Associations between Vegetable Nitrate Intake and Cardiovascular Disease Risk and Mortality: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
2.3. Selection Process
2.4. Data Extraction
2.5. Risk of Bias
2.6. Evidence Synthesis
3. Results
3.1. Overview
3.2. Study Characteristics
3.3. Primary Outcomes
3.3.1. Overall CVD Incidence
3.3.2. Overall CVD Mortality
3.4. Secondary Outcomes
3.4.1. CVD Subtype Incidence
3.4.2. CVD Subtype Mortality
3.4.3. Combined Ischaemic Cerebrovascular Disease Hospitalisations and Mortality
3.5. Risk of Bias Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.; Addy, K.; Campbell, S.; Wilkinson, P. Primary Prevention of Cardiovascular Disease: Updated Review of Contemporary Guidance and Literature. JRSM Cardiovasc. Dis. 2020, 9, 2048004020949326. [Google Scholar] [CrossRef]
- Siervo, M.; Scialò, F.; Shannon, O.M.; Stephan, B.C.M.; Ashor, A.W. Does Dietary Nitrate Say NO to Cardiovascular Ageing? Current Evidence and Implications for Research. Proc. Nutr. Soc. 2018, 77, 112–123. [Google Scholar] [CrossRef]
- Jackson, J.K.; Patterson, A.J.; MacDonald-Wicks, L.K.; Oldmeadow, C.; McEvoy, M.A. The Role of Inorganic Nitrate and Nitrite in Cardiovascular Disease Risk Factors: A Systematic Review and Meta-Analysis of Human Evidence. Nutr. Rev. 2018, 76, 348–371. [Google Scholar] [CrossRef] [PubMed]
- Blood Pressure Lowering Treatment Trialists’ Collaboration. Pharmacological Blood Pressure Lowering for Primary and Secondary Prevention of Cardiovascular Disease across Different Levels of Blood Pressure: An Individual Participant-Level Data Meta-Analysis. Lancet 2021, 397, 1625–1636. [Google Scholar] [CrossRef]
- World Health Organization. Cardiovascular Diseases: Avoiding Heart Attacks and Strokes; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Blekkenhorst, L.C.; Sim, M.; Bondonno, C.P.; Bondonno, N.P.; Ward, N.C.; Prince, R.L.; Devine, A.; Lewis, J.R.; Hodgson, J.M. Cardiovascular Health Benefits of Specific Vegetable Types: A Narrative Review. Nutrients 2018, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.-Y.; Meng, X.; Li, Y.; Zhao, C.-N.; Liu, Q.; Li, H.-B. Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms. Nutrients 2017, 9, 857. [Google Scholar] [CrossRef]
- Hung, H.-C.; Joshipura, K.J.; Jiang, R.; Hu, F.B.; Hunter, D.; Smith-Warner, S.A.; Colditz, G.A.; Rosner, B.; Spiegelman, D.; Willett, W.C. Fruit and Vegetable Intake and Risk of Major Chronic Disease. J. Natl. Cancer Inst. 2004, 96, 1577–1584. [Google Scholar] [CrossRef]
- Shannon, O.M.; Easton, C.; Shepherd, A.I.; Siervo, M.; Bailey, S.J.; Clifford, T. Dietary Nitrate and Population Health: A Narrative Review of the Translational Potential of Existing Laboratory Studies. BMC Sports Sci. Med. Rehabil. 2021, 13, 65. [Google Scholar] [CrossRef]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food Sources of Nitrates and Nitrites: The Physiologic Context for Potential Health Benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Piknova, B.; Schechter, A.N. Comments on “Vascular Effects of Dietary Nitrate (as Found in Green Leafy Vegetables and Beetroot) via the Nitrate-Nitrite-Nitric Oxide Pathway”. Br. J. Clin. Pharmacol. 2013, 75, 1541–1542. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, N. Nitrates in the Human Diet-Good or Bad? In Annales de Zootechnie; Institut National de la Recherche Agronomique: Paris, France, 2000; Volume 49, pp. 207–216. [Google Scholar]
