The Beneficial Effects of Nordic Walking Training Combined with Time-Restricted Eating 14/24 in Women with Abnormal Body Composition Depend on the Application Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Study Protocol
2.3. Time-Restricted Eating
2.4. NW Training
2.5. Somatic Measurements and Assessment of Body Composition
2.6. Blood-Parameters Measurements
2.7. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harborg, S.; Kjærgaard, K.A.; Thomsen, R.; Borgquist, S.; Cronin-Fenton, D.; Hjorth, C. New Horizons: Epidemiology of Obesity, Diabetes Mellitus, and Cancer Prognosis. J. Clin. Endocrinol. Metab. 2024, 109, 924–935. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, B.; Hill, J.; Gunn, A. Obesity: Scope, Lifestyle Interventions, and Medical Management. Tech. Vasc. Interv. Radiol. 2020, 23, 100653. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lastra, M.; Miller, K.; Martínez-Lemos, R.; Giráldez, A.; Ayán, C. Nordic Walking for Overweight and Obese People: A Systematic Review and Meta-Analysis. J. Phys. Act. Health 2020, 17, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Runenko, S.; Achkasov, E.; Volodina, K.; Zhukovskaya, A.; Mushkambarov, N.; Butko, D. Nordic Walking as an effective physical activity for weight loss among overweight young adults in high schools. J. Sports Med. Phys. Fit. 2020, 60, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Cebula, A.; Tyka, A.; Tyka, A.; Pałka, T.; Pilch, W.; Luty, L.; Mucha, D. Physiological response and cardiorespiratory adaptation after a 6-week Nordic Walking training targeted at lipid oxidation in a group of post-menopausal women. PLoS ONE 2020, 15, e0230917. [Google Scholar] [CrossRef] [PubMed]
- Hartvigsen, J.; Morsø, L.; Bendix, T.; Manniche, C. Supervised and non-supervised Nordic walking in the treatment of chronic low back pain: A single blind randomized clinical trial. BMC Musculoskelet. Disord. 2010, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Cugusi, L.; Manca, A.; Yeo, T.; Bassareo, P.; Mercuro, G.; Kaski, J. Nordic walking for individuals with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Prev. Cardiol. 2017, 24, 1938–1955. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska-Ledwig, O.; Jurczyszynm, A.; Piotrowska, A.; Pilch, W.; Antosiewicz, J.; Żychowska, M. The Effect of a Six-Week Nordic Walking Training Cycle on Oxidative Damage of Macromolecules and Iron Metabolism in Older Patients with Multiple Myeloma in Remission-Randomized Clinical Trial. Int. J. Mol. Sci. 2023, 24, 15358. [Google Scholar] [CrossRef] [PubMed]
- Hanuszkiewicz, J.; Woźniewski, M.; Malicka, I. The Influence of Nordic Walking on Isokinetic Trunk Muscle Endurance and Sagittal Spinal Curvatures in Women after Breast Cancer Treatment: Age-Specific Indicators. Int. J. Environ. Res. Public Health 2021, 18, 2409. [Google Scholar] [CrossRef]
- Santoyo-Medina, C.; Janer Cabo, M.; Xaudaró, D.; Sanmillan, G.; Sanchez Pous, S.; Cartaña, I.; Meza Murillo, E.; Sastre-Garriga, J.; Montalban, X. Effect of Nordic Walking Training on Walking Capacity and Quality of Life for People with Multiple Sclerosis. Int. J. MS Care 2023, 25, 118–123. [Google Scholar] [CrossRef]
- Angiolillo, A.; Leccese, D.; Ciccotelli, S.; Di Cesare, G.; D’Elia, K.; Aurisano, N.; Matrone, C.; Dentizzi, C.; Di Costanzo, A. Effects of Nordic walking in Alzheimer’s disease: A single-blind randomized controlled clinical trial. Heliyon 2023, 9, e15865. [Google Scholar] [CrossRef] [PubMed]
- Harro, C.; Horak, I.; Valley, K.; Wagner, D. Nordic walking training in persons with Parkinson’s disease: Individualized prescription-A case series. Physiother. Theory Pract. 2023, 39, 2208–2222. [Google Scholar] [CrossRef] [PubMed]
- Kortas, J.; Reczkowicz, J.; Juhas, U.; Ziemann, E.; Świątczak, A.; Prusik, K.; Olszewski, S.; Soltani, N.; Rodziewicz-Flis, E.; Flis, D.; et al. Iron status determined changes in health measures induced by nordic walking with time-restricted eating in older adults- a randomised trial. BMC Geriatr. 2024, 29, 300. [Google Scholar] [CrossRef] [PubMed]
- Lubkowska, A.; Dudzińska, W.; Bryczkowska, I.; Dołęgowska, B. Body composition, lipid profile, adipokine concentration, and antioxidant capacity changes during interventions to treat overweight with exercise programme and whole-body cryostimulation. Oxid. Med. Cell Longev. 2015, 2015, 803197. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, A.; Liu, B.; Wood, R.; Vincent, A.; Thompson, C.; O’Callaghan, N.; Wittert, G.; Heilbronn, L. Effects of Intermittent Versus Continuous Energy Intakes on Insulin Sensitivity and Metabolic Risk in Women with Overweight. Obesity 2019, 27, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Margină, D.; Drăgoi, C. Intermittent Fasting on Human Health and Disease. Nutrients 2023, 15, 4491. [Google Scholar] [CrossRef] [PubMed]
