Eating Patterns, Chronotypes, and Their Relationship with Metabolic Health in the Early Postpartum Period in Women after Gestational Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Inclusion and Exclusion Criteria
3. Measurements
3.1. Sociodemographic and Medical Characteristics
3.1.1. Predictors
Assessment of the Eating Patterns
Assessment of the Chronotype
Assessment of Sleep
3.1.2. Outcomes Measures
Anthropometric Data
Metabolic Health Variables
3.2. Data Analysis
4. Results
4.1. Characteristics of Study Participants
Variable | All Women |
---|---|
Age (years) | 33.6 ± 4.6 |
Educational level | |
Obligatory education uncompleted | 6 (3.9%) |
Obligatory education completed | 25 (16.5%) |
Upper secondary school diploma | 16 (10.5%) |
General and professional formation | 29 (19.1%) |
Higher formation (HES, university) | 76 (50.00%) |
Ethnic origin | |
Switzerland | 78 (32.0%) |
Western Europe | 50 (20.5%) |
Eastern Europe | 34 (13.9%) |
Africa | 34 (13.9%) |
Asia | 32 (13.1%) |
Latin America | 13 (5.3%) |
North of America | 3 (1.2%) |
Family history of Diabetes Mellitus | |
1st degree | 80 (35.6%) |
2nd degree | 52 (23.1%) |
No | 93 (41.3%) |
History of GDM 1 | |
Yes | 38 (24.4%) |
No | 118 (75.6%) |
Smoking status during pregnancy | |
Yes | 22 (9.4%) |
No | 209 (88.9%) |
Stopped since knowledge of pregnancy | 4 (1.7%) |
Alcohol consumption | |
Occasionally | 17 (7.4%) |
No | 213 (92.6%) |
Gravida | |
1 | 81 (33.2%) |
2 | 68 (27.9%) |
≥3 | 95 (38.9%) |
Parity | |
0 | 111 (45.5%) |
1 | 79 (32.4%) |
≥2 | 54 (22.1%) |
Glucose-lowering medical treatment during pregnancy | |
None | 76 (36.0%) |
Metformin | 1 (0.5%) |
Insulin | 133 (63.0%) |
Insulin and metformin | 1 (0.5%) |
Weight before pregnancy (kg) | 71.3 ± 16.4 |
BMI before pregnancy (kg/m2) | 26.4 ± 5.7 |
Breastfeeding at 6–8 weeks postpartum | |
No | 31 (14.8%) |
Yes | 178 (85.2%) |
4.2. Relationship between Eating Patterns, the Chronotype, and Metabolic Health in the Early Postpartum
BMI (kg/m2) (β [95% CI]) | HbA1c (%) (β [95% CI]) | Fasting Glucose (mmol/L) (β [95% CI])-Model 1 | Fasting Glucose (mmol/L) (β [95% CI])-Model 2 | |
Time of the first food intake (h) | 0.031 [−0.340, 0.402] | −0.002 [−0.032, 0.028] | 0.050 [0.012, 0.087] * | 0.050 [0.005, 0.095] * 1,2,3 |
Time of the first calorie intake (h) | 0.152 [−0.282, 0.586] | −0.003 [−0.038, 0.032] | 0.076 [0.032, 0.119] * | 0.0513 [0.007, 0.096] * 1,2,3 |
Time of the last main meal (h) | −0.039 [−0.461, 0.383] | 0.006 [−0.029, 0.040] | 0.001 [−0.042, 0.045] | N/A |
Time of the last food intake (h) | 0.022 [−0.345, 0.390] | 0.030 [0.001, 0.060] * | −0.007 [−0.045, 0.031] | N/A |
Time of the last calorie intake (h) | 0.089 [−0.271, 0.449] | 0.026 [−0.003, 0.054] | 0.017 [−0.020, 0.055] | N/A |
Eating duration (h) | −0.001 [−0.270, 0.267] | 0.016 [−0.005, 0.038] | −0.031 [−0.058, −0.003] * | −0.014 [−0.049, 0.021] 1,2,3 |
Number of breakfasts per week | −0.300 [−0.620, 0.019] | −0.011 [−0.037, 0.015] | −0.041 [−0.074, −0.008] * | −0.030 [−0.067, 0.008] 1,2,3 |
