A Comparison and Safety Evaluation of Micellar versus Standard Vitamin D3 Oral Supplementation in a Randomized, Double-Blind Human Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment
2.2. Randomization and Blinding
2.3. Study Protocol
2.4. Study Treatments
- -
- LMD: LipoMicel® formulation was composed of Vitamin D3 (cholecalciferol) encapsulated with medium-chain triglycerides. Its micellular membrane contains food-grade excipients (patent pending). One capsule contained either 1000 IU or 2500 IU Vitamin D3 (cholecalciferol), as well as gelatin, glycerin, purified water (softgel), MCT, cocoa, xylitol, MSM (methylsulfonylmethane), and organic flaxseed oil.
- -
- STD: Standard/reference formulation was composed of Vitamin D3 (cholecalciferol). One capsule contained either 1000 IU or 2500 IU Vitamin D3 (cholecalciferol), as well as gelatin, glycerin, purified water (softgel), and organic flaxseed oil.
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Pharmacokinetic Parameters
3.3. Changes in Safety Blood Markers
3.4. Adverse Events
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mungai, L.N.W.; Mohammed, Z.; Maina, M.; Anjumanara, O. Vitamin D Review: The Low Hanging Fruit for Human Health. J. Nutr. Metab. 2021, 2021, 6335681. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Farruggia, M.; Veronese, N.; Barbagallo, M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites 2021, 11, 255. [Google Scholar] [CrossRef]
- DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 2004, 80, 1689S–1696S. [Google Scholar] [CrossRef] [PubMed]
- Maurya, V.K.; Aggarwal, M. Factors influencing the absorption of vitamin D in GIT: An overview. J. Food Sci. Technol. 2017, 54, 3753–3765. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef]
- Tang, J.C.Y.; Jackson, S.; Walsh, N.P.; Greeves, J.; Fraser, W.D. The dynamic relationships between the active and catabolic vitamin D metabolites, their ratios, and associations with PTH. Sci. Rep. 2019, 9, 6974. [Google Scholar] [CrossRef]
- Zhu, J.; DeLuca, H.F. Vitamin D 25-hydroxylase—Four decades of searching, are we there yet? Arch. Biochem. Biophys. 2012, 523, 30–36. [Google Scholar] [CrossRef]
- MacLaughlin, J.; Holick, M.F. Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Investig. 1985, 76, 1536–1538. [Google Scholar] [CrossRef] [PubMed]
- de Santana, K.V.S.; Oliver, S.L.; Mendes, M.M.; Lanham-New, S.; Charlton, K.E.; Ribeiro, H. Association between vitamin D status and lifestyle factors in Brazilian women: Implications of Sun Exposure Levels, Diet, and Health. EClinicalMedicine 2022, 47, 101400. [Google Scholar] [CrossRef] [PubMed]
- Kennel, K.A.; Drake, M.T.; Hurley, D.L. Vitamin D deficiency in adults: When to test and how to treat. Mayo Clin. Proc. 2010, 85, 752–757; quiz 757–758. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef] [PubMed]
- Crafa, A.; Cannarella, R.; Condorelli, R.A.; Mongioì, L.M.; Barbagallo, F.; Aversa, A.; La Vignera, S.; Calogero, A.E. Influence of 25-hydroxy-cholecalciferol levels on SARS-CoV-2 infection and COVID-19 severity: A systematic review and meta-analysis. EClinicalMedicine 2021, 37, 100967. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Dietary Reference Intakes Tables: Reference Values for Vitamins. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/healthy-eating/dietary-reference-intakes/tables/reference-values-vitamins.html (accessed on 24 January 2024).
- Burt, L.A.; Billington, E.O.; Rose, M.S.; Raymond, D.A.; Hanley, D.A.; Boyd, S.K. Effect of High-Dose Vitamin D Supplementation on Volumetric Bone Density and Bone Strength: A Randomized Clinical Trial. JAMA 2019, 322, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Billington, E.O.; Burt, L.A.; Plett, R.; Rose, M.S.; Boyd, S.K.; Hanley, D.A. Effect of high-dose vitamin D supplementation on peripheral arterial calcification: Secondary analysis of a randomized controlled trial. Osteoporos. Int. 2020, 31, 2141–2150. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J.B. The health effects of vitamin D supplementation: Evidence from human studies. Nat. Rev. Endocrinol. 2022, 18, 96–110. [Google Scholar] [CrossRef]
- Bouillon, R. Safety of High-Dose Vitamin D Supplementation. J. Clin. Endocrinol. Metab. 2020, 105, dgz282. [Google Scholar] [CrossRef]
- Billington, E.O.; Burt, L.A.; Rose, M.S.; Davison, E.M.; Gaudet, S.; Kan, M.; Boyd, S.K.; Hanley, D.A. Safety of High-Dose Vitamin D Supplementation: Secondary Analysis of a Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2020, 105, dgz212. [Google Scholar] [CrossRef] [PubMed]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hyppönen, E.; Berry, J.; Vieth, R.; et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Logan, V.F.; Gray, A.R.; Peddie, M.C.; Harper, M.J.; Houghton, L.A. Long-term vitamin D3 supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. Br. J. Nutr. 2013, 109, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, R.E.; Tangpricha, V. Evaluation of vehicle substances on vitamin D bioavailability: A systematic review. Mol. Nutr. Food Res. 2010, 54, 1055–1061. [Google Scholar] [CrossRef]
- Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D bioavailability: State of the art. Crit. Rev. Food Sci. Nutr. 2015, 55, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Asfour, M.H.; Abd El-Alim, S.H.; Kassem, A.A.; Salama, A.; Gouda, A.S.; Nazim, W.S.; Nashaat, N.H.; Hemimi, M.; Abdel Meguid, N. Vitamin D3-Loaded Nanoemulsions as a Potential Drug Delivery System for Autistic Children: Formulation Development, Safety, and Pharmacokinetic Studies. AAPS PharmSciTech 2023, 24, 58. [Google Scholar] [CrossRef] [PubMed]
- Żurek, G.; Przybyło, M.; Witkiewicz, W.; Langner, M. Novel Approach for the Approximation of Vitamin D3 Pharmacokinetics from In Vivo Absorption Studies. Pharmaceutics 2023, 15, 783. [Google Scholar] [CrossRef] [PubMed]
- Mentaverri, R.; Souberbielle, J.-C.; Brami, G.; Daniel, C.; Fardellone, P. Pharmacokinetics of a New Pharmaceutical Form of Vitamin D3 100,000 IU in Soft Capsule. Nutrients 2019, 11, 703. [Google Scholar] [CrossRef]
- Glowka, E.; Stasiak, J.; Lulek, J. Drug Delivery Systems for Vitamin D Supplementation and Therapy. Pharmaceutics 2019, 11, 347. [Google Scholar] [CrossRef]
- Marwaha, R.K.; Dabas, A. Bioavailability of nanoemulsion formulations vs conventional fat soluble preparations of cholecalciferol (D3)—An overview. J. Clin. Orthop. Trauma 2019, 10, 1094–1096. [Google Scholar] [CrossRef] [PubMed]
- Wylon, K.; Drozdenko, G.; Krannich, A.; Heine, G.; Dölle, S.; Worm, M. Pharmacokinetic Evaluation of a Single Intramuscular High Dose versus an Oral Long-Term Supplementation of Cholecalciferol. PLoS ONE 2017, 12, e0169620. [Google Scholar] [CrossRef] [PubMed]
- Meekins, M.E.; Oberhelman, S.S.; Lee, B.R.; Gardner, B.M.; Cha, S.S.; Singh, R.J.; Pettifor, J.M.; Fischer, P.R.; Thacher, T.D. Pharmacokinetics of daily versus monthly vitamin D3 supplementation in non-lactating women. Eur. J. Clin. Nutr. 2014, 68, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Rahme, M.; Sharara, S.L.; Baddoura, R.; Habib, R.H.; Halaby, G.; Arabi, A.; Singh, R.J.; Kassem, M.; Mahfoud, Z.; Hoteit, M.; et al. Impact of Calcium and Two Doses of Vitamin D on Bone Metabolism in the Elderly: A Randomized Controlled Trial. J. Bone Miner. Res. 2017, 32, 1486–1495. [Google Scholar] [CrossRef]
- Fassio, A.; Adami, G.; Rossini, M.; Giollo, A.; Caimmi, C.; Bixio, R.; Viapiana, O.; Milleri, S.; Gatti, M.; Gatti, D. Pharmacokinetics of Oral Cholecalciferol in Healthy Subjects with Vitamin D Deficiency: A Randomized Open-Label Study. Nutrients 2020, 12, 1553. [Google Scholar] [CrossRef] [PubMed]
- Jones, G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 2008, 88, 582S–586S. [Google Scholar] [CrossRef] [PubMed]
- Seamans, K.M.; Cashman, K.D. Existing and potentially novel functional markers of vitamin D status: A systematic review. Am. J. Clin. Nutr. 2009, 89, 1997S–2008S. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Ritz, C.; Carlin, A.; Kennedy, M. Vitamin D biomarkers for Dietary Reference Intake development in children: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2022, 115, 544–558. [Google Scholar] [CrossRef]
- Silva, M.C.; Furlanetto, T.W. Intestinal absorption of vitamin D: A systematic review. Nutr. Rev. 2018, 76, 60–76. [Google Scholar] [CrossRef]
- Du, M.; Chang, C.; Zhang, X.; Zhang, Y.; Radford, M.J.; Gahler, R.J.; Kuo, Y.C.; Wood, S.; Solnier, J. Designing Vitamin D3 Formulations: An In Vitro Investigation Using a Novel Micellar Delivery System. Nutraceuticals 2023, 3, 290–305. [Google Scholar] [CrossRef]
- ISO 15189:2012; Medical laboratories—Requirements for quality and competence. International Organization for Standardization: Geneva, Switzerland, 2012.
- Dałek, P.; Drabik, D.; Wołczańska, H.; Foryś, A.; Jagas, M.; Jędruchniewicz, N.; Przybyło, M.; Witkiewicz, W.; Langner, M. Bioavailability by design—Vitamin D3 liposomal delivery vehicles. Nanomedicine 2022, 43, 102552. [Google Scholar] [CrossRef]
- Heaney, R.P.; Davies, K.M.; Chen, T.C.; Holick, M.F.; Barger-Lux, M.J. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am. J. Clin. Nutr. 2003, 77, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Marcinowska-Suchowierska, E.; Kupisz-Urbańska, M.; Łukaszkiewicz, J.; Płudowski, P.; Jones, G. Vitamin D Toxicity-A Clinical Perspective. Front. Endocrinol. 2018, 9, 550. [Google Scholar] [CrossRef]
- Lips, P. Relative value of 25(OH)D and 1,25(OH)2D measurements. J. Bone Miner. Res. 2007, 22, 1668–1671. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Zhu, X.; Manson, J.E.; Song, Y.; Li, X.; Franke, A.A.; Costello, R.B.; Rosanoff, A.; Nian, H.; Fan, L.; et al. Magnesium status and supplementation influence vitamin D status and metabolism: Results from a randomized trial. Am. J. Clin. Nutr. 2018, 108, 1249–1258. [Google Scholar] [CrossRef]
- Risco, F.; Traba, M.L. Influence of magnesium on the in vitro synthesis of 24,25-dihydroxyvitamin D3 and 1 alpha, 25-dihydroxyvitamin D3. Magnes. Res. 1992, 5, 5–14. [Google Scholar] [PubMed]
- Marwaha, R.K.; Verma, M.; Walekar, A.; Sonawane, R.; Trivedi, C. An open-label, randomized, crossover study to evaluate the bioavailability of nanoemulsion versus conventional fat-soluble formulation of cholecalciferol in healthy participants. J. Orthop. 2023, 35, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Bano, A.; Abrar, S.; Brilli, E.; Tarantino, G.; Bugti, A.A.; Fabbrini, M.; Conti, G.; Turroni, S.; Bugti, M.; Afridi, F.; et al. A comparative absorption study of sucrosomial® orodispersible vitamin D3 supplementation vs. a reference chewable tablet and soft gel capsule vitamin D3 in improving circulatory 25(OH)D levels in healthy adults with vitamin D deficiency-Results from a prospective randomized clinical trial. Front. Nutr. 2023, 10, 1221685. [Google Scholar] [CrossRef] [PubMed]
- Radicioni, M.; Caverzasio, C.; Rovati, S.; Giori, A.M.; Cupone, I.; Marra, F.; Mautone, G. Comparative Bioavailability Study of a New Vitamin D3 Orodispersible Film Versus a Marketed Oral Solution in Healthy Volunteers. Clin. Drug Investig. 2022, 42, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Prescription Drug List (PDL): Vitamin D. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/prescription-drug-list/notices-changes/notice-amendment-vitamin-d.html (accessed on 2 February 2024).
