthesis of research findings. J. Psychosom. Res. 2002, 53, 985–993. [Google Scholar]
- Lao-Kaim, N.P.; Fonville, L.; Giampietro, V.P.; Williams, S.C.; Simmons, A.; Tchanturia, K. Aberrant function of learning and cognitive control networks underlie inefficient cognitive flexibility in anorexia nervosa: A cross-sectional fMRI study. PLoS ONE 2015, 10, e0124027. [Google Scholar] [CrossRef]
- Harrington, B.C.; Jimerson, M.; Haxton, C.; Jimerson, D.C. Initial evaluation, diagnosis, and treatment of anorexia nervosa and bulimia nervosa. Am. Fam. Physician 2015, 91, 46–52. [Google Scholar] [PubMed]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The bidirectional relationship of depression and inflammation: Double trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef] [PubMed]
- Peirce, J.M.; Alviña, K. The role of inflammation and the gut microbiome in depression and anxiety. J. Neurosci. Res. 2019, 97, 1223–1241. [Google Scholar]
- Zhang, Y.; Wang, J.; Ye, Y.; Zou, Y.; Chen, W.; Wang, Z.; Zou, Z. Peripheral cytokine levels across psychiatric disorders: A systematic review and network meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 125, 110740. [Google Scholar]
- Osimo, E.F.; Pillinger, T.; Rodriguez, I.M.; Khandaker, G.M.; Pariante, C.M.; Howes, O.D. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav. Immun. 2020, 87, 901–909. [Google Scholar]
- Lichtblau, N.; Schmidt, F.M.; Schumann, R.; Kirkby, K.C.; Himmerich, H. Cytokines as biomarkers in depressive disorder: Current standing and prospects. Int. Rev. Psychiatry 2013, 25, 592–603. [Google Scholar] [CrossRef]
- Himmerich, H.; Dalton, B.; Patsalos, O.; Schmidt, U.; Campbell, I.C. Cytokines and water distribution in anorexia nervosa. Mediat. Inflamm. 2021, 2021, 8811051. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Fonseka, T.M.; Müller, D.J.; Kennedy, S.H. Inflammatory cytokines and antipsychotic-induced weight gain: Review and clinical implications. Complex Psychiatry 2016, 2, 1–14. [Google Scholar] [CrossRef]
- Andréasson, A.; Arborelius, L.; Erlanson-Albertsson, C.; Lekander, M. A putative role for cytokines in the impaired appetite in depression. Brain Behav. Immun. 2007, 21, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Yu, S.; Visvanathan, R.; Piantadosi, C.; Adams, R.; Lange, K.; Chapman, I. Inflammatory cytokines and appetite in healthy people. J. Ageing Res. Clin. Pract. 2012, 1, 40–43. [Google Scholar]
- Skurlova, M.; Stofkova, A.; Kiss, A.; Belacek, J.; Pecha, O.; Deykun, K.; Jurcovicova, J. Transient anorexia, hyper-nociception and cognitive impairment in early adjuvant arthritis in rats. Endocr. Regul. 2010, 44, 165–173. [Google Scholar] [CrossRef]
- Reichenberg, A.; Yirmiya, R.; Schuld, A.; Kraus, T.; Haack, M.; Morag, A.; Pollmächer, T. Cytokine-associated emotional and cognitive disturbances in humans. Arch. Gen. Psychiatry 2001, 58, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Kaye, W. Neurobiology of anorexia and bulimia nervosa. Physiol. Behav. 2008, 94, 121–135. [Google Scholar] [CrossRef]
- Solmi, M.; Veronese, N.; Favaro, A.; Santonastaso, P.; Manzato, E.; Sergi, G.; Correll, C.U. Inflammatory cytokines and anorexia nervosa: A meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology 2015, 51, 237–252. [Google Scholar] [CrossRef]