Number of food intakes per day | −0.032 [−0.425, 0.361] | 0.021 [−0.010, 0.052] | 0.0003 [−0.040, 0.041] | N/A |
Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|
Variable | Coef. | 95% Conf. Interval | p-Value | Coef. | 95% Conf. Interval | p-Value |
Metabolic health | ||||||
BMI (kg/m2) | 0.016 | −0.071, 0.103 | 0.721 | N/A | ||
HbA1c (%) | 0.003 | −0.004, 0.010 | 0.366 | N/A | ||
Fasting glucose (mmol/L) | −0.004 | −0.013, 0.005 | 0.392 | N/A | ||
Eating patterns | ||||||
Time of the first food intake (h) | −0.076 | −0.101, −0.051 | <0.001 | −0.052 1,2 | −0.079, −0.025 1,2 | <0.001 1,2 |
Time of the first calorie intake (h) | −0.059 | −0.081, −0.038 | <0.001 | −0.032 1,2 | −0.055, −0.009 1,2 | 0.007 1,2 |
Time of the last main meal (h) | −0.034 | −0.053, −0.014 | 0.001 | −0.023 2 | −0.044, −0.002 2 | 0.032 2 |
Time of the last food intake (h) | −0.042 | −0.065, −0.019 | <0.001 | −0.032 2,3 | −0.057, −0.008 2,3 | 0.010 2,3 |
Time of the last calorie intake (h) | −0.039 | −0.063, −0.015 | 0.001 | −0.014 2 | −0.036, 0.008 2 | 0.212 2 |
Eating duration (h) | 0.034 | 0.00004, 0.067 | 0.050 | N/A | ||
Number of breakfasts per week | 0.061 | 0.031, 0.091 | <0.001 | 0.054 2,4 | 0.017, 0.090 2,4 | 0.004 2,4 |
Number of food intakes per day | 0.021 | −0.005, 0.047 | 0.108 | N/A |
4.3. Morningness–Eveningness Questionnaire (MEQ) Total Score and Eating Patterns
4.4. Supplementary Analysis: “Morning” or ”Non-Morning” Chronotype and Metabolic Health
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Non-Morning Chronotype (N = 149) | Morning Chronotype (N = 123) | p-Value |
---|---|---|---|
Age (years) | 33.6 ± 4.5 | 33.8 ± 4.8 | 0.764 |
Ethnic origin | 0.927 | ||
Switzerland | 41 (34.8%) | 33 (35.1%) | |
Western Europe | 26 (22.0%) | 19 (20.2%) | |
Eastern Europe | 16 (13.6%) | 11 (11.7%) | |
Africa | 13 (11.0%) | 13 (13.8%) | |
Asia | 14 (11.9%) | 12 (12.8%) | |
Latin America | 5 (4.2%) | 6 (6.4%) | |
North of America | 3 (2.5%) | 0 (0%) | |
Family history of Diabetes Mellitus | 0.199 | ||
1st degree | 42 (37.5%) | 24 (28.9%) | |
2nd degree | 23 (20.5%) | 20 (24.1%) | |
No | 47 (42.0%) | 39 (47.0%) | |
History of GDM 1 | 0.756 | ||
Yes | 17 (25.4%) | 13 (21.0%) | |
No | 50 (74.6%) | 49 (79.0%) | |
Smoking status during pregnancy | 0.121 | ||
Yes | 12 (10.4%) | 4 (4.5%) | |
No | 102 (88.7%) | 81 (92.0%) | |
Stopped since knowledge of pregnancy | 1 (0.9%) | 3 (3.5%) | |
Alcohol consumption | 0.282 | ||
Occasionally | 8 (7.0%) | 7 (8.1%) | |
No | 106 (93.0%) | 79 (91.9%) | |
Gravida | 0.503 | ||
1 | 47 (39.8%) | 29 (30.9%) | |
2 | 32 (27.1%) | 27 (28.7%) | |
≥3 | 39 (33.1%) | 38 (40.4%) | |
Parity | 0.386 | ||
0 | 64 (54.2%) | 40 (42.6%) | |
1 | 35 (29.7%) | 35 (37.2%) | |
≥2 | 19 (16.1%) | 19 (20.2%) | |
Glucose-lowering medical treatment during pregnancy | 0.980 | ||
None | 38 (36.9%) | 31 (39.2%) | |
Metformin | 1 (1.0%) | 0 (0%) | |
Insulin | 63 (61.1%) | 48 (60.8%) | |
Insulin and metformin | 1 (1.0%) | 0 (0%) |
Variable | Non-Morning Chronotype (N = 149) | Morning Chronotype (N = 123) | Mean Difference | p-Value |
---|---|---|---|---|
Metabolic health and MEQ score | ||||
MEQ total score | 51.0 ± 5.9 | 64.3 ± 3.8 | −13.2 ± 8.3 | <0.001 |
BMI (kg/m2) | 27.6 ± 5.5 | 27.1 ± 5.0 | 0.5 ± 5.3 | 0.50 |
HbA1c (%) | 5.3 ± 0.4 | 5.3 ± 0.4 | 0.02 ± 0.4 | 0.70 |
Fasting glucose (mmol/L) | 5.1 ± 0.6 | 4.9 ± 0.4 | 0.1 ± 0.5 | 0.10 |
Eating patterns | ||||
Time of the first food intake (h) | 9.4 ± 1.9 | 8.6 ± 1.7 | 0.9 ± 1.8 | <0.001 |
Time of the first calorie intake (h) | 8.9 ± 1.4 | 8.2 ± 1.7 | 0.7 ± 1.6 | <0.001 |
Time of the last main meal (h) | 20.0 ± 1.3 | 19.7 ± 1.5 | 0.4 ± 1.4 | 0.025 |
Time of the last food intake (h) | 21.3 ± 1.7 | 20.8 ± 1.5 | 0.5 ± 1.6 | 0.019 |
Time of the last calorie intake (h) | 21.5 ± 1.7 | 21.1 ± 1.6 | −0.5 ± 1.7 | 0.020 |
Eating duration (h) | 11.9 ± 2.4 | 12.3 ± 2.2 | −0.4 ± 2.3 | 0.17 |
Number of breakfasts per week | 5.2 ± 2.4 | 6.0 ± 1.7 | −0.8 ± 2.1 | 0.002 |
Number of food intake per day | 4.0 ± 1.7 | 4.2 ± 1.9 | −0.2 ± 1.8 | 0.46 |
Sleep | ||||
Rise time (h) | 7.5 ± 1.5 | 6.8 ± 1.4 | 0.7 ± 1.5 | <0.001 |
Bedtime (h) | 23.1 ± 1.3 | 22.5 ± 1.2 | 0.6 ± 1.3 | <0.001 |
Sleep quality (subscale 1) * | 1.6 ± 0.8 | 1.3 ± 0.9 | 0.4 ± 0.9 | <0.001 |
Sleep duration (h) | 5.7 ± 1.4 | 6.1 ± 1.5 | −0.4 ± 1.5 | 0.032 |
Sleep duration (subscale 3) * | 1.8 ± 0.9 | 1.6 ± 0.9 | 0.2 ± 0.9 | 0.06 |
Sleep efficiency (%) | 68.2 ± 16.8 | 72.8 ± 16.0 | −4.6 ± 16.5 | 0.025 |
Sleep efficiency (subscale 4) * | 1.9 ± 1.1 | 1.6 ± 1.2 | 0.3 ± 1.2 | 0.053 |
Appendix A.1. Timing of Food intake (TFI) Questionnaire
References
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. Understanding meal patterns: Definitions, methodology and impact on nutrient intake and diet quality. Nutr. Res. Rev. 2015, 28, 1–21. [Google Scholar] [CrossRef]
- Flanagan, A.; Bechtold, D.A.; Pot, G.K.; Johnston, J.D. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J. Neurochem. 2021, 157, 53–72. [Google Scholar] [CrossRef]
- van der Merwe, C.; Münch, M.; Kruger, R. Chronotype Differences in Body Composition, Dietary Intake and Eating Behavior Outcomes: A Scoping Systematic Review. Adv. Nutr. 2022, 13, 2357–2405. [Google Scholar] [CrossRef]
- Roenneberg, T.; Merrow, M. The Circadian Clock and Human Health. Curr. Biol. 2016, 26, R432–R443. [Google Scholar] [CrossRef]
- Færch, K.; Quist, J.S.; Hulman, A.; Witte, D.R.; Tabak, A.G.; Brunner, E.J.; Kivimäki, M.; Jørgensen, M.E.; Panda, S.; Vistisen, D. Prospective association between late evening food consumption and risk of prediabetes and diabetes: The Whitehall II cohort study. Diabet. Med. 2019, 36, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Quist, J.S.; Blond, M.B.; Færch, K.; Ewers, B. Late-evening food intake is highly prevalent among individuals with type 2 diabetes. Nutr. Res. 2021, 87, 91–96. [Google Scholar] [CrossRef]
- Almoosawi, S.; Vingeliene, S.; Karagounis, L.G.; Pot, G.K. Chrono-nutrition: A review of current evidence from observational studies on global trends in time-of-day of energy intake and its association with obesity. Proc. Nutr. Soc. 2016, 75, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Palomar-Cros, A.; Srour, B.; Andreeva, V.A.; Fezeu, L.K.; Bellicha, A.; Kesse-Guyot, E.; Hercberg, S.; Romaguera, D.; Kogevinas, M.; Touvier, M. Associations of meal timing, number of eating occasions and night-time fasting duration with incidence of type 2 diabetes in the NutriNet-Santé cohort. Int. J. Epidemiol. 2023, 52, 1486–1497. [Google Scholar] [CrossRef]
- Ma, Y. Association between Eating Patterns and Obesity in a Free-living US Adult Population. Am. J. Epidemiol. 2003, 158, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Świątkiewicz, I.; Woźniak, A.; Taub, P.R. Time-Restricted Eating and Metabolic Syndrome: Current Status and Future Perspectives. Nutrients 2021, 13, 221. [Google Scholar] [CrossRef]
- Makarem, N.; Paul, J.; Giardina, E.G.V.; Liao, M.; Aggarwal, B. Evening chronotype is associated with poor cardiovascular health and adverse health behaviors in a diverse population of women. Chronobiol. Int. 2020, 37, 673–685. [Google Scholar] [CrossRef]
- Kianersi, S.; Liu, Y.; Guasch-Ferré, M.; Redline, S.; Schernhammer, E.; Sun, Q.; Huang, T. Chronotype, Unhealthy Lifestyle, and Diabetes Risk in Middle-Aged U.S. Women. Ann. Intern. Med. 2023, 176, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.H.; Yun, C.-H.; Ahn, J.H.; Suh, S.; Cho, H.J.; Lee, S.K.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Choi, K.M.; et al. Evening Chronotype Is Associated with Metabolic Disorders and Body Composition in Middle-Aged Adults. J. Clin. Endocrinol. Metab. 2015, 100, 1494–1502. [Google Scholar] [CrossRef]
- Lain, K.Y.; Catalano, P.M. Metabolic Changes in Pregnancy. Clin. Obstet. Gynecol. 2007, 50, 938–948. [Google Scholar] [CrossRef]
- Loy, S.L.; Loo, R.S.X.; Godfrey, K.M.; Chong, Y.S.; Shek, L.P.C.; Tan, K.H.; Chong, M.F.F.; Chan, J.K.Y.; Yap, F. Chrononutrition during Pregnancy: A Review on Maternal Night-Time Eating. Nutrients 2020, 12, 2783. [Google Scholar] [CrossRef]
- Gontijo, C.A.; Balieiro, L.C.T.; Teixeira, G.P.; Fahmy, W.M.; Crispim, C.A.; Maia, Y.C.d.P. Higher energy intake at night effects daily energy distribution and contributes to excessive weight gain during pregnancy. Nutrition 2020, 74, 110756. [Google Scholar] [CrossRef]
- Loy, S.L.; Chan, J.K.Y.; Wee, P.H.; Colega, M.T.; Cheung, Y.B.; Godfrey, K.M.; Kwek, K.; Saw, S.M.; Chong, Y.-S.; Natarajan, P.; et al. Maternal Circadian Eating Time and Frequency Are Associated with Blood Glucose Concentrations during Pregnancy. J. Nutr. 2017, 147, 70–77. [Google Scholar] [CrossRef]
- Deniz, Ç.D.; Özler, S.; Sayın, F.K.; Eryılmaz, M.A. Associations between night eating syndrome and metabolic parameters in pregnant women. J. Turk. Soc. Obstet. Gynecol. 2019, 16, 107–111. [Google Scholar] [CrossRef]