- Larsen, F.J.; Ekblom, B.; Sahlin, K.; Lundberg, J.O.; Weitzberg, E. Effects of Dietary Nitrate on Blood Pressure in Healthy Volunteers. N. Engl. J. Med. 2006, 355, 2792–2793. [Google Scholar] [CrossRef]
- Webb, A.J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N.; et al. Acute Blood Pressure Lowering, Vasoprotective and Anti-Platelet Properties of Dietary Nitrate via Bioconversion to Nitrite. Hypertension 2008, 51, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Siervo, M.; Shannon, O.; Kandhari, N.; Prabhakar, M.; Fostier, W.; Köchl, C.; Rogathi, J.; Temu, G.; Stephan, B.C.M.; Gray, W.K.; et al. Nitrate-Rich Beetroot Juice Reduces Blood Pressure in Tanzanian Adults with Elevated Blood Pressure: A Double-Blind Randomized Controlled Feasibility Trial. J. Nutr. 2020, 150, 2460–2468. [Google Scholar] [CrossRef] [PubMed]
- Richardson, G.; Hicks, S.L.; O’Byrne, S.; Frost, M.T.; Moore, K.; Benjamin, N.; McKnight, G.M. The Ingestion of Inorganic Nitrate Increases Gastric S-Nitrosothiol Levels and Inhibits Platelet Function in Humans. Nitric Oxide 2002, 7, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Lara, J.; Ashor, A.W.; Oggioni, C.; Ahluwalia, A.; Mathers, J.C.; Siervo, M. Effects of Inorganic Nitrate and Beetroot Supplementation on Endothelial Function: A Systematic Review and Meta-Analysis. Eur. J. Nutr. 2016, 55, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Ashor, A.W.; Shannon, O.M.; Werner, A.-D.; Scialo, F.; Gilliard, C.N.; Cassel, K.S.; Seal, C.J.; Zheng, D.; Mathers, J.C.; Siervo, M. Effects of Inorganic Nitrate and Vitamin C Co-Supplementation on Blood Pressure and Vascular Function in Younger and Older Healthy Adults: A Randomised Double-Blind Crossover Trial. Clin. Nutr. 2019, 39, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.K.; Zong, G.; MacDonald-Wicks, L.K.; Patterson, A.J.; Willett, W.C.; Rimm, E.B.; Manson, J.E.; McEvoy, M.A. Dietary Nitrate Consumption and Risk of CHD in Women from the Nurses’ Health Study. Br. J. Nutr. 2019, 121, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Bondonno Catherine, P.; Blekkenhorst Lauren, C.; Prince Richard, L.; Ivey Kerry, L.; Lewis Joshua, R.; Devine, A.; Woodman Richard, J.; Lundberg Jon, O.; Croft Kevin, D.; Thompson Peter, L.; et al. Association of Vegetable Nitrate Intake with Carotid Atherosclerosis and Ischemic Cerebrovascular Disease in Older Women. Stroke 2017, 48, 1724–1729. [Google Scholar] [CrossRef]
- Liu, A.H.; Bondonno, C.P.; Russell, J.; Flood, V.M.; Lewis, J.R.; Croft, K.D.; Woodman, R.J.; Lim, W.H.; Kifley, A.; Wong, G.; et al. Relationship of Dietary Nitrate Intake from Vegetables with Cardiovascular Disease Mortality: A Prospective Study in a Cohort of Older Australians. Eur. J. Nutr. 2019, 58, 2741–2753. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; et al. Synthesis without Meta-Analysis (SWiM) in Systematic Reviews: Reporting Guideline. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Morgan, R.L.; Rooney, A.A.; Taylor, K.W.; Thayer, K.A.; Silva, R.A.; Lemeris, C.; Akl, E.A.; Bateson, T.F.; Berkman, N.D.; et al. A Tool to Assess Risk of Bias in Non-Randomized Follow-up Studies of Exposure Effects (ROBINS-E). Environ. Int. 2024, 186, 108602. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.K.; Patterson, A.J.; MacDonald-Wicks, L.K.; Forder, P.M.; Blekkenhorst, L.C.; Bondonno, C.P.; Hodgson, J.M.; Ward, N.C.; Holder, C.; Oldmeadow, C.; et al. Vegetable Nitrate Intakes Are Associated with Reduced Self-Reported Cardiovascular-Related Complications within a Representative Sample of Middle-Aged Australian Women, Prospectively Followed up for 15 Years. Nutrients 2019, 11, 240. [Google Scholar] [CrossRef] [PubMed]
- Blekkenhorst, L.C.; Bondonno, C.P.; Lewis, J.R.; Devine, A.; Woodman, R.J.; Croft, K.D.; Lim, W.H.; Wong, G.; Beilin, L.J.; Prince, R.L.; et al. Association of Dietary Nitrate with Atherosclerotic Vascular Disease Mortality: A Prospective Cohort Study of Older Adult Women. Am. J. Clin. Nutr. 2017, 106, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Bondonno, C.P.; Dalgaard, F.; Blekkenhorst, L.C.; Murray, K.; Lewis, J.R.; Croft, K.D.; Kyrø, C.; Torp-Pedersen, C.; Gislason, G.; Tjønneland, A.; et al. Vegetable Nitrate Intake, Blood Pressure and Incident Cardiovascular Disease: Danish Diet, Cancer, and Health Study. Eur. J. Epidemiol. 2021, 36, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Luetic, S.; Knezovic, Z.; Jurcic, K.; Majic, Z.; Tripkovic, K.; Sutlovic, D. Leafy Vegetable Nitrite and Nitrate Content: Potential Health Effects. Foods 2023, 12, 1655. [Google Scholar] [CrossRef] [PubMed]
- Kalmpourtzidou, A.; Eilander, A.; Talsma, E.F. Global Vegetable Intake and Supply Compared to Recommendations: A Systematic Review. Nutrients 2020, 12, 1558. [Google Scholar] [CrossRef]
- Ashton, L.M.; Sharkey, T.; Whatnall, M.C.; Williams, R.L.; Bezzina, A.; Aguiar, E.J.; Collins, C.E.; Hutchesson, M.J. Effectiveness of Interventions and Behaviour Change Techniques for Improving Dietary Intake in Young Adults: A Systematic Review and Meta-Analysis of RCTs. Nutrients 2019, 11, 825. [Google Scholar] [CrossRef]
- Griffiths, A.; Alhulaefi, S.; Hayes, E.J.; Matu, J.; Brandt, K.; Watson, A.; Siervo, M.; Shannon, O.M. Exploring the Advantages and Disadvantages of a Whole Foods Approach for Elevating Dietary Nitrate Intake: Have Researchers Concentrated Too Much on Beetroot Juice? Appl. Sci. 2023, 13, 7319. [Google Scholar] [CrossRef]
- Babateen, A.M.; Shannon, O.M.; O’Brien, G.M.; Olgacer, D.; Koehl, C.; Fostier, W.; Mathers, J.C.; Siervo, M. Moderate Doses of Dietary Nitrate Elicit Greater Effects on Blood Pressure and Endothelial Function than a High Dose: A 13-Week Pilot Study. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1263–1267. [Google Scholar] [CrossRef] [PubMed]
- Wylie, L.J.; Kelly, J.; Bailey, S.J.; Blackwell, J.R.; Skiba, P.F.; Winyard, P.G.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Beetroot Juice and Exercise: Pharmacodynamic and Dose-Response Relationships. J. Appl. Physiol. 2013, 115, 325–336. [Google Scholar] [CrossRef] [PubMed]
Study | Country | Study Type | Study Period (y) | Sample Size (n) | Age (y) 1 | BMI (kg/m2) 1 | BP (mmHg) | Exposure Assessment and Frequency | Outcome Measure | Outcome Ascertainment |
---|---|---|---|---|---|---|---|---|---|---|
Bondonno et al. (2021) [29] | Denmark | Prospective cohort study | 23 | 53,150 (28,468 females, 24,682 males) 2 | 56 [52, 60] | 26 [23, 28] | Systolic: 138 [124, 152] Diastolic: 83 [76, 90] | Validated Danish FFQ at baseline | Overall CVD and CVD Subtype Incidence | ICD-10 codes using the DNPR |
Liu et al. (2019) [22] | Australia | Prospective cohort study | 15 | 2229 (1314 females, 915 males) 2 | 64.5 ± 9.1 | 26.0 ± 4.4 | Systolic: 145.4 ± 20.8 Diastolic: 83.4 ± 9.8 | Validated Willet FFQ at baseline, 5 y and 10 y timepoints | Overall CVD and CVD Subtype Mortality | Diagnosis codes (ICD-9 and ICD-10) using the ISCD |
Blekkenhorst et al. (2017) [28] | Australia | Prospective cohort study | 15 | 1226 (all female) | 75.1 ± 2.7 | 27.0 ± 4.6 | - | Validated Melbourne FFQ at 5 y and 7 y timepoints | CVD Subtype Mortality | Coded death certificates |
Jackson et al. (2019b) [27] | Australia | Prospective cohort study | 15 | 5324 (all female) | 52.4 ± 1.4 | 25.0 ± 5.6 | - | Validated DQES in 2001 and 2013 | Overall CVD Incidence | Self-reported doctor diagnoses |
Bondonno et al. (2017) [21] | Australia | Population-based study | ≥14.5 | 1226 (all female) | 75 ± 3 | 27 ± 5 | - | Validated ACCV FFQ at baseline | Combined CVD Subtype Hospitalisation and Mortality | Retrieved from the Western Australian Data Linkage System |
Study | Total Participants Analysed | Total Vegetable Nitrate Intake (mg/d) 1 | Outcome Occurrence n (%) | HR (95% CI) 2,3 |
---|---|---|---|---|
Bondonno et al. (2021) [29] | ||||
Overall CVD incidence 4 | ||||
Quintile 1 (Referent) | 10,630 | 23 [18, 28] | 3309 (31.1) 5 | 1.00 (Referent) |
Quintile 2 | 10,630 | 39 [35, 43] | 3037 (28.6) 5 | 0.91 (0.88, 0.94) |
Quintile 3 | 10,630 | 59 [52, 68] | 2725 (25.6) 5 | 0.85 (0.82, 0.89) |
Quintile 4 | 10,630 | 92 [86, 98] | 2456 (23.1) 5 | 0.86 (0.82, 0.89) |
Quintile 5 | 10,630 | 141 [118, 168] | 2561 (24.1) 5 | 0.86 (0.82, 0.90) |
Total participants | 53,150 | 59 [35, 98] | 14,088 (26.5) 5 | - |
Jackson et al. (2019b) [27] | ||||
Overall CVD-related events 7 | ||||
Quartile 1 (Referent) | 1331 | 26.4 ± 11.3 | 505 (37.9) 5 | 1.00 6 (Referent) |
Quartile 2 | 1331 | 41.9 ± 7.4 | 504 (37.9) 5 | 0.89 6 (0.78–1.02) (NS) |
Quartile 3 | 1331 | 55.1 ± 9.1 | 495 (37.2) 5 | 0.85 6 (0.73–0.98) |
Quartile 4 | 1331 | 79.3 ± 22.3 | 447 (33.6) 5 | 0.73 6 (0.61–0.88) |
Total participants | 5324 | - | 1951 (36.6) | - |
Study | Total Participants Analysed | Total Vegetable Nitrate Intake (mg/d) 1 | Outcome Occurrence n (%) | Effect Measure HR (95% CI) 2,3 |
---|---|---|---|---|
Liu et al. (2019) [22] | ||||
Quartile 1 (Referent) | 557 | 48.3 ± 15.2 | 61 (11) | 1.00 (Referent) |
Quartile 2 | 558 | 85.0 ± 8.8 | 39 (7) | 0.53 (0.35, 0.82) |
Quartile 3 | 557 | 117.3 ± 10.9 | 35 (6.3) | 0.51 (0.32, 0.80) |
Quartile 4 | 557 | 188.7 ± 53.8 | 53 (9.5) | 0.63 (0.41, 0.95) |
Total participants | 2229 | 109.7 ± 59.2 | 188 (8.4) | - |
Study | Total Participants Analysed | Total Vegetable Nitrate Intake (mg/d) 1 | Outcome Occurrence n (%) | Effect Measure HR (95% CI) 2,3 |
---|---|---|---|---|
Bondonno et al. (2021) [29] | ||||
IHD incidence 4 | ||||
Quintile 1 (Referent) | 10,630 | 23 [18, 28] | 1279 (12.0) 5 | 1.00 (Referent) |
Quintile 2 | 10,630 | 39 [35, 43] | 1150 (10.8) 5 | 0.93 (0.88, 0.97) |
Quintile 3 | 10,630 | 59 [52, 68] | 1045 (9.83) 5 | 0.88 (0.82, 0.94) |
Quintile 4 | 10,630 | 92 [86, 98] | 846 (7.96) 5 | 0.86 (0.80, 0.93) |
Quintile 5 | 10,630 | 141 [118, 168] | 917 (8.63) 5 | 0.85 (0.79, 0.92) |
Total participants | 53,150 | 59 [35, 98] | 5237 (9.85) 5 | - |
Bondonno et al. (2021) [29] | ||||
Ischaemic stroke incidence 4 | ||||
Quintile 1 (Referent) | 10,630 | 23 [18, 28] | 714 (6.72) 5 | 1.00 (Referent) |
Quintile 2 | 10,630 | 39 [35, 43] | 613 (5.77) 5 | 0.88 (0.83, 0.94) |
Quintile 3 | 10,630 | 59 [52, 68] | 518 (4.87) 5 | 0.83 (0.76, 0.91) |
Quintile 4 | 10,630 | 92 [86, 98] | 509 (4.79) 5 | 0.86 (0.78, 0.94) |
Quintile 5 | 10,630 | 141 [118, 168] | 531 (5.00) 5 | 0.87 (0.78, 0.96) |
Total participants | 53,150 | 59 [35, 98] | 2885 (5.43) 5 | - |
Bondonno et al. (2021) [29] | ||||
Haemorrhagic stroke incidence 4 | ||||
Quintile 1 (Referent) | 10,630 | 23 [18, 28] | 170 (1.60) 5 | 1.00 (Referent) |
Quintile 2 | 10,630 | 39 [35, 43] | 127 (1.19) 5 | 0.91 (0.80, 1.04) (NS) |
Quintile 3 | 10,630 | 59 [52, 68] | 151 (1.42) 5 | 0.86 (0.71, 1.04) (NS) |
Quintile 4 | 10,630 | 92 [86, 98] | 121 (1.14) 5 | 0.87 (0.72, 1.06) (NS) |
Quintile 5 | 10,630 | 141 [118, 168] | 140 (1.32) 5 | 0.93 (0.76, 1.14) (NS) |
Total participants | 53,150 | 59 [35, 98] | 709 (1.33) 5 | - |
Bondonno et al. (2021) [29] | ||||
Heart failure incidence 4 | ||||
Quintile 1 (Referent) | 10,630 | 23 [18, 28] | 778 (7.32) 5 | 1.00 (Referent) |
Quintile 2 | 10,630 | 39 [35, 43] | 704 (6.62) 5 | 0.91 (0.85, 0.96) |
Quintile 3 | 10,630 | 59 [52, 68] | 575 (5.41) 5 | 0.85 (0.78, 0.93) |
Quintile 4 | 10,630 | 92 [86, 98] | 497 (4.68) 5 | 0.86 (0.78, 0.94) |
Quintile 5 | 10,630 | 141 [118, 168] | 527 (4.96) 5 | 0.86 (0.78, 0.95) |
Total participants | 53,150 | 59 [35, 98] | 3081 (5.80) 5 | - |
Bondonno et al. (2021) [29] | ||||
PAD incidence 4 | ||||
Quintile 1 (Referent) | 10,630 | 23 [18, 28] | 539 (5.07) 5 | 1.00 (Referent) |
Quintile 2 | 10,630 | 39 [35, 43] | 417 (3.92) 5 | 0.84 (0.78, 0.91) |
Quintile 3 | 10,630 | 59 [52, 68] | 363 (3.41) 5 | 0.74 (0.67, 0.83) |
Quintile 4 | 10,630 | 92 [86, 98] | 268 (2.52) 5 | 0.70 (0.62, 0.79) |
Quintile 5 | 10,630 | 141 [118, 168] | 255 (2.40) 5 | 0.65 (0.57, 0.74) |
Total participants | 53,150 | 59 [35, 98] | - | - |
Bondonno et al. (2021) [29] | ||||
AF incidence 4 | ||||
Quintile 1 (Referent) | 10,630 | 23 [18, 28] | 1457 (13.7) 5 | 1.00 (Referent) |
Quintile 2 | 10,630 | 39 [35, 43] | 1422 (13.4) 5 | 0.94 (0.90, 0.98) |
Quintile 3 | 10,630 | 59 [52, 68] | 1315 (12.4) 5 | 0.91 (0.85, 0.97) |
Quintile 4 | 10,630 | 92 [86, 98] | 1237 (11.6) 5 | 0.93 (0.87, 0.99) |
Quintile 5 | 10,630 | 141 [118, 168] | 1317 (12.4) 5 | 0.95 (0.89, 1.01) (NS) |
Total participants | 53,150 | 59 [35, 98] | 6748 (12.7) 5 | - |
Study | Total Participants Analysed | Total Vegetable Nitrate Intake (mg/d) 1 | Outcome Occurrence n (%) | Effect Measure HR (95% CI) 2,3 |
---|---|---|---|---|
Blekkenhorst et al. (2017) [28] | ||||
ASVD mortality | ||||
Tertile 1 (Referent) | 409 | 37.3 ± 11.0 | 102 (24.9) | 1.00 (Referent) |
Tertile 2 | 408 | 64.1 ± 6.7 | 61 (15) | 0.58 (0.42, 0.82) * |
Tertile 3 | 409 | 99.7 ± 20.8 | 75 (18.3) | 0.65 (0.47, 0.92) * |
Total participants | 1226 | 67.0 ± 29.2 | 238 (19.4) | - |
Overall trend per SD | 1226 | 29.2 ± 0 | - | 0.79 (0.68, 0.93) #,* |
Liu et al. (2019) [22] | ||||
CHD mortality | ||||
Quartile 1 (Referent) | 557 | 48.3 ± 15.2 | 37 (6.6) | 1.00 (Referent) |
Quartile 2 | 558 | 85.0 ± 8.8 | 22 (3.9) | 0.46 (0.26, 0.82) #,1 |
Quartile 3 | 557 | 117.3 ± 10.9 | 30 (5.4) | 0.73 (0.43, 1.23) #,1 |
Quartile 4 | 557 | 188.7 ± 53.8 | 36 (6.5) | 0.68 (0.40, 1.15) #,1 |
Total participants | 2229 | 109.7 ± 59.2 | 125 (5.6) | - |
Liu et al. (2019) [22] | ||||
Stroke mortality | ||||
Quartile 1 (Referent) | 557 | 48.3 ± 15.2 | 24 (4.3) | 1.00 (Referent) |
Quartile 2 | 558 | 85.0 ± 8.8 | 17 (3) | 0.66 (0.34, 1.26) #,2 |
Quartile 3 | 557 | 117.3 ± 10.9 | 5 (0.9) | 0.18 (0.06, 0.52) #,2 |
Quartile 4 | 557 | 188.7 ± 53.8 | 17 (3.1) | 0.56 (0.28, 1.11) #,2 |
Total participants | 2229 | 109.7 ± 59.2 | 63 (2.8) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Stagg, L.; Hanlon, E.; Li, T.; Fairley, A.M.; Siervo, M.; Matu, J.; Griffiths, A.; Shannon, O.M. Associations between Vegetable Nitrate Intake and Cardiovascular Disease Risk and Mortality: A Systematic Review. Nutrients 2024, 16, 1511. https://doi.org/10.3390/nu16101511
Tan L, Stagg L, Hanlon E, Li T, Fairley AM, Siervo M, Matu J, Griffiths A, Shannon OM. Associations between Vegetable Nitrate Intake and Cardiovascular Disease Risk and Mortality: A Systematic Review. Nutrients. 2024; 16(10):1511. https://doi.org/10.3390/nu16101511
Chicago/Turabian StyleTan, Loucas, Libby Stagg, Emily Hanlon, Toby Li, Andrea M. Fairley, Mario Siervo, Jamie Matu, Alex Griffiths, and Oliver M. Shannon. 2024. "Associations between Vegetable Nitrate Intake and Cardiovascular Disease Risk and Mortality: A Systematic Review" Nutrients 16, no. 10: 1511. https://doi.org/10.3390/nu16101511
APA StyleTan, L., Stagg, L., Hanlon, E., Li, T., Fairley, A. M., Siervo, M., Matu, J., Griffiths, A., & Shannon, O. M. (2024). Associations between Vegetable Nitrate Intake and Cardiovascular Disease Risk and Mortality: A Systematic Review. Nutrients, 16(10), 1511. https://doi.org/10.3390/nu16101511