- Uher, I.; Kűchelová, Z.; Icimboláková, I.; Pivovarník, J. Intermittent fasting and its influence on health. Phys. Act. Rev. 2016, 4, 184–191. [Google Scholar] [CrossRef]
- Stockman, M.; Thomas, D.; Burke, J.; Apovian, C. Intermittent Fasting: Is the Wait Worth the Weight? Curr. Obes. Rep. 2018, 7, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Hong, N.; Kim, K.; Cho, S.; Lee, M.; Lee, Y.; Lee, Y.; Kang, E.; Cha, B.; Lee, B. The Effectiveness of Intermittent Fasting to Reduce Body Mass Index and Glucose Metabolism: A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 1645. [Google Scholar] [CrossRef]
- Puchalska, P.; Crawford, P. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef]
- Veech, R.; Bradshaw, P.; Clarke, K.; Curtis, W.; Pawlosky, R.; King, M. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life 2017, 69, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Dzidek, A.; Czerwińska-Ledwig, O.; Żychowska, M.; Pilch, W.; Piotrowska, A. The Role of Increased Expression of Sirtuin 6 in the Prevention of Premature Aging Pathomechanisms. Int. J. Mol. Sci. 2023, 24, 9655. [Google Scholar] [CrossRef] [PubMed]
- Francisco, V.; Pino, J.; Gonzalez-Gay, A.; Mera, A.; Lago, F.; Gómez, R.; Mobasheri, A.; Gualillo, O. Adipokines and inflammation: Is it a question of weight? Br. J. Pharmacol. 2018, 175, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Du, D.; Li, X. Leptin Levels in Women With Polycystic Ovary Syndrome: A Systematic Review and a Meta-Analysis. Reprod. Sci. 2017, 24, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Gogga, P.; Karbowska, J.; Meissner, W.; Kochan, Z. Role of leptin in the regulation of lipid and carbohydrate metabolism. Adv. Hyg. Exp. Med. 2011, 65, 255–262. (In Polish) [Google Scholar] [CrossRef]
- Lettieri-Barbato, D.; Giovannetti, E.; Aquilano, K. Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human. Aging 2016, 8, 3341–3355. [Google Scholar] [CrossRef] [PubMed]
- Balducci, S.; Zanuso, S.; Nicolucci, A.; Fernando, F.; Cavallo, S.; Cardelli, P.; Fallucca, S.; Alessi, E.; Letizia, C.; Jimenez, A.; et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Janowska, J.; Zahorska-Markiewicz, B.; Olszanecka-Glinianowicz, M. Relationship between serum resistin concentration and proinflammatory cytokines in obese women with impaired and normal glucose tolerance. Metabolism 2006, 55, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Li, Y.; Zhang, D.; Yuan, J.; Zhang, C.; Liu, Y.; Song, L.; Lin, Q.; Li, M.; Dong, J. Relation of Circulating Resistin to Insulin Resistance in Type 2 Diabetes and Obesity: A Systematic Review and Meta-Analysis. Front. Physiol. 2019, 10, 1399. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ramírez-Vélez, R.; Díez, J.; González, A.; Izquierdo, M. Exercise training-induced changes in exerkine concentrations may be relevant to the metabolic control of type 2 diabetes mellitus patients: A systematic review and meta-analysis of randomized controlled trials. J. Sport Health Sci. 2023, 12, 147–157. [Google Scholar] [CrossRef]
- Vuolteenaho, K.; Leppänen, T.; Kekkonen, R.; Korpela, R.; Moilanen, E. Running a marathon induces changes in adipokine levels and in markers of cartilage degradation—Novel role for resistin. PLoS ONE 2014, 9, e110481. [Google Scholar] [CrossRef] [PubMed]
- Kilgour, L.; Parker, A. Gender, physical activity and fear: Women, exercise and the great outdoors. Qual. Res. Sport Exerc. Health 2013, 5, 43–57. [Google Scholar] [CrossRef]
- Hunter, G.; Weinsier, R.; Gower, B.; Wetzstein, C. Age-related decrease in resting energy expenditure in sedentary white women: Effects of regional differences in lean and fat mass. Am. J. Clin. Nutr. 2001, 73, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Anekwe, C.; Jarrell, A.; Townsend, M.; Gaudier, G.; Hiserodt, J.; Stanford, F. Socioeconomics of Obesity. Curr. Obes. Rep. 2020, 9, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Konttinen, H.; van Strien, T.; Männistö, S.; Jousilahti, P.; Haukkala, A. Depression, emotional eating and long-term weight changes: A population-based prospective study. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Piotrowicz, E.; Zieliński, T.; Bodalski, R.; Rywik, T.; Dobraszkiewicz-Wasilewska, B.; Sobieszczańska-Małek, M.; Stepnowska, M.; Przybylski, A.; Browarek, A.; Szumowski, Ł.; et al. Home-based telemonitored Nordic walking training is well accepted, safe, effective and has high adherence among heart failure patients, including those with cardiovascular implantable electronic devices: A randomised controlled study. Eur. J. Prev. Cardiol. 2015, 22, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Kantaneva, M. Sauvakävely—Nordic Walking. 2005. Available online: https://onwf.org/originalnordicwalkingbookeng/ (accessed on 28 February 2024).
