Study of Serum Copper and Zinc Levels and Serum Cu/Zn Ratio among Polish Women with Endometrial Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Storage
2.2. