Timing Matters: Time of Day Impacts the Ergogenic Effects of Caffeine—A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Caffeine Has Ergogenic Effects
3.1. The Influence of Caffeine on Athletic Performance
3.2. The Mechanisms of Caffeine as an Ergogenic Aid
4. Circadian Rhythm on Sport Performance
4.1. Circadian Rhythms Affects Human Physiology
4.2. Circadian Rhythms Affects Sport Performance
4.3. The Mechanism by Which Circadian Rhythms Affects Sport Performance Remain Unclear
5. Caffeine Alleviates Morning Performance Decline
5.1. Caffeine Mitigates Declines in Morning Performance Induced by Sleep Deprivation
5.2. Caffeine Alleviates Morning Performance Declines
5.3. Exploring the Heterogeneity of Caffeine’s Impact on Morning Performance Decrement
6. Future Perspectives
6.1. Considerations for Timing Factors in Future Caffeine Research
6.2. Mechanisms of Caffeine in Alleviating Morning Performance Decline Require Investigation
6.3. Mechanisms of Caffeine in Regulating Circadian Rhythms
6.4. Mechanisms of Caffeine on Strength and Power Exercise Performance
6.5. Dosing Times of Caffeine in Different Dosage Forms
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aguilar-Navarro, M.; Munoz, G.; Salinero, J.J.; Munoz-Guerra, J.; Fernandez-Alvarez, M.; Plata, M.D.M.; Del Coso, J. Urine Caffeine Concentration in Doping Control Samples from 2004 to 2015. Nutrients 2019, 11, 286. [Google Scholar] [CrossRef] [PubMed]
- Rivers, W.H.; Webber, H.N. The action of caffeine on the capacity for muscular work. J. Physiol. 1907, 36, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, H.; Yan, Y.; Yang, W.; Chen, S.; Song, G.; Li, X.; Gu, Y.; Yun, H.; Li, Y. Synergistic Effect of Rhodiola rosea and Caffeine Supplementation on the Improvement of Muscle Strength and Muscular Endurance: A Pilot Study for Rats, Resistance Exercise-Untrained and -Trained Volunteers. Nutrients 2023, 15, 582. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Grgic, J. Caffeine and Exercise: What Next? Sports Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Spriet, L.L. Exercise and sport performance with low doses of caffeine. Sports Med. 2014, 44 (Suppl. S2), S175–S184. [Google Scholar] [CrossRef] [PubMed]
- Wickham, K.A.; Spriet, L.L. Administration of Caffeine in Alternate Forms. Sports Med. 2018, 48, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Tallis, J.; Guimaraes-Ferreira, L.; Clarke, N.D. Not Another Caffeine Effect on Sports Performance Study-Nothing New or More to Do? Nutrients 2022, 14, 4696. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.D.; Jameson, T.S.O.; Kilroe, S.P.; Monteyne, A.J.; Pavis, G.F.; Wall, B.T.; Dirks, M.L.; Alamdari, N.; Mikus, C.R.; Stephens, F.B. A Randomised, Placebo-Controlled, Crossover Study Investigating the Optimal Timing of a Caffeine-Containing Supplement for Exercise Performance. Sports Med.-Open 2020, 6, 17. [Google Scholar] [CrossRef]
- Barreto, G.; Esteves, G.P.; Marticorena, F.; Oliveira, T.N.; Grgic, J.; Saunders, B. Caffeine, CYP1A2 Genotype, and Exercise Performance: A Systematic Review and Meta-analysis. Med. Sci. Sports Exerc. 2024, 56, 328–339. [Google Scholar] [CrossRef]
- Martins, G.L.; Guilherme, J.; Ferreira, L.H.B.; de Souza-Junior, T.P.; Lancha, A.H., Jr. Caffeine and Exercise Performance: Possible Directions for Definitive Findings. Front. Sports Act. Living 2020, 2, 574854. [Google Scholar] [CrossRef] [PubMed]
- Bougrine, H.; Cherif, M.; Chtourou, H.; Souissi, N. Can caffeine supplementation reverse the impact of time of day on cognitive and short-term high intensity performances in young female handball players? Chronobiol. Int. 2022, 39, 1144–1155. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Munoz, G.; Munoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.G.; Brooks, M.B.; Cincotta, J.; Manjourides, J.D. Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: A systematic review and meta-analysis. J. Sci. Med. Sport 2019, 22, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Campelo, D.; Koch, A.J.; Machado, M. Caffeine, lactic acid, or nothing: What effect does expectation have on men’s performance and perceived exertion during an upper body muscular endurance task? Int. J. Health Sci. 2023, 17, 39–42. [Google Scholar]