- Oja, P.; Laukkanen, R.; Pasanen, M.; Tyry, T.; Vuori, I. A 2-km walking test for assessing the cardiorespiratory fitness of healthy adults. Int. J. Sports Med. 1991, 12, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Nes, B.M.; Janszky, I.; Wisløff, U.; Støylen, A.; Karlsen, T. Age-Predicted Maximal Heart Rate in Healthy Subjects: The HUNT Fitness Study. Scand. J. Med. Sci. Sport 2013, 23, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Dobiásová, M. Atherogenic index of plasma [log(triglycerides/HDL-cholesterol)]: Theoretical and practical implications. Clin. Chem. 2004, 50, 1113–1115. [Google Scholar] [CrossRef]
- Sadowska-Krępa, E.; Gdańska, A.; Rozpara, M.; Pilch, W.; Přidalová, M.; Bańkowski, S. Effect of 12-Week Interventions Involving Nordic Walking Exercise and a Modified Diet on the Anthropometric Parameters and Blood Lipid Profiles in Overweight and Obese Ex-Coal Miners. Obes. Facts 2020, 13, 201–212. [Google Scholar] [CrossRef]
- Cebula, A.; Tyka, A.; Pilch, W. Effects of 6-week Nordic walking training on body composition and antioxidant status for women 55 years of age. Int. J. Occup. Med. Environ. Health 2017, 30, 445–454. [Google Scholar]
- Pilch, W.; Tota, Ł.; Piotrowska, A.; Śliwicka, E.; Czerwińska-Ledwig, O.; Zuziak, R.; Pilaczyńska-Szcześniak, Ł. Effects of Nordic Walking on Oxidant and Antioxidant Status: Levels of Calcidiol and Proinflammatory Cytokines in Middle-Aged Women. Oxid. Med. Cell Longev. 2018, 2018, 6468234. [Google Scholar] [CrossRef] [PubMed]
- Pilch, W.; Tota, Ł.; Sadowska-Krępa, E.; Piotrowska, A.; Kępińska, M.; Pałka, T.; Maszczyk, A. The Effect of a 12-Week Health Training Program on Selected Anthropometric and Biochemical Variables in Middle-Aged Women. Biomed. Res. Int. 2017, 2017, 9569513. [Google Scholar] [CrossRef]
- Cao, L.; Jiang, Y.; Li, Q.; Wang, J.; Tan, S. Exercise Training at Maximal Fat Oxidation Intensity for Overweight or Obese Older Women: A Randomized Study. J. Sports Sci. Med. 2019, 18, 413–418. [Google Scholar] [PubMed]
- Kantorowicz, M.; Szymura, J.; Szygula, Z.; Kusmierczyk, J.; Maciejczyk, M.; Wiecek, M. Nordic walking at maximal fat oxidation intensity decreases circulating asprosin and visceral obesity in women with metabolic disorders. Front. Physiol. 2021, 12, 726783. [Google Scholar] [CrossRef] [PubMed]
- Muollo, V.; Rossi, A.; Milanese, C.; Zamboni, M.; Rosa, R.; Schena, F.; Pellegrini, B. Prolonged unsupervised Nordic walking and walking exercise following six months of supervision in adults with overweight and obesity: A randomised clinical trial. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Grodecka, A.; Czerwińska-Ledwig, O.; Dzidek, A.; Lis, W.; Cwalińska, D.; Kozioł, W.; Teległów, A.; Pałka, T.; Piotrowska, A. Effect of the hypoxic chamber training series on skin characteristics of overweight and obese women. Cosmetics 2023, 10, 128. [Google Scholar] [CrossRef]