- Gibson, D.; Mehler, P.S. Anorexia nervosa and the immune system—A narrative review. J. Clin. Med. 2019, 8, 1915. [Google Scholar] [CrossRef]
- Butler, M.J.; Perrini, A.A.; Eckel, L.A. The role of the gut microbiome, immunity, and neuroinflammation in the pathophysiology of eating disorders. Nutrients 2021, 13, 500. [Google Scholar] [CrossRef]
- Dalton, B.; Bartholdy, S.; Robinson, L.; Solmi, M.; Ibrahim, M.A.; Breen, G.; Schmidt, U.; Himmerich, H. A meta-analysis of cytokine concentrations in eating disorders. J. Psychiatr. Res. 2018, 103, 252–264. [Google Scholar]
- Caroleo, M.; Carbone, E.A.; Greco, M.; Corigliano, D.M.; Arcidiacono, B.; Fazia, G.; Rania, M.; Aloi, M.; Gallelli, L.; Segura-Garcia, C. Brain-behavior-immune interaction: Serum cytokines and growth factors in patients with eating disorders at extremes of the body mass index (BMI) spectrum. Nutrients 2019, 11, 1995. [Google Scholar] [CrossRef] [PubMed]
- Keeler, J.L.; Patsalos, O.; Chung, R.; Schmidt, U.; Breen, G.; Treasure, J.; Himmerich, H.; Dalton, B. Reduced mip-1β as a trait marker and reduced il-7 and il-12 as state markers of anorexia nervosa. J. Pers. Med. 2021, 11, 814. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, Z.; Ziora, K.; Oświęcimska, J.; Marek, B.; Świętochowska, E.; Kajdaniuk, D.; Strzelczyk, J.; Cieślicka, A.; Wołkowska-Pokrywa, K.; Kos-Kudła, B. Selected pro-inflammatory cytokines, bone metabolism, osteoprotegerin, and receptor activator of nuclear factor-kB ligand in girls with anorexia nervosa. Endokrynol. Pol. 2015, 66, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Maunder, K.; Molloy, E.; Jenkins, E.; Hayden, J.; Adamis, D.; McNicholas, F. Anorexia Nervosa in vivo cytokine production: A systematic review. Psychoneuroendocrinology 2023, 158, 106390. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature 2016, 535, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009, 9, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Donoso, F.; Cryan, J.F.; Olavarría-Ramírez, L.; Nolan, Y.M.; Clarke, G. Inflammation, Lifestyle Factors, and the Microbiome-Gut-Brain Axis: Relevance to Depression and Antidepressant Action. Clin. Pharmacol. Ther. 2023, 113, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Støving, R.K.; Berreira Ibraim, S.; Hyötyläinen, T.; Thirion, F.; Arora, T.; Lyu, L.; Stankevic, E.; Hansen, T.H.; Déchelotte, P.; et al. The gut microbiota contributes to the pathogenesis of anorexia nervosa in humans and mice. Nat. Microbiol. 2023, 8, 787–802. [Google Scholar] [CrossRef]
- Specht, H.E.; Mannig, N.; Belheouane, M.; Andreani, N.A.; Tenbrock, K.; Biemann, R.; Borucki, K.; Dahmen, B.; Dempfle, A.; Baines, J.F. Lower serum levels of IL-1β and IL-6 cytokines in adolescents with anorexia nervosa and their association with gut microbiota in a longitudinal study. Front. Psychiatry 2022, 13, 1847. [Google Scholar] [CrossRef]
- Rosario, A.S.; Kurth, B.M.; Stolzenberg, H.; Ellert, U.; Neuhauser, H. Body mass index percentiles for children and adolescents in Germany based on a nationally representative sample (KiGGS 2003–2006). Eur. J. Clin. Nutr. 2010, 64, 341–349. [Google Scholar] [CrossRef]