- Reineke, J.J.; Cho, D.Y.; Dingle, Y.-T.; Morello, A.P.; Jacob, J.; Thanos, C.G.; Mathiowitz, E. Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres. Proc. Natl. Acad. Sci. USA 2013, 110, 13803–13808. [Google Scholar] [CrossRef] [PubMed]
- Maurya, V.K.; Shakya, A.; Bashir, K.; Jan, K.; McClements, D.J. Fortification by design: A rational approach to designing vitamin D delivery systems for foods and beverages. Compr. Rev. Food Sci. Food Saf. 2023, 22, 135–186. [Google Scholar] [CrossRef] [PubMed]
- Vieira, E.F.; Souza, S. Formulation Strategies for Improving the Stability and Bioavailability of Vitamin D-Fortified Beverages: A Review. Foods 2022, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Behera, C.; Paudwal, G.; Rawat, N.; Baldi, A.; Gupta, P.N. Recent Advances in Formulation Strategies for Efficient Delivery of Vitamin D. AAPS PharmSciTech 2018, 20, 11. [Google Scholar] [CrossRef] [PubMed]
Participants Characteristics | All Subjects n = 35 | STD1000 n = 8 | LMD1000 n = 10 | STD2500 n = 9 | LMD2500 n = 8 |
---|---|---|---|---|---|
Age, years | 41.1 ± 1.8 | 37.6 ± 11.8 | 40.3 ± 7.6 | 45.9 ± 3.9 | 40.4 ± 3.7 |
Gender | |||||
Male, n (%) | 9 (25.7) | 1 (12.5) | 2 (20) | 3 (33.3) | 3 (37.5) |
Female, n (%) | 26 (74.3) | 7 (87.5) | 8 (80) | 6 (66.7) | 5 (62.5) |
Weight, kg | 67.3 ± 2.6 | 66 ± 4.2 | 64 ± 4.6 | 62.7 ± 2.9 | 77.8 ± 7.3 |
BMI, kg/m2 | 24.1 ± 1.0 | 25.2 ± 1.4 | 21.9 ± 2.4 | 23.6 ± 1.4 | 26.1 ± 2.0 |
25(OH)D, nmol/L | 49 ± 3.2 | 54.4 ± 6.7 | 43.3 ± 4.4 | 39.3 ± 3.2 | 61.9 ± 8.2 |
1,25(OH)2D, pmol/L | 133.1 ± 6.4 | 138 ± 15 | 138 ± 13.3 | 126.6 ± 9.2 | 128.9 ± 12.5 |
BiliT, µmol/L | 7.17 ± 0.59 | 6.25 ± 0.70 | 10.3 ± 1.2 | 5.33 ± 0.96 | 6.6 ± 0.8 |
ALP, U/L | 75.5 ± 3.6 | 64.9 ± 5.5 | 79.7 ± 6.0 | 84.4 ± 9.4 | 70.1 ± 3.7 |
GGT, U/L | 17.6 ± 1.8 | 14 ± 1.7 | 21.2 ± 4.7 | 17.7 ± 3.2 | 16.8 ± 2.5 |
ALT, U/L | 22.2 ± 3.1 | 17.1 ± 3.5 | 27.6 ± 9.2 | 20.8 ± 3.1 | 22.4 ± 4.2 |
AST, U/L | 19.1 ± 0.7 | 16.4 ± 1.3 | 19.6 ± 1.4 | 20.8 ± 1.3 | 20 ± 1.5 |
CRP, mg/L | 1.46 ± 0.20 | 1.68 ± 0.46 | 2.1 ± 0.49 | 1.51 ± 0.18 | 1.7 ± 0.5 |
Na, mmol/L | 139.9 ± 0.3 | 140.2 ± 0.8 | 139.4 ± 0.5 | 140.1 ± 0.6 | 139.8 ± 0.5 |
K, mmol/L | 4.26 ± 0.05 | 4.10 ± 0.07 | 4.22 ± 0.14 | 4.37 ± 0.07 | 4.35 ± 0.07 |