- Manoogian, E.; Zadourian, A.; Lo, H.; Gutierrez, N.; Shoghi, A.; Rosander, A.; Pazargadi, A.; Ormiston, C.; Wang, X.; Sui, J.; et al. Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-h shift workers: The Healthy Heroes randomized control trial. Cell Metab. 2022, 34, 1442–1456.e7. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Farooq, J.; Siddiqi, H.; Meo, S.; Kulsoom, B.; Laghari, A.; Jamshed, H.; Pasha, F. Impact of Intermittent Fasting on Lipid Profile-A Quasi-Randomized Clinical Trial. Front. Nutr. 2021, 7, 596787. [Google Scholar] [CrossRef]
- Ahmed, K.; Abdu, Y.; Khasawneh, S.; Shukri, A.; Adam, E.; Mustafa, S.; Affas, M.; Mohamed Ibrahim, M.; Al Zayed, A.; Yassin, M. The effect of intermittent fasting on the clinical and hematological parameters of patients with sickle cell disease: A preliminary study. Front. Med. 2023, 10, 1097466. [Google Scholar] [CrossRef]
- Gasmi, M.; Sellami, M.; Denham, J.; Padulo, J.; Kuvacic, G.; Selmi, W.; Khalifa, R. Time-restricted feeding influences immune responses without compromising muscle performance in older men. Nutrition 2018, 51–52, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Luo, Y.; Li, Y.; Zhang, F.; Zhang, X.; Zhou, X.; Ji, L. Sex- and body mass index-specific reference intervals for serum leptin: A population based study in China. Nutr. Metab. 2022, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, R.; Chu, H.; Castracane, V. Leptin and exercise. Exp. Biol. Med. 2002, 227, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Hickey, M.; Houmard, J.; Considine, R.; Tyndall, G.; Midgette, J.; Gavigan, K.; Weidner, M.; McCammon, M.; Israel, R.; Caro, J. Gender-dependent effects of exercise training on serum leptin levels in humans. Am. J. Physiol. 1997, 272, E562–E566. [Google Scholar] [CrossRef] [PubMed]
- Pasman, W.; Westerterp-Plantenga, M.; Saris, W. The effect of exercise training on leptin levels in obese males. Am. J. Physiol. 1998, 274, E280–E286. [Google Scholar] [CrossRef]
- Schäffler, A.; Büchler, C.; Müller-Ladner, U.; Herfarth, H.; Ehling, A.; Paul, G.; Schölmerich, J.; Zietz, B. Identification of variables influencing resistin serum levels in patients with type 1 and type 2 diabetes mellitus. Horm. Metab. Res. 2004, 36, 702–707. [Google Scholar] [CrossRef]
Parameter | Total (Baseline) | Group | Before | After | p, η2 |
---|---|---|---|---|---|
Body Hight [cm] | 162.08 ± 5.78 | SG6 | 162.67 ± 5.46 | >0.05 | |
CON6 | 160.44 ± 4.45 | ||||
SG12 | 161.01 ± 6.41 | ||||
CON12 | 164.06 ± 6.38 | ||||
Body Mass [kg] | 77.39 ± 17.73 | SG6 | 79.57 ± 8.04 | 77.98 ± 8.22 | Time: 0.018, 0.132 Group: 0.053, 0.173 Time × group < 0.001, 0.333 |
CON6 | 88.54 ± 25.42 | 89.62 ± 25.38 | |||
SG12 | 67.79 ± 13.48 | 66.82 ± 12.79 * | |||
CON12 | 77.25 ± 18.44 | 78.00 ± 18.92 | |||