- Ferreira, L.H.B.; Forbes, S.C.; Barros, M.P.; Smolarek, A.C.; Enes, A.; Lancha-Junior, A.H.; Martins, G.L.; Souza-Junior, T.P. High Doses of Caffeine Increase Muscle Strength and Calcium Release in the Plasma of Recreationally Trained Men. Nutrients 2022, 14, 4921. [Google Scholar] [CrossRef] [PubMed]
- Taheri Karami, G.; Hemmatinafar, M.; Koushkie Jahromi, M.; Nemati, J.; Niknam, A. Repeated mouth rinsing of coffee improves the specific-endurance performance and jump performance of young male futsal players. J. Int. Soc. Sports Nutr. 2023, 20, 2214108. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Venier, S.; Mikulic, P. Examining the Effects of Caffeine on Isokinetic Strength, Power, and Endurance. J. Funct. Morphol. Kinesiol. 2022, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef]
- Astorino, T.A.; Roberson, D.W. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. J. Strength Cond. Res. 2010, 24, 257–265. [Google Scholar] [CrossRef]
- Mabrey, G.; Koozehchian, M.S.; Newton, A.T.; Naderi, A.; Forbes, S.C.; Haddad, M. The Effect of Creatine Nitrate and Caffeine Individually or Combined on Exercise Performance and Cognitive Function: A Randomized, Crossover, Double-Blind, Placebo-Controlled Trial. Nutrients 2024, 16, 766. [Google Scholar] [CrossRef]
- Jagim, A.R.; Harty, P.S.; Tinsley, G.M.; Kerksick, C.M.; Gonzalez, A.M.; Kreider, R.B.; Arent, S.M.; Jager, R.; Smith-Ryan, A.E.; Stout, J.R.; et al. International society of sports nutrition position stand: Energy drinks and energy shots. J. Int. Soc. Sports Nutr. 2023, 20, 2171314. [Google Scholar] [CrossRef] [PubMed]
- Southward, K.; Rutherfurd-Markwick, K.; Badenhorst, C.; Ali, A. The Role of Genetics in Moderating the Inter-Individual Differences in the Ergogenicity of Caffeine. Nutrients 2018, 10, 1352. [Google Scholar] [CrossRef]
- von Ruden, L.; Neher, E. A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 1993, 262, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; Spriet, L.L. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J. Appl. Physiol. 1991, 71, 2292–2298. [Google Scholar] [CrossRef]
- Daly, J.W.; Butts-Lamb, P.; Padgett, W. Subclasses of adenosine receptors in the central nervous system: Interaction with caffeine and related methylxanthines. Cell. Mol. Neurobiol. 1983, 3, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, Y.; Wang, X.; Deng, Y.; Zheng, X. Cognition and Brain Activation in Response to Various Doses of Caffeine: A Near-Infrared Spectroscopy Study. Front. Psychol. 2020, 11, 1393. [Google Scholar] [CrossRef]
- Cruz, R.S.; de Aguiar, R.A.; Turnes, T.; Guglielmo, L.G.; Beneke, R.; Caputo, F. Caffeine Affects Time to Exhaustion and Substrate Oxidation during Cycling at Maximal Lactate Steady State. Nutrients 2015, 7, 5254–5264. [Google Scholar] [CrossRef]
- Klein, M.G.; Simon, B.J.; Schneider, M.F. Effects of caffeine on calcium release from the sarcoplasmic reticulum in frog skeletal muscle fibres. J. Physiol. 1990, 425, 599–626. [Google Scholar] [CrossRef]
- Skinner, T.L.; Jenkins, D.G.; Folling, J.; Leveritt, M.D.; Coombes, J.S.; Taaffe, D.R. Influence of carbohydrate on serum caffeine concentrations following caffeine ingestion. J. Sci. Med. Sport 2013, 16, 343–347. [Google Scholar] [CrossRef]
- Nehlig, A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef] [PubMed]
- Talanian, J.L.; Spriet, L.L. Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Appl. Physiol. Nutr. Metab. 2016, 41, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Santos Rde, A.; Kiss, M.A.; Silva-Cavalcante, M.D.; Correia-Oliveira, C.R.; Bertuzzi, R.; Bishop, D.J.; Lima-Silva, A.E. Caffeine alters anaerobic distribution and pacing during a 4000-m cycling time trial. PLoS ONE 2013, 8, e75399. [Google Scholar] [CrossRef]
- Womack, C.J.; Saunders, M.J.; Bechtel, M.K.; Bolton, D.J.; Martin, M.; Luden, N.D.; Dunham, W.; Hancock, M. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J. Int. Soc. Sports Nutr. 2012, 9, 7. [Google Scholar] [CrossRef]
- Juliano, L.M.; Griffiths, R.R. A critical review of caffeine withdrawal: Empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology 2004, 176, 1–29. [Google Scholar] [CrossRef]
- Juliano, L.M.; Kardel, P.G.; Harrell, P.T.; Muench, C.; Edwards, K.C. Investigating the role of expectancy in caffeine withdrawal using the balanced placebo design. Hum. Psychopharmacol. 2019, 34, e2692. [Google Scholar] [CrossRef]