- Paul, T.; Thiel, A. Eating Disorder Inventory-2 (EDI-2): Deutsche Version; Hogrefe: Göttingen, Germany, 2005. [Google Scholar]
- Kumar, G.; Steer, R.A.; Teitelman, K.B.; Villacis, L. Effectiveness of Beck Depression Inventory–II subscales in screening for major depressive disorders in adolescent psychiatric inpatients. Assessment 2002, 9, 164–170. [Google Scholar] [CrossRef]
- Cooper, Z.; Fairburn, C. The eating disorder examination: A semi-structured interview for the assessment of the specific psychopathology of eating disorders. Int. J. Eat. Disord. 1987, 6, 1–8. [Google Scholar] [CrossRef]
- Andreani, N.A.; Sharma, A.; Dahmen, B.; Specht, H.E.; Mannig, N.; Ruan, V.; Keller, L.; Baines, J.F.; Herpertz-Dahlmann, B.; Dempfle, A.; et al. Longitudinal analysis of the gut microbiome in adolescent patients with anorexia nervosa: Microbiome-related factors associated with clinical outcome. Gut Microbes 2024, 16, 2304158. [Google Scholar] [CrossRef]
- Dalton, B.; Campbell, I.C.; Chung, R.; Breen, G.; Schmidt, U.; Himmerich, H. Inflammatory markers in anorexia nervosa: An exploratory study. Nutrients 2018, 10, 1573. [Google Scholar] [CrossRef] [PubMed]
- Dalton, B.; Leppanen, J.; Campbell, I.C.; Chung, R.; Breen, G.; Schmidt, U.; Himmerich, H. A longitudinal analysis of cytokines in anorexia nervosa. Brain Behav. Immun. 2020, 85, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, I.A.; Millischer, V.; Göteson, A.; Hübel, C.; Thornton, L.M.; Bulik, C.M.; Schalling, M.; Landén, M. Aberrant inflammatory profile in acute but not recovered anorexia nervosa. Brain Behav. Immun. 2020, 88, 718–724. [Google Scholar] [CrossRef]
- Bernardoni, F.; Tam, F.; Poitz, D.M.; Hellerhoff, I.; Arold, D.; Geisler, D.; Lemme, F.; Keeler, J.; Weidner, K.; Pariante, C.; et al. Effect of serum concentrations of IL-6 and TNF-α on brain structure in anorexia nervosa: A combined cross-sectional and longitudinal study. Neuropsychopharmacology 2024. [Google Scholar] [CrossRef]
- Caso, J.R.; Graell, M.; Navalon, A.; MacDowell, K.S.; Gutierrez, S.; Soto, M.; Leza, J.C.; Carrasco, J.L.; Marsá, M.D. Dysfunction of inflammatory pathways in adolescent female patients with anorexia nervosa. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 96, 109727. [Google Scholar] [CrossRef]
- Keeler, J.L.; Patsalos, O.; Chung, R.; Schmidt, U.; Breen, G.; Treasure, J.; Hubertus, H.; Dalton, B. Short communication: Serum levels of brain-derived neurotrophic factor and association with pro-inflammatory cytokines in acute and recovered anorexia nervosa. J. Psychiatr. Res. 2022, 150, 34–39. [Google Scholar] [CrossRef]
- Nova, E.; Gómez-Martínez, S.; Morandé, G.; Marcos, A. Cytokine production by blood mononuclear cells from in-patients with anorexia nervosa. Br. J. Nutr. 2002, 88, 183–188. [Google Scholar] [CrossRef]
- Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Man, S.M. Inflammasomes in the gastrointestinal tract: Infection, cancer and gut microbiota homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 721–737. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Taga, T.; Kishimoto, T. Interleukin-6 in biology and medicine. Adv. Immunol. 1993, 54, 1–78. [Google Scholar] [CrossRef] [PubMed]