Lean Body Mass [kg] | 47.39 ± 6.49 | SG6 | 48.96 ± 4.83 | 48.53 ± 4.37 | Time: 0.512 Group: 0.107 Time × group: 0.733 |
CON6 | 50.23 ± 5.98 | 50.66 ± 5.85 | |||
SG12 | 43.78 ± 5.73 | 44.04 ± 6.05 | |||
CON12 | 47.62 ± 8.03 | 46.94 ± 7.72 | |||
Total Body Water [kg] | 34.10 ± 5.08 | SG6 | 35.25 ± 3.49 | 34.94 ± 3.17 | Time: 0.296 Group: 0.163 Time × group: 0.158 |
CON6 | 36.78 ± 5.12 | 37.06 ± 5.00 | |||
SG12 | 32.18 ± 4.21 | 32.38 ± 4.44 | |||
CON12 | 32.93 ± 6.60 | 34.40 ± 5.59 | |||
Total Body Water [%] | 45.23 ± 4.88 | SG6 | 44.33 ± 1.59 | 44.91 ± 1.98 * | Time: 0.049, 0.096 Group: 0.059, 0.172 Time × group: 0.332 |
CON6 | 42.12 ± 19.88 | 42.66 ± 15.13 | |||
SG12 | 48.37 ± 6.44 # | 49.35 ± 6.75 #* | |||
CON12 | 43.18 ± 4.86 # | 44.02 ± 4.75 | |||
Body Fat [kg] | 30.32 ± 12.92 | SG6 | 30.43 ± 4.25 | 29.47 ± 4.69 | Time: 0.021, 0.126 Group: 0.074, 0.158 Time × group: 0.060, 0.167 |
CON6 | 38.31 ± 20.76 | 38.99 ± 20.73 | |||
SG12 | 24.02 ± 9.92 | 22.78 ± 9.83 | |||
CON12 | 31.10 ± 11.92 | 31.06 ± 11.83 | |||
Body Fat [%] | 37.32 ± 6.39 | SG6 | 38.24 ± 2.47 | 37.64 ± 2.74 | Time: <0.001, 0.784 Group: 0.103 Time × group: 0.143 |
CON6 | 38.74 ± 4.01 | 39.26 ± 4.51 | |||
SG12 | 34.19 ± 8.75 | 32.87 ± 9.17 * | |||
CON12 | 38.99 ± 6.90 | 38.58 ± 6.45 * | |||
Body Mass Index [kg/m2] | 29.35 ± 6.42 | SG6 | 30.04 ± 2.29 | 29.46 ± 2.57 | Time: 0.158 Group: 0.020, 0.216 Time × group: 0.012, 0.238 |
CON6 | 34.29 ± 10.18 # | 34.77 ± 10.05 | |||
SG12 | 29.41 ± 4.53 | 27.95 ± 4.45 * | |||
CON12 | 28.43 ± 5.57 | 28.89 ± 5.91 | |||
Visceral Fat Area [cm2] | 139.75 ± 35.10 | SG6 | 136.09 ± 34.68 | 130.73 ± 37.95 | Time: 0.164 Group: 0.692 Time × group: 0.316 |
CON6 | 143.80 ± 45.07 | 145.20 ± 43.24 | |||
SG12 | 134.09 ± 33.43 | 130.03 ± 35.43 | |||
CON12 | 147.47 ± 32.89 | 149.05 ± 33.95 |
Parameter | Total (Baseline) | Group | Before | After | p, η2 |
---|---|---|---|---|---|
Total Cholesterol [mmol/L] | 5.175 ± 1.155 | SG6 | 5.590 ± 0.748 | 5.259 ± 0.882 | Time: 0.526 Group: 0.820 Time × group: 0.345 |
CON6 | 5.167 ± 0.828 | 5.230 ± 0.950 | |||
SG12 | 5.029 ± 1.403 | 5.122 ± 1.381 | |||
CON12 | 5.009 ± 1.400 | 4.965 ± 1.301 | |||
High-Density Lipoprotein [mmol/L] | 1.608 ± 0.366 | SG6 | 1.572 ± 0.154 | 1.681 ± 0.447 | Time: 0.660 Group: 0.985 Time × group: 0.057, 0.022 |
CON6 | 1.560 ± 0.331 | 1.705 ± 0.427 | |||
SG12 | 1.643 ± 0.420 | 1.571 ± 0.384 | |||
CON12 | 1.641 ± 0.472 | 1.584 ± 0.395 | |||
Low-Density Lipoprotein [mmol/L] | 2.921 ± 1.012 | SG6 | 3.282 ± 0.789 | 2.919 ± 0.900 | Time: 0.545 Group: 0.914 Time × group: 0.360 |
CON6 | 2.810 ± 0.759 | 2.878 ± 1.011 | |||
SG12 | 2.809 ± 1.244 | 2.916 ± 1.213 | |||
CON12 | 2.851 ± 1.138 | 2.860 ± 1.101 | |||
Triglycerides [mmol/L] | 1.416 ± 0.686 | SG6 | 1.617 ± 0.579 | 1.450 ± 0.393 | Time: 0.770 Group: 0.173 Time × group: 0.228 |