- Balieiro, L.C.T.; Gontijo, C.A.; Marot, L.P.; Teixeira, G.P.; Fahmy, W.M.; Maia, Y.C.d.P.; Crispim, C.A. Is chronotype associated with dietary intake and weight gain during pregnancy? A prospective and longitudinal study. Nutrition 2022, 94, 111530. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, G.P.; Balieiro, L.C.T.; Gontijo, C.A.; Fahmy, W.M.; Maia, Y.C.P.; Crispim, C.A. The association between chronotype, food craving and weight gain in pregnant women. J. Human. Nutr. Diet. 2020, 33, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, Z.M.; Contador, F.; Tawfiq, A.; Adamo, K.B.; Gaudet, L. Gestational weight gain and medical outcomes of pregnancy. Obstet. Med. 2015, 8, 133–137. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46 (Suppl. S1), S19–S40. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, L.; Casas, J.P.; Hingorani, A.D.; Williams, D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet 2009, 373, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Kramer, C.K.; Campbell, S.; Retnakaran, R. Gestational diabetes and the risk of cardiovascular disease in women: A systematic review and meta-analysis. Diabetologia 2019, 62, 905–914. [Google Scholar] [CrossRef]
- Facanha, C.F.S.; Alencar, V.S.; Machado, P.S.; Macêdo, R.B.L.; de Bruin, P.F.C.; Forti, A.C.; Rocha, T.M.; de Bruin, V.M.S. Morningness/eveningness in gestational diabetes mellitus: Clinical characteristics and maternal-neonatal outcomes. Arch. Endocrinol. Metab. 2022, 67, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Messika, A.; Toledano, Y.; Hadar, E.; Shmuel, E.; Tauman, R.; Shamir, R.; Froy, O. Relationship among chrononutrition, sleep, and glycemic control in women with gestational diabetes mellitus: A randomized controlled trial. Am. J. Obstet. Gynecol. MFM 2022, 4, 100660. [Google Scholar] [CrossRef]
- Reutrakul, S.; Van Cauter, E. Interactions between sleep, circadian function, and glucose metabolism: Implications for risk and severity of diabetes. Ann. N. Y. Acad. Sci. 2014, 1311, 151–173. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Zaidi, N.; Wroblewski, K.; Kay, H.H.; Ismail, M.; Ehrmann, D.A.; Van Cauter, E. Sleep Disturbances and Their Relationship to Glucose Tolerance in Pregnancy. Diabetes Care 2011, 34, 2454–2457. [Google Scholar] [CrossRef]
- Chaput, J.P.; McHill, A.W.; Cox, R.C.; Broussard, J.L.; Dutil, C.; da Costa, B.G.G.; Sampasa-Kanyinga, H.; Sampasa-Kanyinga, K.P., Jr. The role of insufficient sleep and circadian misalignment in obesity. Nat. Rev. Endocrinol. 2023, 19, 82–97. [Google Scholar] [CrossRef]
- Poggiogalle, E.; Jamshed, H.; Peterson, C.M. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 2018, 84, 11–27. [Google Scholar] [CrossRef]
- Scheer, F.A.J.L.; Hilton, M.F.; Mantzoros, C.S.; Shea, S.A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. USA 2009, 106, 4453–4458. [Google Scholar] [CrossRef]
- Kroenke, C.H.; Spiegelman, D.; Manson, J.; Schernhammer, E.S.; Colditz, G.A.; Kawachi, I. Work Characteristics and Incidence of Type 2 Diabetes in Women. Am. J. Epidemiol. 2006, 165, 175–183. [Google Scholar] [CrossRef]
- Chaput, J.-P.; Dutil, C.; Featherstone, R.; Ross, R.; Giangregorio, L.; Saunders, T.J.; Janssen, I.; Poitras, V.J.; Kho, M.E.; Ross-White, A.; et al. Sleep duration and health in adults: An overview of systematic reviews. Appl. Physiol. Nutr. Metab. 2020, 45 (Suppl. S2), S218–S231. [Google Scholar] [CrossRef]
- Loy, S.L.; Cheung, Y.B.; Colega, M.T.; Chia, A.; Han, C.Y.; Godfrey, K.M.; Chong, Y.-S.; Shek, L.P.-C.; Tan, K.H.; Lek, N.; et al. Associations of Circadian Eating Pattern and Diet Quality with Substantial Postpartum Weight Retention. Nutrients 2019, 11, 2686. [Google Scholar] [CrossRef]
- Lee, K. Parity and sleep patterns during and after pregnancy. Obstet. Gynecol. 2000, 95, 14–18. [Google Scholar]
- Matsumoto, K.; Shinkoda, H.; Kang, M.J.; Seo, Y.J. Longitudinal Study of Mothers’ Sleep-Wake Behaviors and Circadian Time Patterns from Late Pregnancy to Postpartum—Monitoring of Wrist Actigraphy and Sleep Logs. Biol. Rhythm. Res. 2003, 34, 265–278. [Google Scholar] [CrossRef]
- Figueiredo, B.; Dias, C.C.; Brandão, S.; Canário, C.; Nunes-Costa, R. Breastfeeding and postpartum depression: State of the art review. J. Pediatr. 2013, 89, 332–338. [Google Scholar] [CrossRef]
- Gallaher, K.G.H.; Slyepchenko, A.; Frey, B.N.; Urstad, K.; Dørheim, S.K. The Role of Circadian Rhythms in Postpartum Sleep and Mood. Sleep. Med. Clin. 2018, 13, 359–374. [Google Scholar] [CrossRef]
- Verma, S.; Pinnington, D.M.; Manber, R.; Bei, B. Sleep–wake timing and chronotype in perinatal periods: Longitudinal changes and associations with insomnia symptoms, sleep-related impairment, and mood from pregnancy to 2 years postpartum. J. Sleep Res. 2023, e14021. [Google Scholar] [CrossRef]
- International Association of Diabetes and Pregnancy Study Groups. Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef]
- Horne, J.A.; Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Quansah, D.Y.; Gross, J.; Gilbert, L.; Helbling, C.; Horsch, A.; Puder, J.J. Intuitive eating is associated with weight and glucose control during pregnancy and in the early postpartum period in women with gestational diabetes mellitus (GDM): A clinical cohort study. Eat. Behav. 2019, 34, 101304. [Google Scholar] [CrossRef]
- Jeppsson, J.-O.; Kobold, U.; Barr, J.; Finke, A.; Hoelzel, W.; Hoshino, T.; Miedema, K.; Mosca, A.; Mauri, P.; Paroni, R.; et al. Approved IFCC Reference Method for the Measurement of HbA1c in Human Blood. Clin. Chem. Lab. Med. 2002, 40, 78–89. [Google Scholar] [CrossRef]
- Hood, M.M.; Reutrakul, S.; Crowley, S.J. Night eating in patients with type 2 diabetes. Associations with glycemic control, eating patterns, sleep, and mood. Appetite 2014, 79, 91–96. [Google Scholar] [CrossRef]
- Tsitsou, S.; Zacharodimos, N.; Poulia, K.A.; Karatzi, K.; Dimitriadis, G.; Papakonstantinou, E. Effects of Time-Restricted Feeding and Ramadan Fasting on Body Weight, Body Composition, Glucose Responses, and Insulin Resistance: A Systematic Review of Randomized Controlled Trials. Nutrients 2022, 14, 4778. [Google Scholar] [CrossRef]