- Elgin, T.G.; Fricke, E.M.; Gong, H.; Reese, J.; Mills, D.A.; Kalantera, K.M.; Underwood, M.A.; McElroy, S.J. Fetal exposure to maternal inflammation interrupts murine intestinal development and increases susceptibility to neonatal intestinal injury. Dis. Model Mech. 2019, 12, dmm040808. [Google Scholar] [CrossRef]
- Coppack, S.W. Pro-inflammatory cytokines and adipose tissue. Proc. Nutr. Soc. 2001, 60, 349–356. [Google Scholar] [CrossRef]
- Ambrósio, G.; Kaufmann, F.N.; Manosso, L.; Platt, N.; Ghisleni, G.; Rodrigues, A.L.S.; Rieger, D.K.; Kaster, M.P. Depression and peripheral inflammatory profile of patients with obesity. Psychoneuroendocrinology 2018, 91, 132–141. [Google Scholar] [CrossRef]
- Dolezalova, R.; Lacinova, Z.; Dolinkova, M.; Kleiblova, P.; Haluzikova, D.; Housa, D.; Papezova, H.; Haluzik, M. Changes of endocrine function of adipose tissue in anorexia nervosa: Comparison of circulating levels versus subcutaneous mRNA expression. Clin. Endocrinol. 2007, 67, 674–678. [Google Scholar] [CrossRef]
- Cannon, J.G.; Dinarello, C.A. Increased plasma interleukin-1 activity in women after ovulation. Science 1985, 227, 1247–1249. [Google Scholar] [CrossRef]
- Mayer, L.E.; Schebendach, J.; Bodell, L.P.; Shingleton, R.M.; Walsh, B.T. Eating behavior in anorexia nervosa: Before and after treatment. Int. J. Eat Disord. 2012, 45, 290–293. [Google Scholar] [CrossRef]
- Link, V.M.; Subramanian, P.; Cheung, F.; Han, K.L.; Stacy, A.; Chi, L.; Sellers, B.A.; Koroleva, G.; Courville, A.B.; Mistry, S.; et al. Differential peripheral immune signatures elicited by vegan versus ketogenic diets in humans. Nat. Med. 2024, 30, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Agell, M.; Urpi-Sarda, M.; Sacanella, E.; Camino-López, S.; Chiva-Blanch, G.; Llorente-Cortés, V.; Tobias, E.; Roura, E.; Andres-Lacueva, C.; Lamuela-Raventós, R.M.; et al. Cocoa consumption reduces NF-κB activation in peripheral blood mononuclear cells in humans. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Hardman, W.E. Diet components can suppress inflammation and reduce cancer risk. Nutr. Res. Pract. 2014, 8, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Husted, K.S.; Bouzinova, E.V. The importance of n-6/n-3 fatty acids ratio in the major depressive disorder. Medicina 2016, 52, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Paik, J.K.; Chae, J.S.; Kang, R.; Kwon, N.; Lee, S.H.; Lee, J.H. Effect of age on atherogenicity of LDL and inflammatory markers in healthy women. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.Y.; Chae, J.S.; Paik, J.K.; Seo, H.S.; Jang, Y.; Cavaillon, J.M.; Lee, J.H. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. Age 2012, 34, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Patidar, M.; Yadav, N.; Dalai, S.K. Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev. 2016, 31, 49–59. [Google Scholar] [CrossRef]
- do Prado, G.H.J.; Sardeli, A.V.; Lord, J.M.; Cavaglieri, C.R. The effects of ageing, BMI and physical activity on blood IL-15 levels: A systematic review and meta-analyses. Exp. Gerontol. 2022, 168, 111933. [Google Scholar] [CrossRef]
- Quinn, L.S.; Strait-Bodey, L.; Anderson, B.G.; Argilés, J.M.; Havel, P.J. Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: Evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol. Int. 2005, 29, 449–457. [Google Scholar] [CrossRef]
- Zhou, Y.; Husman, T.; Cen, X.; Tsao, T.; Brown, J.; Bajpai, A.; Li, M.; Zhou, K.; Yang, L. Interleukin 15 in Cell-Based Cancer Immunotherapy. Int. J. Mol. Sci. 2022, 23, 7311. [Google Scholar] [CrossRef] [PubMed]
- Fehniger, T.A.; Caligiuri, M.A. Interleukin 15: Biology and relevance to human disease. Blood J. Am. Soc. Hematol. 2001, 97, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Budagian, V.; Bulanova, E.; Paus, R.; Bulfone-Paus, S. IL-15/IL-15 receptor biology: A guided tour through an expanding universe. Cytokine Growth Factor Rev. 2006, 17, 259–280. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Wu, X.; He, Y.; Hsuchou, H.; Huang, E.Y.; Mishra, P.K.; Kastin, A.J. Brain interleukin-15 in neuroinflammation and behavior. Neurosci. Biobehav. Rev. 2013, 37, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Kaye, W.H.; Frank, G.K.; Bailer, U.F.; Henry, S.E.; Meltzer, C.C.; Price, J.C.; Mathis, C.A.; Wagner, A. Serotonin alterations in anorexia and bulimia nervosa: New insights from imaging studies. Physiol. Behav. 2005, 85, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, C.; Hassler, C.; Mattar, L.; Launay, J.M.; Callebert, J.; Steiger, H.; Melchior, J.C.; Falissard, B.; Berthoz, S.; Mourier-Soleillant, V.; et al. Symptoms of depression and anxiety in anorexia nervosa: Links with plasma tryptophan and serotonin metabolism. Psychoneuroendocrinology 2014, 39, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. Muscles and their myokines. J. Exp. Biol. 2011, 214, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Quinn, L.S.; Anderson, B.G. Interleukin-15, IL-15 Receptor-Alpha, and Obesity: Concordance of Laboratory Animal and Human Genetic Studies. J. Obes. 2011, 2011, 456347. [Google Scholar] [CrossRef]
- Martínez-Hernández, P.L.; Hernanz-Macías, Á.; Gómez-Candela, C.; Grande-Aragón, C.; Feliu-Batlle, J.; Castro-Carpeño, J.; Martínez-Muñoz, I.; Zurita-Rosa, L.; Villarino-Sanz, M.; Prados-Sánchez, C.; et al. Serum interleukin-15 levels in cancer patients with cachexia. Oncol. Rep. 2012, 28, 1443–1452. [Google Scholar] [CrossRef]
- Patsalos, O.; Dalton, B.; Leppanen, J.; Ibrahim, M.A.; Himmerich, H. Impact of TNF-α inhibitors on body weight and BMI: A systematic review and meta-analysis. Front. Pharmacol. 2020, 11, 481. [Google Scholar] [CrossRef]
- Himmerich, H.; Kan, C.; Au, K.; Treasure, J. Pharmacological treatment of eating disorders, comorbid mental health problems, malnutrition and physical health consequences. Pharmacol. Ther. 2021, 217, 107667. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Miquel, S.; Ulmer, J.; Kechaou, N.; Langella, P.; Bermúdez-Humarán, L.G. Role of commensal and probiotic bacteria in human health: A focus on inflammatory bowel disease. Microb. Cell Fact. 2013, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Morisaki, Y.; Miyata, N.; Nakashima, M.; Hata, T.; Takakura, S.; Yoshihara, K.; Suematsu, T.; Nomoto, K.; Miyazaki, K.; Tsuji, H.; et al. Persistence of gut dysbiosis in individuals with anorexia nervosa. PLoS ONE 2023, 18, e0296037. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.H.; Pothoulakis, C.; Mayer, E.A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar] [PubMed]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef]
- Möhle, L.; Mattei, D.; Heimesaat, M.M.; Bereswill, S.; Fischer, A.; Alutis, M.; French, T.; Hambardzumyan, D.; Matzinger, P.; Dunay, I.R.; et al. Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Rep. 2016, 15, 1945–1956. [Google Scholar] [CrossRef] [PubMed]
- Hanachi, M.; Manichanh, C.; Schoenenberger, A.; Pascal, V.; Levenez, F.; Cournède, N.; Doré, J.; Melchior, J.C. Altered host-gut microbes symbiosis in severely malnourished anorexia nervosa (AN) patients undergoing enteral nutrition: An explicative factor of functional intestinal disorders? Clin. Nutr. 2019, 38, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Foligné, B.; Plé, C.; Titécat, M.; Dendooven, A.; Pagny, A.; Daniel, C.; Singer, E.; Pottier, M.; Bertin, B.; Neut, C.; et al. Contribution of the Gut Microbiota in P28GST-Mediated Anti-Inflammatory Effects: Experimental and Clinical Insights. Cells 2019, 8, 577. [Google Scholar] [CrossRef]
- Tito, R.Y.; Cypers, H.; Joossens, M.; Varkas, G.; Van Praet, L.; Glorieus, E.; Van den Bosch, F.; De Vos, M.; Raes, J.; Elewaut, D. Brief Report: Dialister as a Microbial Marker of Disease Activity in Spondyloarthritis. Arthritis Rheumatol. 2017, 69, 114–121. [Google Scholar] [CrossRef]
- Ye, Q.; Sun, S.; Deng, J.; Chen, X.; Zhang, J.; Lin, S.; Du, H.; Gao, J.; Zou, X.; Lin, X.; et al. Using 16S rDNA and metagenomic sequencing technology to analyze the fecal microbiome of children with avoidant/restrictive food intake disorder. Sci. Rep. 2023, 13, 20253. [Google Scholar] [CrossRef]
- Ohkusa, T.; Yoshida, T.; Sato, N.; Watanabe, S.; Tajiri, H.; Okayasu, I. Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: A possible pathogenic mechanism of ulcerative colitis. J. Med. Microbiol. 2009, 58, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Garber, A.; Hastie, P.; Murray, J.A. Factors Influencing Equine Gut Microbiota: Current Knowledge. J. Equine Vet. Sci. 2020, 88, 102943. [Google Scholar] [CrossRef] [PubMed]
- Maukonen, J.; Kolho, K.L.; Paasela, M.; Honkanen, J.; Klemetti, P.; Vaarala, O.; Saarela, M. Altered Fecal Microbiota in Paediatric Inflammatory Bowel Disease. J. Crohns. Colitis 2015, 9, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, P.; Ramos-Lopez, O.; Cuevas-Sierra, A.; Martinez, J.A.; Milagro, F.I.; Riezu-Boj, J.I. A predictive regression model of the obesity-related inflammatory status based on gut microbiota composition. Int. J. Obes. 2021, 45, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, A.; Zorzi, F.; Del Chierico, F.; Altomare, A.; Cocca, S.; Avola, A.; De Biasio, F.; Russo, A.; Cella, E.; Reddel, S.; et al. Fecal and Mucosal Microbiota Profiling in Irritable Bowel Syndrome and Inflammatory Bowel Disease. Front. Microbiol. 2019, 10, 1655. [Google Scholar] [CrossRef]