CON6 | 1.756 ± 0.953 | 1.638 ± 0.744 | |||
SG12 | 1.259 ± 0.571 | 1.384 ± 0.752 | |||
CON12 | 1.129 ± 0.462 | 1.143 ± 0.497 | |||
Glucose [mmol/L] | 5.508 ± 1.116 | SG6 | 5.287 ± 0.878 | 5.110 ± 0.687 | Time: 0.617 Group: 0.763 Time × group: 0.347 |
CON6 | 5.305 ± 0.616 | 5.779 ± 2.077 | |||
SG12 | 5.671 ± 1.757 | 5.568 ± 1.645 | |||
CON12 | 5.686 ± 0.806 | 5.421 ± 0.774 | |||
Atherogenic Index of Plasma | −0.081 ± 0.251 | SG6 | −0.009 ± 0.157 | −0.061 ± 0.139 | Time: 0.154 Group: 0.176 Time × group: 0.109 |
CON6 | 0.012 ± 0.237 | −0.035 ± 0.158 | |||
SG12 | −0.144 ± 0.277 | −0.090 ± 0.275 | |||
CON12 | −0.178 ± 0.279 | −0.148 ± 0.240 | |||
Low-Density Lipoprotein–High-Density Lipoprotein ratio | 1.711 ± 0.768 | SG6 | 1.771 ± 1.014 | 1.694 ± 0.864 | Time: 0.011, 0.023 Group: 0.574 Time × group: 0.048, 0.034 |
CON6 | 1.575 ± 0.867 | 1.368 ± 0.975 # | |||
SG12 | 1.772 ± 0.716 | 1.900 ± 0.685 # | |||
CON12 | 1.732 ± 1.014 | 1.656 ± 0.699 |
Parameter | Total (Baseline) | Group | Before | After | p, η2 |
---|---|---|---|---|---|
Leukocytes [thousand/μL] | 6.223 ± 1.611 | SG6 | 6.998 ± 1.715 | 7.477 ± 1.631 # | Time: 0.030, 0.009 Group: 0.017, 0.209 Time × group: 0.448 |
CON6 | 6.859 ± 1.737 | 7.456 ± 2.442 | |||
SG12 | 5.240 ± 0.951 | 5.683 ± 0.883 # | |||
CON12 | 6.158 ± 1.591 | 5.915 ± 1.843 | |||
Erythrocytes [thousand/μL] | 4.514 ± 0.291 | SG6 | 4.539 ± 0.250 | 4.479 ± 0.244 | Time: 0.038, 0.007 Group: 0.270 Time × group: 0.496 |
CON6 | 4.582 ± 0.266 | 4.509 ± 0.268 | |||
SG12 | 4.396 ± 0.251 | 4.292 ± 0.247 | |||
CON12 | 4.568 ± 0.363 | 4.539 ± 0.375 | |||
Hemoglobin [g/dL] | 13.677 ± 0.840 | SG6 | 13.780 ± 0.767 | 13.710 ± 0.741 | Time: 0.467 Group: 0.638 Time × group: 0.094 |
CON6 | 13.537 ± 0.597 | 13.671 ± 0.927 | |||
SG12 | 13.592 ± 0.818 | 13.238 ± 0.788 | |||
CON12 | 13.762 ± 1.086 | 13.842 ± 1.115 | |||
Hematocrit [%] | 41.044 ± 2.162 | SG6 | 40.490 ± 1.886 | 40.160 ± 1.968 | Time: 0.042, 0.012 Group: 0.184 Time × group: 0.368 |
CON6 | 40.450 ± 1.072 | 39.986 ± 1.604 | |||
SG12 | 41.092 ± 2.093 | 39.938 ± 2.281 | |||
CON12 | 41.831 ± 2.817 | 41.983 ± 3.151 | |||
Mean Corpuscular Volume [fl] | 91.096 ± 3.950 | SG6 | 89.320 ± 3.066 # | 89.750 ± 3.149 | Time: 0.500 Group: 0.006, 0.257 Time × group: 0.281 |
CON6 | 88.487 ± 4.496 | 88.614 ± 3.704 | |||
SG12 | 93.562 ± 2.872 # | 93.108 ± 2.689 | |||
CON12 | 91.738 ± 3.859 | 92.608 ± 3.574 | |||
Mean Corpuscular Hemoglobin Concentration [g/dL] | 33.323 ± 1.136 | SG6 | 34.030 ± 0.941 # | 34.160 ± 1.475 | Time: 0.079, 0.016 Group: 0.012, 0.187 Time × group: 0.370 |
CON6 | 33.462 ± 1.199 | 34.157 ± 1.036 | |||
SG12 | 33.077 ± 0.958 | 33.154 ± 0.585 | |||
CON12 | 32.885 ± 1.223 # | 32.958 ± 0.673 | |||
Platelets [thousand/μL] | 258.782 ± 71.160 | SG6 | 268.200 ± 65.252 | 259.400 ± 60.462 | Time: 0.880 Group: 0.256 Time × group: 0.296 |
CON6 | 283.625 ± 69.998 | 277.714 ± 54.322 | |||
SG12 | 220.154 ± 44.151 | 226.923 ± 55.749 | |||
CON12 | 274.154 ± 88.579 | 260.750 ± 74.496 | |||
Mean Platelet Volume [fl] | 10.917 ± 0.915 | SG6 | 10.880 ± 0.854 | 10.820 ± 0.649 | Time: 0.240 Group: 0.891 Time × group: 0.323 |
CON6 | 10.688 ± 1.147 | 11.000 ± 0.929 | |||
SG12 | 11.085 ± 0.912 | 11.108 ± 0.956 | |||
CON12 | 10.923 ± 0.893 | 10.767 ± 0.936 | |||
Platelet Large Cell Ratio [%] | 32.328 ± 7.507 | SG6 | 32.240 ± 7.184 | 31.460 ± 5.246 | Time: 0.196 Group: 0.898 Time × group: 0.658 |
CON6 | 30.712 ± 9.582 | 33.029 ± 7.966 | |||
SG12 | 33.692 ± 7.416 | 33.685 ± 7.632 | |||
CON12 | 32.031 ± 7.184 | 31.192 ± 7.671 | |||
PlateletCriT [%] | 0.284 ± 0.064 | SG6 | 0.300 ± 0.063 | 0.300 ± 0.045 | Time: 0.612 Group: 0.037, 0.179 Time × group: 0.566 |
CON6 | 0.321 ± 0.050 | 0.306 ± 0.047 | |||
SG12 | 0.241 ± 0.035 # | 0.247 ± 0.044 | |||
CON12 | 0.291 ± 0.077 | 0.278 ± 0.069 | |||
Neutrophils [thousand/μL] | 3.477 ± 1.189 | SG6 | 3.971 ± 1.137 | 4.473 ± 1.190 | Time: 0.043, 0.010 Group: 0.043, 0.166 Time × group: 0.255 |
CON6 | 3.757 ± 1.232 | 4.540 ± 2.249 | |||
SG12 | 2.861 ± 0.920 # | 3.028 ± 0.917 | |||
CON12 | 3.502 ± 1.299 | 3.316 ± 1.515 | |||
Lymphocytes [thousand/μL] | 2.033 ± 0.577 | SG6 | 2.210 ± 0.722 | 2.156 ± 0.783 | Time: 0.909 Group: 0.331 Time × group: 0.608 |
CON6 | 2.271 ± 0.750 | 2.091 ± 0.476 | |||
SG12 | 1.788 ± 0.410 | 1.950 ± 0.498 | |||
CON12 | 1.981 ± 0.396 | 1.924 ± 0.302 | |||
Monocytes [thousand/μL] | 0.520 ± 0.155 | SG6 | 0.640 ± 0.158 # | 0.666 ± 0.161 | Time: 0.038, 0.010 Group: 0.004, 0.253 Time × group: 0.263 |
CON6 | 0.551 ± 0.169 | 0.576 ± 0.168 | |||
SG12 | 0.431 ± 0.073 | 0.508 ± 0.097 | |||
CON12 | 0.490 ± 0.149 | 0.471 ± 0.154 | |||
Eosinophils [thousand/μL] | 0.149 ± 0.090 | SG6 | 0.135 ± 0.087 | 0.141 ± 0.087 | Time: 0.562 Group: 0.191 Time × group 0.221 |
CON6 | 0.220 ± 0.109 | 0.203 ± 0.133 | |||
SG12 | 0.124 ± 0.095 | 0.152 ± 0.077 | |||
CON12 | 0.144 ± 0.053 | 0.162 ± 0.077 | |||
Basophils [thousand/μL] | 0.062 ± 0.129 | SG6 | 0.042 ± 0.023 | 0.041 ± 0.020 | Time: 0.598 Group: 0.556 Time × group 0.604 |
CON6 | 0.059 ± 0.029 | 0.073 ± 0.037 | |||
SG12 | 0.102 ± 0.240 | 0.045 ± 0.021 | |||
CON12 | 0.042 ± 0.017 | 0.043 ± 0.015 |
Pearson’s r | p | Pearson’s r | p | ||||
---|---|---|---|---|---|---|---|
Resistin [pg/mL] I | Resistin [pg/mL] II | 0.808 | <0.001 | TBW [kg] | TBW [%] | −0.423 | 0.004 |
Resistin [pg/mL] II | delta% Resistin | 0.426 | 0.004 | TBW [kg] | BF [kg] | 0.728 | <0.001 |
BM [kg] | LBM [kg] | 0.790 | <0.001 | TBW [kg] | BFP [%] | 0.445 | 0.002 |
BM [kg] | SLM [kg] | 0.658 | <0.001 | TBW [kg] | BMI | 0.735 | <0.001 |
BM [kg] | TBW [kg] | 0.872 | <0.001 | TBW [kg] | VFA [cm2] | 0.331 | 0.028 |
BM [kg] | TBW [%] | −0.670 | <0.001 | TBW [%] | BF [kg] | −0.899 | <0.001 |