Ca, mmol/L | 2.38 ± 0.02 | 2.40 ± 0.04 | 2.36 ± 0.03 | 2.34 ± 0.02 | 2.41 ± 0.03 |
Phos, mmol/L | 1.10 ± 0.03 | 1.14 ± 0.06 | 1.10 ± 0.05 | 1.06 ± 0.05 | 1.10 ± 0.05 |
Mg, mmol/L | 0.84 ± 0.01 | 0.79 ± 0.01 | 0.85 ± 0.02 | 0.86 ± 0.01 | 0.83 ± 0.02 |
25(OH)D | 1000 IU | 2500 IU | ||
---|---|---|---|---|
STD1000 n = 8 | LMD1000 n = 9 | STD2500 n = 8 | LMD2500 n = 8 | |
iAUC(5–30) [nmol day/L] | 73.3 ± 53 | 312 ± 78 | 337 ± 64 | 431 ± 84 |
iAUC(5–45) [nmol day/L] | 157 ± 93 * | 670 ± 180 * | 724 ± 140 | 804 ± 180 |
iAUC(5–60) [nmol day/L] | 177 ± 140 * | 992 ± 260 * | 1050 ± 230 | 1030 ± 210 |
iAUC(30–60) [nmol day/L] | 104 ± 91 * | 680 ± 190 * | 715 ± 170 | 598 ± 130 |
iAUC(15–45) [nmol day/L] | 146 ± 80 * | 619 ± 170 * | 654 ± 130 | 750 ± 170 |
AUC(0–60) [nmol day/L] | 3440 ± 330 | 3930 ± 380 | 3790 ± 180 | 4680 ± 520 |
Cmax [nmol/L] | 61.6 ± 6 | 78.3 ± 9.3 | 75.1 ± 3.8 | 98.4 ± 16 |
Tmax [days] | 26.3 ± 4.5 | 40 ± 4.3 | 32.5 ± 4.7 | 31.9 ± 4.4 |
1,25(OH)2D | 1000 IU | 2500 IU | ||
---|---|---|---|---|
STD1000 n = 8 | LMD1000 n = 9 | STD2500 n = 8 | LMD2500 n = 8 | |
iAUC(5–30) [pmol day/L] | 300 ± 330 | 210 ± 320 | 180 ± 150 | 27 ± 300 |
iAUC(5–45) [pmol day/L] | 550 ± 500 | 260 ± 530 | 250 ± 310 | −16 ± 570 |
iAUC(5–60) [pmol day/L] | 690 ± 670 | 300 ± 720 | 330 ± 450 | −55 ± 830 |
iAUC(30–60) [pmol day/L] | 390 ± 370 | 130 ± 380 | 150 ± 310 | −82 ± 560 |
iAUC(15–45) [pmol day/L] | 480 ± 420 | 170 ± 440 | 250 ± 260 | −7.5 ± 490 |
AUC(0–60) [pmol day/L] | 9340 ± 730 | 9090 ± 460 | 8070 ± 360 | 9600 ± 930 |
Cmax [nmol/L] | 190 ± 13 | 180 ± 7.2 | 160 ± 7.6 | 200 ± 15 |
Tmax [days] | 23 ± 4.6 | 24 ± 6.3 | 29 ± 6.9 | 23 ± 6.7 |
STD1000 | LMD1000 | STD2500 | LMD2500 | |||||
---|---|---|---|---|---|---|---|---|
30-Day | 60-Day | 30-Day | 60-Day | 30-Day | 60-Day | 30-Day | 60-Day | |
Na | 0.6 ± 0.3 | 0.1 ± 0.5 | 0.7 ± 0.4 | 0.5 ± 0.4 | 4.5 ± 4 | −0.4 ± 0.6 | 0.6 ± 0.5 | 0.9 ± 0.7 |
K | 1 ± 1.4 | 0.6 ± 1 | −4 ± 1.4 | −1.7 ± 4 | 0.4 ± 2.1 | −2.5 ± 2.8 | −0.7 ± 2.7 | −1.8 ± 3.1 |
Creat | −2.4 ± 3.3 | −2.9 ± 5 | 3.7 ± 3.1 | 8 ± 8.7 | 2.8 ± 5.1 | 0.7 ± 5 | −0.6 ± 3.1 | 0.4 ± 3.6 |
GFR | 6 ± 5 | −1.4 ± 4.1 | −0.7 ± 2.5 | 2.1 ± 5.2 | −0.5 ± 5.1 | 1.1 ± 5.1 | 2 ± 4.4 | 3.4 ± 4.2 |