- Yue, G.; Cole, K.J. Strength increases from the motor program: Comparison of training with maximal voluntary and imagined muscle contractions. J. Neurophysiol. 1992, 67, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Kimura, Y.; Tokizawa, K.; Ishii, K.; Oda, K.; Sasaki, T.; Nakamura, Y.; Muraoka, I.; Ishiwata, K. Greater adenosine A(2A) receptor densities in cardiac and skeletal muscle in endurance-trained men: A [11C]TMSX PET study. Nucl. Med. Biol. 2005, 32, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Conger, S.A.; Tuthill, L.M.; Millard-Stafford, M.L. Does Caffeine Increase Fat Metabolism? A Systematic Review and Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2023, 33, 112–120. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Song, G.; Li, X.H.; Chen, S.Y.; Zou, D.X.; Li, H.X.; Hu, C.Y.; Zhao, H.T.; Yan, Y. Caffeine promotes the production of Irisin in muscles and thus facilitates the browning of white adipose tissue. J. Funct. Foods 2023, 108, 105702. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; Sebastiao, A.M. Caffeine and adenosine. J. Alzheimer’s Dis. 2010, 20 (Suppl. S1), S3–S15. [Google Scholar] [CrossRef] [PubMed]
- Do, H.N.; Akhter, S.; Miao, Y. Pathways and Mechanism of Caffeine Binding to Human Adenosine A(2A) Receptor. Front. Mol. Biosci. 2021, 8, 673170. [Google Scholar] [CrossRef] [PubMed]
- Alasmari, F. Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm. J. 2020, 28, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Reichert, C.F.; Deboer, T.; Landolt, H.P. Adenosine, caffeine, and sleep-wake regulation: State of the science and perspectives. J. Sleep Res. 2022, 31, e13597. [Google Scholar] [CrossRef] [PubMed]
- Merighi, S.; Travagli, A.; Nigro, M.; Pasquini, S.; Cappello, M.; Contri, C.; Varani, K.; Vincenzi, F.; Borea, P.A.; Gessi, S. Caffeine for Prevention of Alzheimer’s Disease: Is the A(2A) Adenosine Receptor Its Target? Biomolecules 2023, 13, 967. [Google Scholar] [CrossRef] [PubMed]
- Boggero, I.A.; Segerstrom, S.C. Self-regulatory ability, fatigue, and the experience of pain: Mechanistic insights from pain-free undergraduates. Psychophysiology 2019, 56, e13388. [Google Scholar] [CrossRef] [PubMed]
- Bootman, M.D.; Bultynck, G. Fundamentals of Cellular Calcium Signaling: A Primer. Cold Spring Harb. Perspect. Biol. 2020, 12, a038802. [Google Scholar] [CrossRef]
- Chami, M.; Checler, F. Alterations of the Endoplasmic Reticulum (ER) Calcium Signaling Molecular Components in Alzheimer’s Disease. Cells 2020, 9, 2577. [Google Scholar] [CrossRef] [PubMed]
- Van Petegem, F. Ryanodine receptors: Structure and function. J. Biol. Chem. 2012, 287, 31624–31632. [Google Scholar] [CrossRef]
- Kong, H.; Jones, P.P.; Koop, A.; Zhang, L.; Duff, H.J.; Chen, S.R. Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. Biochem. J. 2008, 414, 441–452. [Google Scholar] [CrossRef]
- Kuo, I.Y.; Ehrlich, B.E. Signaling in muscle contraction. Cold Spring Harb. Perspect. Biol. 2015, 7, a006023. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, R.R.; Hoener, M.C.; Berry, M.D. Trace Amines and Their Receptors. Pharmacol. Rev. 2018, 70, 549–620. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S. Adrenal responses to stress. Cell. Mol. Neurobiol. 2010, 30, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Nagatsu, T. The catecholamine system in health and disease—Relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2007, 82, 388–415. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar-Slamloo, Y.; Fazlali, Z. Dopamine and Noradrenaline in the Brain; Overlapping or Dissociate Functions? Front. Mol. Neurosci. 2019, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Speranza, L.; di Porzio, U.; Viggiano, D.; de Donato, A.; Volpicelli, F. Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells 2021, 10, 735. [Google Scholar] [CrossRef] [PubMed]
- Papadelis, C.; Kourtidou-Papadeli, C.; Vlachogiannis, E.; Skepastianos, P.; Bamidis, P.; Maglaveras, N.; Pappas, K. Effects of mental workload and caffeine on catecholamines and blood pressure compared to performance variations. Brain Cogn. 2003, 51, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Mullins, G.R.; Wang, L.; Raje, V.; Sherwood, S.G.; Grande, R.C.; Boroda, S.; Eaton, J.M.; Blancquaert, S.; Roger, P.P.; Leitinger, N.; et al. Catecholamine-induced lipolysis causes mTOR complex dissociation and inhibits glucose uptake in adipocytes. Proc. Natl. Acad. Sci. USA 2014, 111, 17450–17455. [Google Scholar] [CrossRef] [PubMed]