BM [kg] | BF [kg] | 0.951 | <0.001 | TBW [%] | BFP [%] | −0.855 | <0.001 |
BM [kg] | BFP [%] | 0.772 | <0.001 | TBW [%] | BMI | −0.732 | <0.001 |
BM [kg] | BMI | 0.930 | <0.001 | TBW [%] | VFA [cm2] | −0.654 | <0.001 |
BM [kg] | VFA [cm2] | 0.608 | <0.001 | BF [kg] | BFP [%] | 0.920 | <0.001 |
LBM [kg] | SLM [kg] | 0.670 | <0.001 | BF [kg] | BMI | 0.950 | <0.001 |
LBM [kg] | TBW [kg] | 0.776 | <0.001 | BF [kg] | VFA [cm2] | 0.746 | <0.001 |
LBM [kg] | TBW [%] | −0.457 | 0.002 | BFP [%] | BMI | 0.864 | <0.001 |
LBM [kg] | BF [kg] | 0.583 | <0.001 | BFP [%] | VFA [cm2] | 0.778 | <0.001 |
LBM [kg] | BFP [%] | 0.310 | 0.041 | BMI | VFA [cm2] | 0.711 | <0.001 |
LBM [kg] | BMI | 0.610 | <0.001 | Leptin [ng/mL] I | Leptin [pg/mL] II | 0.832 | <0.001 |
SLM [kg] | TBW [kg] | 0.685 | <0.001 | Leptin [ng/mL] I | delta% Leptin | −0.334 | 0.025 |
SLM [kg] | TBW [%] | −0.323 | 0.032 | Leptin [ng/mL] | SLM [kg] | −0.424 | 0.006 |
SLM [kg] | BF [kg] | 0.511 | <0.001 | Leptin [ng/mL] | VFA [cm2] | 0.446 | 0.004 |
SLM [kg] | BFP [%] | 0.327 | 0.030 | Leptin [ng/mL] | BM [kg] | 0.363 | 0.021 |
SLM [kg] | BMI | 0.632 | <0.001 | Leptin [ng/mL] | BFP [%] | 0.510 | <0.001 |
delta% Leptin | SLM [kg] I | 0.319 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerwińska-Ledwig, O.; Kryst, J.; Ziemann, E.; Borkowska, A.; Reczkowicz, J.; Dzidek, A.; Rydzik, Ł.; Pałka, T.; Żychowska, M.; Kupczak, W.; et al. The Beneficial Effects of Nordic Walking Training Combined with Time-Restricted Eating 14/24 in Women with Abnormal Body Composition Depend on the Application Period. Nutrients 2024, 16, 1413. https://doi.org/10.3390/nu16101413
Czerwińska-Ledwig O, Kryst J, Ziemann E, Borkowska A, Reczkowicz J, Dzidek A, Rydzik Ł, Pałka T, Żychowska M, Kupczak W, et al. The Beneficial Effects of Nordic Walking Training Combined with Time-Restricted Eating 14/24 in Women with Abnormal Body Composition Depend on the Application Period. Nutrients. 2024; 16(10):1413. https://doi.org/10.3390/nu16101413
Chicago/Turabian StyleCzerwińska-Ledwig, Olga, Joanna Kryst, Ewa Ziemann, Andżelika Borkowska, Joanna Reczkowicz, Adrianna Dzidek, Łukasz Rydzik, Tomasz Pałka, Małgorzata Żychowska, Wojciech Kupczak, and et al. 2024. "The Beneficial Effects of Nordic Walking Training Combined with Time-Restricted Eating 14/24 in Women with Abnormal Body Composition Depend on the Application Period" Nutrients 16, no. 10: 1413. https://doi.org/10.3390/nu16101413
APA StyleCzerwińska-Ledwig, O., Kryst, J., Ziemann, E., Borkowska, A., Reczkowicz, J., Dzidek, A., Rydzik, Ł., Pałka, T., Żychowska, M., Kupczak, W., Blaščáková, M. M., & Piotrowska, A. (2024). The Beneficial Effects of Nordic Walking Training Combined with Time-Restricted Eating 14/24 in Women with Abnormal Body Composition Depend on the Application Period. Nutrients, 16(10), 1413. https://doi.org/10.3390/nu16101413