- Effendi, R.; Anshory, M.; Kalim, H.; Dwiyana, R.F.; Suwarsa, O.; Pardo, L.M.; Nijsten, T.E.C.; Thio, H.B. Akkermansia muciniphila and Faecalibacterium prausnitzii in Immune-Related Diseases. Microorganisms 2022, 10, 2382. [Google Scholar] [CrossRef] [PubMed]
- Tindall, A.M.; McLimans, C.J.; Petersen, K.S.; Kris-Etherton, P.M.; Lamendella, R. Walnuts and Vegetable Oils Containing Oleic Acid Differentially Affect the Gut Microbiota and Associations with Cardiovascular Risk Factors: Follow-up of a Randomized, Controlled, Feeding Trial in Adults at Risk for Cardiovascular Disease. J. Nutr. 2020, 150, 806–817. [Google Scholar] [CrossRef]
- Sun, M.; Wu, W.; Liu, Z.; Cong, Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 2017, 52, 1–8. [Google Scholar] [CrossRef]
- Schulz, N.; Belheouane, M.; Dahmen, B.; Ruan, V.A.; Specht, H.E.; Dempfle, A.; Herpertz-Dahlmann, B.; Baines, J.F.; Seitz, J. Gut microbiota alteration in adolescent anorexia nervosa does not normalize with short-term weight restoration. Int. J. Eat. Disord. 2021, 54, 969–980. [Google Scholar] [CrossRef]
- Zhao, W.; Kodancha, P.; Das, S. Gut Microbiome Changes in Anorexia Nervosa: A Comprehensive Review. Pathophysiology 2024, 31, 68–88. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Rios-Covian, D.; Huillet, E.; Auger, S.; Khazaal, S.; Bermúdez-Humarán, L.G.; Sokol, H.; Chatel, J.M.; Langella, P. Faecalibacterium: A bacterial genus with promising human health applications. FEMS Microbiol. Rev. 2023, 47, fuad039. [Google Scholar] [CrossRef] [PubMed]
Clinical Data | AN | HC | ||||
---|---|---|---|---|---|---|
Admission | Discharge | 1-Year Follow-Up | Baseline | 6 Month Follow-Up | 1-Year Follow-Up | |
n = 63 | n = 50 | n = 45 | n = 41 | n = 39 | n = 39 | |
Age (years) | 16.07 (1.81) | 16.31 (1.75) | 16.89 (1.81) | 16.32 (1.08) | 16.68 (1.09) | 17.35 (1.12) |
[12.00; 20.34] | [12.23; 19.91] | [13.10; 19.84] | [14.11; 18.46] | [14.44; 18.8] | [15.05; 19.42] | |
BMI (kg/m2) | 15.95 (2.08) | 18.92 (0.93) | 19.04 (1.44) | 20.67 (2.26) | 20.90 (2.16) | 21.20 (2.34) |
[12.5; 24.65] | [16.84; 20.96] | [15.85; 21.93] | [16.84; 26.07] | [16.89; 25.64] | [17.25; 25.94] | |
BMI-SDS (z-score) | −2.91 (1.74) | −0.95 (0.45) | −1.02 (0.7) | −0.36 (0.77) | −0.32 (0.73) | −0.29 (0.79) |
[−8.08; 0.70] | [−2.44; −0.2] | [−2.95; 0.25] | [−1.82; 1.15] | [−1.61; 1.05] | [−1.75; 1.2] | |
Pre-morbid weight BMI-SDS (z-score) | −0.38 (1.09) | |||||
[−4.24; 1.77] | ||||||
Illness duration (month) | 18.38 (15.22) | |||||
[1.23; 71.97] | ||||||
EDI-2 (total score) | 296.77 (58.46) | 285.8 (62.92) | 272.76 (55.15) | 180.88 (29.78) | 171.24 (25.55) | 184.87 (32.57) |
[158; 428] | [127; 415] | [156; 392] | [123; 236] | [127; 226] | [133; 253] | |
BDI-II (total score) | 24.18 (11.63) | 19.27 (13.34) | 17.24 (13.33) | 4.7 (4.05) | 3.24 (3.18) | 4.63 (3.45) |
[0; 47] | [0; 54] | [0; 53] | [0; 17] | [0; 12] | [0; 11] | |
Medication SSRI/neuroleptics | n = 3 | n = 25 | n = 18 | - | - | n = 4 |
n = 9 | n = 11 | n = 8 | - | - | - |
Core Taxa | HC | AN | Rank-Biserial Correlation | AN vs. HC (Admission) |
---|---|---|---|---|
Admission | Admission | Coefficient ρ | p-Value | |
Acinetobacter | 0.00 (0.25) [0.00; 3.00] | 0.00 (0.00) [0.00; 0.00] | −0.21 | <0.001 |