- Purdom, T.; Kravitz, L.; Dokladny, K.; Mermier, C. Understanding the factors that effect maximal fat oxidation. J. Int. Soc. Sports Nutr. 2018, 15, 3. [Google Scholar] [CrossRef]
- Murray, B.; Rosenbloom, C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr. Rev. 2018, 76, 243–259. [Google Scholar] [CrossRef]
- Duffy, J.F.; Cain, S.W.; Chang, A.M.; Phillips, A.J.; Munch, M.Y.; Gronfier, C.; Wyatt, J.K.; Dijk, D.J.; Wright, K.P., Jr.; Czeisler, C.A. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S3), 15602–15608. [Google Scholar] [CrossRef] [PubMed]
- Thore, E.S.J.; Aulsebrook, A.E.; Brand, J.A.; Almeida, R.A.; Brodin, T.; Bertram, M.G. Time is of the essence: The importance of considering biological rhythms in an increasingly polluted world. PLoS Biol. 2024, 22, e3002478. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Reddy, V.; Sharma, S. Physiology, Circadian Rhythm. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Avello, P.A.; Davis, S.J.; Ronald, J.; Pitchford, J.W. Heat the Clock: Entrainment and Compensation in Arabidopsis Circadian Rhythms. J. Circadian Rhythm. 2019, 17, 5. [Google Scholar] [CrossRef] [PubMed]
- Benloucif, S.; Guico, M.J.; Reid, K.J.; Wolfe, L.F.; L’Hermite-Baleriaux, M.; Zee, P.C. Stability of melatonin and temperature as circadian phase markers and their relation to sleep times in humans. J. Biol. Rhythm. 2005, 20, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.; Newton, M.J.; McGuigan, M.R. Circadian rhythms in exercise performance: Implications for hormonal and muscular adaptation. J. Sports Sci. Med. 2011, 10, 600–606. [Google Scholar]
- Hastings, M.H.; Herzog, E.D. Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J. Biol. Rhythm. 2004, 19, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Herzog, E.D.; Hermanstyne, T.; Smyllie, N.J.; Hastings, M.H. Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-Autonomous and Circuit-Level Mechanisms. Cold Spring Harb. Perspect. Biol. 2017, 9, a027706. [Google Scholar] [CrossRef] [PubMed]
- Youngstedt, S.D.; O’Connor, P.J. The influence of air travel on athletic performance. Sports Med. 1999, 28, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Waterhouse, J. Sports performance: Is there evidence that the body clock plays a role? Eur. J. Appl. Physiol. 2009, 106, 321–332. [Google Scholar] [CrossRef]
- Nobari, H.; Azarian, S.; Saedmocheshi, S.; Valdes-Badilla, P.; Garcia Calvo, T. Narrative review: The role of circadian rhythm on sports performance, hormonal regulation, immune system function, and injury prevention in athletes. Heliyon 2023, 9, e19636. [Google Scholar] [CrossRef]
- Hergenhan, S.; Holtkamp, S.; Scheiermann, C. Molecular Interactions Between Components of the Circadian Clock and the Immune System. J. Mol. Biol. 2020, 432, 3700–3713. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.D.; Skene, D.J.; Arendt, J.; Cade, J.E.; Grant, P.J.; Hardie, L.J. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocr. Rev. 2016, 37, 584–608. [Google Scholar] [CrossRef] [PubMed]
- Yadlapalli, S.; Shafer, O.T. How a brain keeps its cool. eLife 2017, 6, e28109. [Google Scholar] [CrossRef] [PubMed]
- Mohd Azmi, N.A.S.; Juliana, N.; Azmani, S.; Mohd Effendy, N.; Abu, I.F.; Mohd Fahmi Teng, N.I.; Das, S. Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System. Int. J. Environ. Res. Public Health 2021, 18, 676. [Google Scholar] [CrossRef] [PubMed]
- Serin, Y.; Acar Tek, N. Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance. Ann. Nutr. Metab. 2019, 74, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Starkie, R.L.; Hargreaves, M.; Lambert, D.L.; Proietto, J.; Febbraio, M.A. Effect of temperature on muscle metabolism during submaximal exercise in humans. Exp. Physiol. 1999, 84, 775–784. [Google Scholar] [CrossRef]
- Periard, J.D.; Eijsvogels, T.M.H.; Daanen, H.A.M. Exercise under heat stress: Thermoregulation, hydration, performance implications, and mitigation strategies. Physiol. Rev. 2021, 101, 1873–1979. [Google Scholar] [CrossRef]
- Xu, H.; Van Remmen, H. The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: A potential target for intervention in aging and skeletal muscle pathologies. Skelet. Muscle 2021, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Ayyar, V.S.; Sukumaran, S. Circadian rhythms: Influence on physiology, pharmacology, and therapeutic interventions. J. Pharmacokinet. Pharmacodyn. 2021, 48, 321–338. [Google Scholar] [CrossRef]
- Malm, C.; Jakobsson, J.; Isaksson, A. Physical Activity and Sports-Real Health Benefits: A Review with Insight into the Public Health of Sweden. Sports 2019, 7, 127. [Google Scholar] [CrossRef]
- Martin-Rodriguez, A.; Gostian-Ropotin, L.A.; Beltran-Velasco, A.I.; Belando-Pedreno, N.; Simon, J.A.; Lopez-Mora, C.; Navarro-Jimenez, E.; Tornero-Aguilera, J.F.; Clemente-Suarez, V.J. Sporting Mind: The Interplay of Physical Activity and Psychological Health. Sports 2024, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Dose, B.; Yalcin, M.; Dries, S.P.M.; Relogio, A. TimeTeller for timing health: The potential of circadian medicine to improve performance, prevent disease and optimize treatment. Front. Digit. Health 2023, 5, 1157654. [Google Scholar] [CrossRef] [PubMed]
- Weidenauer, C.; Vollmer, C.; Scheiter, K.; Randler, C. Weak Associations of Morningness-Eveningness and Stability with Skin Temperature and Cortisol Levels. J. Circadian Rhythm. 2019, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Lazinica, B.; Garofolini, A.; Schoenfeld, B.J.; Saner, N.J.; Mikulic, P. The effects of time of day-specific resistance training on adaptations in skeletal muscle hypertrophy and muscle strength: A systematic review and meta-analysis. Chronobiol. Int. 2019, 36, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Perrey, S.; Denis, R.; Bishop, D. Maximal power, but not fatigability, is greater during repeated sprints performed in the afternoon. Chronobiol. Int. 2010, 27, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Guette, M.; Gondin, J.; Martin, A. Time-of-day effect on the torque and neuromuscular properties of dominant and non-dominant quadriceps femoris. Chronobiol. Int. 2005, 22, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.L.; Lopes-Silva, J.P.; Bertuzzi, R.; Casarini, D.E.; Arita, D.Y.; Bishop, D.J.; Lima-Silva, A.E. Effect of time of day on performance, hormonal and metabolic response during a 1000-M cycling time trial. PLoS ONE 2014, 9, e109954. [Google Scholar] [CrossRef] [PubMed]
- Sedliak, M.; Zeman, M.; Buzgo, G.; Cvecka, J.; Hamar, D.; Laczo, E.; Okuliarova, M.; Vanderka, M.; Kampmiller, T.; Hakkinen, K.; et al. Morphological, molecular and hormonal adaptations to early morning versus afternoon resistance training. Chronobiol. Int. 2018, 35, 450–464. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.S. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass. Front. Physiol. 2017, 8, 788. [Google Scholar] [CrossRef]
- Youn, M.; Gomez, J.O.; Mark, K.; Sakamoto, K.M. RSK Isoforms in Acute Myeloid Leukemia. Biomedicines 2021, 9, 726. [Google Scholar] [CrossRef]
- Coulthard, L.R.; White, D.E.; Jones, D.L.; McDermott, M.F.; Burchill, S.A. p38(MAPK): Stress responses from molecular mechanisms to therapeutics. Trends Mol. Med. 2009, 15, 369–379. [Google Scholar] [CrossRef]
- Artemenko, M.; Zhong, S.S.W.; To, S.K.Y.; Wong, A.S.T. p70 S6 kinase as a therapeutic target in cancers: More than just an mTOR effector. Cancer Lett. 2022, 535, 215593. [Google Scholar] [CrossRef] [PubMed]
- Mateyak, M.K.; Kinzy, T.G. ADP-ribosylation of translation elongation factor 2 by diphtheria toxin in yeast inhibits translation and cell separation. J. Biol. Chem. 2013, 288, 24647–24655. [Google Scholar] [CrossRef]
- Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. MMBR 2011, 75, 50–83. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.S.H.; Teo, W.P.; Warmington, S.A. Effects of training and competition on the sleep of elite athletes: A systematic review and meta-analysis. Br. J. Sports Med. 2019, 53, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Cook, C.J.; Crewther, B.T.; Kilduff, L.P.; Drawer, S.; Gaviglio, C.M. Skill execution and sleep deprivation: Effects of acute caffeine or creatine supplementation—A randomized placebo-controlled trial. J. Int. Soc. Sports Nutr. 2011, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Paradisis, G.P.; Zacharogiannis, E.; Mandila, D.; Smirtiotou, A.; Argeitaki, P.; Cooke, C.B. Multi-Stage 20-m Shuttle Run Fitness Test, Maximal Oxygen Uptake and Velocity at Maximal Oxygen Uptake. J. Hum. Kinet. 2014, 41, 81–87. [Google Scholar] [CrossRef]
- Khcharem, A.; Souissi, W.; Masmoudi, L.; Sahnoun, Z. Repeated low-dose caffeine ingestion during a night of total sleep deprivation improves endurance performance and cognitive function in young recreational runners: A randomized, double-blind, placebo-controlled study. Chronobiol. Int. 2022, 39, 1268–1276. [Google Scholar] [CrossRef]
- Souissi, M.; Chtourou, H.; Abedelmalek, S.; Ghozlane, I.B.; Sahnoun, Z. The effects of caffeine ingestion on the reaction time and short-term maximal performance after 36 h of sleep deprivation. Physiol. Behav. 2014, 131, 1–6. [Google Scholar] [CrossRef]
- Driss, T.; Vandewalle, H. The measurement of maximal (anaerobic) power output on a cycle ergometer: A critical review. BioMed Res. Int. 2013, 2013, 589361. [Google Scholar] [CrossRef]
- Mora-Rodriguez, R.; Garcia Pallares, J.; Lopez-Samanes, A.; Ortega, J.F.; Fernandez-Elias, V.E. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS ONE 2012, 7, e33807. [Google Scholar] [CrossRef] [PubMed]
- Mora-Rodriguez, R.; Pallares, J.G.; Lopez-Gullon, J.M.; Lopez-Samanes, A.; Fernandez-Elias, V.E.; Ortega, J.F. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J. Sci. Med. Sport 2015, 18, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Boyett, J.C.; Giersch, G.E.; Womack, C.J.; Saunders, M.J.; Hughey, C.A.; Daley, H.M.; Luden, N.D. Time of Day and Training Status Both Impact the Efficacy of Caffeine for Short Duration Cycling Performance. Nutrients 2016, 8, 639. [Google Scholar] [CrossRef] [PubMed]
- Souissi, M.; Abedelmalek, S.; Chtourou, H.; Atheymen, R.; Hakim, A.; Sahnoun, Z. Effects of morning caffeine’ ingestion on mood States, simple reaction time, and short-term maximal performance on elite judoists. Asian J. Sports Med. 2012, 3, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Robles-Gonzalez, L.; Ramirez Maldonado, M.; Alcala-Escamilla, J.C.; Jurado-Fasoli, L.; Miras-Moreno, S.; Soriano, M.A.; Garcia-Ramos, A.; Ruiz, J.R.; Amaro-Gahete, F.J. Caffeine ingestion attenuates diurnal variation of lower-body ballistic performance in resistance-trained women. Eur. J. Sport Sci. 2023, 23, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, E.; Scanlan, A.T.; Milanovic, Z.; Fox, J.L.; Stankovic, R.; Dalbo, V.J. Acute caffeine supplementation improves jumping, sprinting, and change-of-direction performance in basketball players when ingested in the morning but not evening. Eur. J. Sport Sci. 2022, 22, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Silva, J.P.; Santos, J.; Franchini, E. Can caffeine supplementation reverse the effect of time of day on repeated-sprint exercise performance? Appl. Physiol. Nutr. Metab. 2019, 44, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Lu, B.; Su, W.; Wang, J.; Zheng, J.; Wang, J.; Wang, Z.; Li, Y.; Sun, Y.; Liu, C. Combined effects of Rhodiola rosea and caffeine supplementation on aerobic endurance and muscle explosiveness: A synergistic approach. Front. Nutr. 2024, 11, 1335950. [Google Scholar] [CrossRef] [PubMed]
- Pakosz, P.; Konieczny, M.; Domaszewski, P.; Dybek, T.; Garcia-Garcia, O.; Gnoinski, M.; Skorupska, E. Muscle contraction time after caffeine intake is faster after 30 minutes than after 60 minutes. J. Int. Soc. Sports Nutr. 2024, 21, 2306295. [Google Scholar] [CrossRef]
- Glowka, N.; Malik, J.; Podgorski, T.; Stemplewski, R.; Maciaszek, J.; Ciazynska, J.; Zawieja, E.E.; Chmurzynska, A.; Nowaczyk, P.M.; Durkalec-Michalski, K. The dose-dependent effect of caffeine supplementation on performance, reaction time and postural stability in CrossFit—A randomized placebo-controlled crossover trial. J. Int. Soc. Sports Nutr. 2024, 21, 2301384. [Google Scholar] [CrossRef]
- Horiuchi, M.; Nagahara, R. Acute effects of caffeine supplementation on kinematics and kinetics of sprinting. Scand. J. Med. Sci. Sports 2024, 34, e14595. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Colmena, D.; Fernandez-Sanchez, J.; Rodriguez-Castano, A.; Casado, A.; Del Coso, J. Effects of Caffeinated Coffee on Cross-Country Cycling Performance in Recreational Cyclists. Nutrients 2024, 16, 668. [Google Scholar] [CrossRef] [PubMed]
- Bougrine, H.; Ammar, A.; Salem, A.; Trabelsi, K.; Jahrami, H.; Chtourou, H.; Souissi, N. Optimizing Short-Term Maximal Exercise Performance: The Superior Efficacy of a 6 mg/kg Caffeine Dose over 3 or 9 mg/kg in Young Female Team-Sports Athletes. Nutrients 2024, 16, 640. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.S.; Sim, R.Y.Y.; Kawabata, M.; Low, D.Y.; Wang, Y.; Burns, S.F. Timing of Caffeine Ingestion Does Not Improve Three-Point Shooting Accuracy in College Basketball Players. Int. J. Sport Nutr. Exerc. Metab. 2024, 34, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Sanchez, J.; Trujillo-Colmena, D.; Rodriguez-Castano, A.; Lavin-Perez, A.M.; Del Coso, J.; Casado, A.; Collado-Mateo, D. Effect of Acute Caffeine Intake on Fat Oxidation Rate during Fed-State Exercise: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 207. [Google Scholar] [CrossRef]
- Grgic, J.; Varovic, D. Moderators of Caffeine’s Effects on Jumping Performance in Females: A Systematic Review and Meta-Analysis. J. Am. Nutr. Assoc. 2024, 43, 92–100. [Google Scholar] [CrossRef]
- Lopez-Seoane, J.; Buitrago-Morales, M.; Jimenez, S.L.; Del Coso, J.; Pareja-Galeano, H. Synergy of carbohydrate and caffeine ingestion on physical performance and metabolic responses to exercise: A systematic review with meta-analysis. Crit. Rev. Food Sci. Nutr. 2024, 64, 2941–2959. [Google Scholar] [CrossRef] [PubMed]
- Marinho, A.H.; Lopes-Silva, J.P.; Cristina-Souza, G.; Sousa, F.A.B.; Ataide-Silva, T.; Lima-Silva, A.E.; Araujo, G.G.; Silva-Cavalcante, M.D. Effects of caffeine ingestion on cardiopulmonary responses during a maximal graded exercise test: A systematic review with meta-analysis and meta-regression. Crit. Rev. Food Sci. Nutr. 2024, 64, 127–139. [Google Scholar] [CrossRef]
- Held, S.; Rappelt, L.; Donath, L. Acute and Chronic Performance Enhancement in Rowing: A Network Meta-analytical Approach on the Effects of Nutrition and Training. Sports Med. 2023, 53, 1137–1159. [Google Scholar] [CrossRef]
- Vansteensel, M.J.; Michel, S.; Meijer, J.H. Organization of cell and tissue circadian pacemakers: A comparison among species. Brain Res. Rev. 2008, 58, 18–47. [Google Scholar] [CrossRef]
- Deboer, T. Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other’s functioning? Neurobiol. Sleep Circadian Rhythm. 2018, 5, 68–77. [Google Scholar] [CrossRef] [PubMed]
- van Diepen, H.C.; Schoonderwoerd, R.A.; Ramkisoensing, A.; Janse, J.A.M.; Hattar, S.; Meijer, J.H. Distinct contribution of cone photoreceptor subtypes to the mammalian biological clock. Proc. Natl. Acad. Sci. USA 2021, 118, e2024500118. [Google Scholar] [CrossRef] [PubMed]
- Porkka-Heiskanen, T.; Strecker, R.E.; McCarley, R.W. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: An in vivo microdialysis study. Neuroscience 2000, 99, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Hannibal, J. Comparative Neurology of Circadian Photoreception: The Retinohypothalamic Tract (RHT) in Sighted and Naturally Blind Mammals. Front. Neurosci. 2021, 15, 640113. [Google Scholar] [CrossRef] [PubMed]
- Hallworth, R.; Cato, M.; Colbert, C.; Rea, M.A. Presynaptic adenosine A1 receptors regulate retinohypothalamic neurotransmission in the hamster suprachiasmatic nucleus. J. Neurobiol. 2002, 52, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Sigworth, L.A.; Rea, M.A. Adenosine A1 receptors regulate the response of the mouse circadian clock to light. Brain Res. 2003, 960, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Elliott, K.J.; Todd Weber, E.; Rea, M.A. Adenosine A1 receptors regulate the response of the hamster circadian clock to light. Eur. J. Pharmacol. 2001, 414, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.K.; Bouaouda, H.; Gourmelen, S.; Dumont, S.; Fuchs, F.; Goumon, Y.; Bourgin, P.; Kalsbeek, A.; Challet, E. Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent. J. Neurosci. 2017, 37, 4343–4358. [Google Scholar] [CrossRef] [PubMed]
- Dragoi, C.M.; Nicolae, A.C.; Ungurianu, A.; Margina, D.M.; Gradinaru, D.; Dumitrescu, I.B. Circadian Rhythms, Chrononutrition, Physical Training, and Redox Homeostasis-Molecular Mechanisms in Human Health. Cells 2024, 13, 138. [Google Scholar] [CrossRef]
- Zou, H.; Zhou, H.; Yan, R.; Yao, Z.; Lu, Q. Chronotype, circadian rhythm, and psychiatric disorders: Recent evidence and potential mechanisms. Front. Neurosci. 2022, 16, 811771. [Google Scholar] [CrossRef]
- Agoston, C.; Urban, R.; Rigo, A.; Griffiths, M.D.; Demetrovics, Z. Morningness-eveningness and caffeine consumption: A largescale path-analysis study. Chronobiol. Int. 2019, 36, 1301–1309. [Google Scholar] [CrossRef]
- Burke, T.M.; Markwald, R.R.; McHill, A.W.; Chinoy, E.D.; Snider, J.A.; Bessman, S.C.; Jung, C.M.; O’Neill, J.S.; Wright, K.P., Jr. Effects of caffeine on the human circadian clock in vivo and in vitro. Sci. Transl. Med. 2015, 7, 305ra146. [Google Scholar] [CrossRef]
- Segu, A.; Kannan, N.N. The duration of caffeine treatment plays an essential role in its effect on sleep and circadian rhythm. Sleep Adv. 2023, 4, zpad014. [Google Scholar] [CrossRef]
- Melendez-Fernandez, O.H.; Liu, J.A.; Nelson, R.J. Circadian Rhythms Disrupted by Light at Night and Mistimed Food Intake Alter Hormonal Rhythms and Metabolism. Int. J. Mol. Sci. 2023, 24, 3392. [Google Scholar] [CrossRef]
- Gardiner, C.; Weakley, J.; Burke, L.M.; Roach, G.D.; Sargent, C.; Maniar, N.; Townshend, A.; Halson, S.L. The effect of caffeine on subsequent sleep: A systematic review and meta-analysis. Sleep Med. Rev. 2023, 69, 101764. [Google Scholar] [CrossRef]
- Cooper, J.M.; Halter, K.A.; Prosser, R.A. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol. Sleep Circadian Rhythm. 2018, 5, 15–36. [Google Scholar] [CrossRef]
- St Hilaire, M.A.; Lockley, S.W. Caffeine does not entrain the circadian clock but improves daytime alertness in blind patients with non-24-hour rhythms. Sleep Med. 2015, 16, 800–804. [Google Scholar] [CrossRef]
- Wilk, M.; Filip, A.; Krzysztofik, M.; Gepfert, M.; Zajac, A.; Del Coso, J. Acute Caffeine Intake Enhances Mean Power Output and Bar Velocity during the Bench Press Throw in Athletes Habituated to Caffeine. Nutrients 2020, 12, 406. [Google Scholar] [CrossRef]
- Goldstein, E.R.; Ziegenfuss, T.; Kalman, D.; Kreider, R.; Campbell, B.; Wilborn, C.; Taylor, L.; Willoughby, D.; Stout, J.; Graves, B.S.; et al. International society of sports nutrition position stand: Caffeine and performance. J. Int. Soc. Sports Nutr. 2010, 7, 5. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Marques-Jimenez, D.; Refoyo, I.; Del Coso, J.; Leon-Guereno, P.; Calleja-Gonzalez, J. Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, S.; Piacentino, D.; Sani, G.; Aromatario, M. Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Curr. Neuropharmacol. 2015, 13, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sports Med. 2021, 51, 2281–2298. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Soliman, N.; Soliman, A.T.; Elsedfy, H.; Di Maio, S.; El Kholy, M.; Fiscina, B. Caffeinated energy drink consumption among adolescents and potential health consequences associated with their use: A significant public health hazard. Acta Bio Medica Atenei Parm. 2017, 88, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Barreto, G.; Loureiro, L.M.R.; Reis, C.E.G.; Saunders, B. Effects of caffeine chewing gum supplementation on exercise performance: A systematic review and meta-analysis. Eur. J. Sport Sci. 2023, 23, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Wheless, J.W.; Phelps, S.J. A Clinician’s Guide to Oral Extended-Release Drug Delivery Systems in Epilepsy. J. Pediatr. Pharmacol. Ther. 2018, 23, 277–292. [Google Scholar] [CrossRef]
- Rodak, K.; Kokot, I.; Kratz, E.M. Caffeine as a Factor Influencing the Functioning of the Human Body-Friend or Foe? Nutrients 2021, 13, 3088. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, W.; Xue, Y.; Hou, D.; Chen, S.; Xu, Z.; Peng, S.; Zhao, H.; Wang, C.; Liu, C. Timing Matters: Time of Day Impacts the Ergogenic Effects of Caffeine—A Narrative Review. Nutrients 2024, 16, 1421. https://doi.org/10.3390/nu16101421
Zhang Y, Yang W, Xue Y, Hou D, Chen S, Xu Z, Peng S, Zhao H, Wang C, Liu C. Timing Matters: Time of Day Impacts the Ergogenic Effects of Caffeine—A Narrative Review. Nutrients. 2024; 16(10):1421. https://doi.org/10.3390/nu16101421
Chicago/Turabian StyleZhang, Ye, Weijun Yang, Yizhang Xue, Dingchun Hou, Songyue Chen, Zhiqin Xu, Sijia Peng, Haotian Zhao, Can Wang, and Chang Liu. 2024. "Timing Matters: Time of Day Impacts the Ergogenic Effects of Caffeine—A Narrative Review" Nutrients 16, no. 10: 1421. https://doi.org/10.3390/nu16101421
APA StyleZhang, Y., Yang, W., Xue, Y., Hou, D., Chen, S., Xu, Z., Peng, S., Zhao, H., Wang, C., & Liu, C. (2024). Timing Matters: Time of Day Impacts the Ergogenic Effects of Caffeine—A Narrative Review. Nutrients, 16(10), 1421. https://doi.org/10.3390/nu16101421