Ca | −0.4 ± 1.1 | −1.4 ± 1.1 | 2.4 ± 1.2 | 0.4 ± 1.3 | −0.5 ± 0.4 | 0 ± 1.1 | 0.2 ± 1.2 | −2.3 ± 1.4 |
Phos | −4.1 ± 5.7 | 2 ± 2.2 | 0.9 ± 5.5 | −2.7 ± 5.9 | 20 ± 8.7 | 6.2 ± 5.5 | 7.8 ± 9.8 | 13 ± 7.8 |
BiliT | −12 ± 12 | 8.3 ± 23 | 21 ± 14 | −16 ± 9.7 | 60 ± 27 | 26 ± 10 | 12 ± 9.9 | 28 ± 24 |
ALP | −0.6 ± 2.1 | 0.9 ± 2.2 | 0.6 ± 1.3 | 10 ± 9.2 | 3.1 ± 5.8 | 7.4 ± 4.9 | 1.9 ± 1.8 | 1.3 ± 3.4 |
GGT | −8 ± 2.3 * | −2.6 ± 3.7 | 6.4 ± 4.4 | 17 ± 21 | 11 ± 18 | 15 ± 19 | 1 ± 5.3 | 5.7 ± 5.9 |
ALT | 14 ± 16 | 15 ± 17 | −12 ± 11 | −0.6 ± 30 | −5.9 ± 11 | −8.6 ± 14 | −12 ± 2.9 * | −13 ± 7.8 |
AST | 11 ± 10 | 16 ± 15 | 9.1 ± 12 | 11 ± 15 | 6.6 ± 6.5 | 1.7 ± 9.1 | −11 ± 3.9 * | −8.2 ± 6.6 |
Mg | 2.8 ± 2.1 | 1.6 ± 3.2 | 0.6 ± 1.3 | 2.2 ± 1.6 | −2.7 ± 2.2 | −3.6 ± 2.3 | −4.9 ± 1.6 | 3.7 ± 2.9 |
CRP | −22 ± 12 | −22 ± 8.2 | 28 ± 50 | 40 ± 47 | 1.9 ± 15 | −2.5 ± 18 | 11 ± 28 | 77 ± 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solnier, J.; Chang, C.; Zhang, Y.; Kuo, Y.C.; Du, M.; Roh, Y.S.; See, J.; Brix, J.; Gahler, R.J.; Green, T.; et al. A Comparison and Safety Evaluation of Micellar versus Standard Vitamin D3 Oral Supplementation in a Randomized, Double-Blind Human Pilot Study. Nutrients 2024, 16, 1573. https://doi.org/10.3390/nu16111573
Solnier J, Chang C, Zhang Y, Kuo YC, Du M, Roh YS, See J, Brix J, Gahler RJ, Green T, et al. A Comparison and Safety Evaluation of Micellar versus Standard Vitamin D3 Oral Supplementation in a Randomized, Double-Blind Human Pilot Study. Nutrients. 2024; 16(11):1573. https://doi.org/10.3390/nu16111573
Chicago/Turabian StyleSolnier, Julia, Chuck Chang, Yiming Zhang, Yun Chai Kuo, Min Du, Yoon Seok Roh, Janet See, Jennifer Brix, Roland J. Gahler, Tim Green, and et al. 2024. "A Comparison and Safety Evaluation of Micellar versus Standard Vitamin D3 Oral Supplementation in a Randomized, Double-Blind Human Pilot Study" Nutrients 16, no. 11: 1573. https://doi.org/10.3390/nu16111573
APA StyleSolnier, J., Chang, C., Zhang, Y., Kuo, Y. C., Du, M., Roh, Y. S., See, J., Brix, J., Gahler, R. J., Green, T., & Wood, S. (2024). A Comparison and Safety Evaluation of Micellar versus Standard Vitamin D3 Oral Supplementation in a Randomized, Double-Blind Human Pilot Study. Nutrients, 16(11), 1573. https://doi.org/10.3390/nu16111573