Anaerostipes | 24.50 (70.50) [10.00; 310.00] | 150.00 (295.00) [0.00; 1595.00] | 0.61 | <0.001 |
Anaerotruncus | 0.00 (0.00) [0.00; 1.00] | 0.00 (2.25) [0.00; 237.00] | 0.40 | 0.008 |
Bacteroides | 2407.50 (2003.75) [306.00; 5957.00] | 3173 (3599.25) [419.00; 6788.00] | 0.37 | 0.036 |
Bilophila | 0.00 (2.25) [0.00; 30.00] | 6.00 (8.25) [0.00; 25.00] | 0.48 | 0.005 |
Blautia | 52.50 (137.50) [8.00; 492.00] | 136.50 (209.50) [9.00; 695.00] | 0.37 | 0.034 |
Collinsella | 0.50 (6.00) [0.00; 41.00] | 5.50 (19.75) [0.00; 295.00] | 0.35 | 0.039 |
Desulfovibrio | 0.00 (0.00) [0.00; 0.00] | 0.00 (6.50) [0.00; 590.00] | 0.30 | 0.022 |
Dialister | 471.50 (680.25) [0.00; 1871.00] | 25.00 (157.25) [0.00; 2023.00] | −0.58 | <0.001 |
Eisenbergiella | 0.00 (0.00) [0.00; 0.00] | 0.00 (1.25) [0.00; 44.00] | 0.30 | 0.022 |
Erysipelotrichaceae_UCG_003 | 21.00 (69.75) [0.00; 159.00] | 129.00 (195.00) [0.00; 1195.00] | 0.54 | 0.002 |
Faecalibacterium | 610.00 (620.50) [88.00; 1207.00] | 285.00 (317.75) [13.00; 2207.00] | −0.35 | 0.044 |
Family XIII AD3011 group | 4.00 (6.25) [0.00; 11.00] | 8.00 (13.75) [0.00; 127.00] | 0.49 | 0.005 |
Family XIII UCG 001 | 4.00 (9.25) [0.00; 11.00] | 0.00 (3.00) [0.00; 15.00] | −0.34 | 0.037 |
Lachnospiraceae ND3007 group | 1.00 (9.50) [0.00; 27.00] | 12.50 (39.00) [0.00; 355.00] | 0.43 | 0.013 |
Legionella | 0.00 (0.00) [0.00; 4.00] | 0.00 (0.00) [0.00; 0.00] | −0.14 | 0.005 |
Limnobacter | 0.00 (1.25) [0.00; 6.00] | 0.00 (0.00) [0.00; 0.00] | −0.29 | <0.001 |
Ralstonia | 2.00 (4.50) [0.00; 18.00] | 0.00 (1.00) [0.00; 65.00] | −0.29 | 0.048 |
Ruminococcacaea UCG 003 | 29.00 (52.75) [2.00; 81.00] | 3.00 (15.00) [0.00; 115.00] | −0.66 | <0.001 |
Ruminococcacaea UCG 009 | 0.00 (1.00) [0.00; 2.00] | 0.00 (0.00) [0.00; 24.00] | −0.21 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Käver, L.; Voelz, C.; Specht, H.E.; Thelen, A.C.; Keller, L.; Dahmen, B.; Andreani, N.A.; Tenbrock, K.; Biemann, R.; Borucki, K.; et al. Cytokine and Microbiome Changes in Adolescents with Anorexia Nervosa at Admission, Discharge, and One-Year Follow-Up. Nutrients 2024, 16, 1596. https://doi.org/10.3390/nu16111596
Käver L, Voelz C, Specht HE, Thelen AC, Keller L, Dahmen B, Andreani NA, Tenbrock K, Biemann R, Borucki K, et al. Cytokine and Microbiome Changes in Adolescents with Anorexia Nervosa at Admission, Discharge, and One-Year Follow-Up. Nutrients. 2024; 16(11):1596. https://doi.org/10.3390/nu16111596
Chicago/Turabian StyleKäver, Larissa, Clara Voelz, Hannah E. Specht, Anna C. Thelen, Lara Keller, Brigitte Dahmen, Nadia Andrea Andreani, Klaus Tenbrock, Ronald Biemann, Katrin Borucki, and et al. 2024. "Cytokine and Microbiome Changes in Adolescents with Anorexia Nervosa at Admission, Discharge, and One-Year Follow-Up" Nutrients 16, no. 11: 1596. https://doi.org/10.3390/nu16111596
APA StyleKäver, L., Voelz, C., Specht, H. E., Thelen, A. C., Keller, L., Dahmen, B., Andreani, N. A., Tenbrock, K., Biemann, R., Borucki, K., Dempfle, A., Baines, J. F., Beyer, C., Herpertz-Dahlmann, B., Trinh, S., & Seitz, J. (2024). Cytokine and Microbiome Changes in Adolescents with Anorexia Nervosa at Admission, Discharge, and One-Year Follow-Up. Nutrients, 16(11), 1596. https://doi.org/10.3390/nu16111596