- Odegaard, A.O.; Jacobs, D.R.; Steffen, L.M.; Van Horn, L.; Ludwig, D.S.; Pereira, M.A. Breakfast Frequency and Development of Metabolic Risk. Diabetes Care 2013, 36, 3100–3106. [Google Scholar] [CrossRef]
- Reutrakul, S.; Hood, M.M.; Crowley, S.J.; Morgan, M.K.; Teodori, M.; Knutson, K.L. The Relationship Between Breakfast Skipping, Chronotype, and Glycemic Control in Type 2 Diabetes. Chronobiol. Int. 2014, 31, 64–71. [Google Scholar] [CrossRef]
- Wehrens, S.M.T.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal Timing Regulates the Human Circadian System. Curr. Biol. 2017, 27, 1768–1775.e3. [Google Scholar] [CrossRef]
- Kalsbeek, A.; la Fleur, S.; Fliers, E. Circadian control of glucose metabolism. Mol. Metab. 2014, 3, 372–383. [Google Scholar] [CrossRef]
- Bandín, C.; Scheer, F.A.J.L.; Luque, A.J.; Ávila-Gandía, V.; Zamora, S.; Madrid, J.A.; Gómez-Abellán, P.; Garaulet, M. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: A randomized, crossover trial. Int. J. Obes. 2015, 39, 828–833. [Google Scholar] [CrossRef]
- Zhang, R.; Cai, X.; Lin, C.; Yang, W.; Lv, F.; Wu, J.; Ji, L. The association between metabolic parameters and evening chronotype and social jetlag in non-shift workers: A meta-analysis. Front. Endocrinol. 2022, 13, 1008820. [Google Scholar] [CrossRef]
- Lehnkering, H.; Siegmund, R. Influence of Chronotype, Season, and Sex of Subject on Sleep Behavior of Young Adults. Chronobiol. Int. 2007, 24, 875–888. [Google Scholar] [CrossRef]
- Leonhard, C.; Randler, C. In Sync with the Family: Children and Partners Influence the Sleep-Wake Circadian Rhythm and Social Habits of Women. Chronobiol. Int. 2009, 26, 510–525. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesniara-Stachon, A.; Treviño Montemayor, M.; Collet, T.-H.; Andrey, M.; Quansah, D.Y.; Puder, J.J. Eating Patterns, Chronotypes, and Their Relationship with Metabolic Health in the Early Postpartum Period in Women after Gestational Diabetes Mellitus. Nutrients 2024, 16, 1588. https://doi.org/10.3390/nu16111588
Lesniara-Stachon A, Treviño Montemayor M, Collet T-H, Andrey M, Quansah DY, Puder JJ. Eating Patterns, Chronotypes, and Their Relationship with Metabolic Health in the Early Postpartum Period in Women after Gestational Diabetes Mellitus. Nutrients. 2024; 16(11):1588. https://doi.org/10.3390/nu16111588
Chicago/Turabian StyleLesniara-Stachon, Anna, Mariana Treviño Montemayor, Tinh-Hai Collet, Magali Andrey, Dan Yedu Quansah, and Jardena J. Puder. 2024. "Eating Patterns, Chronotypes, and Their Relationship with Metabolic Health in the Early Postpartum Period in Women after Gestational Diabetes Mellitus" Nutrients 16, no. 11: 1588. https://doi.org/10.3390/nu16111588
APA StyleLesniara-Stachon, A., Treviño Montemayor, M., Collet, T. -H., Andrey, M., Quansah, D. Y., & Puder, J. J. (2024). Eating Patterns, Chronotypes, and Their Relationship with Metabolic Health in the Early Postpartum Period in Women after Gestational Diabetes Mellitus. Nutrients, 16(11), 1588. https://doi.org/10.3390/nu16111588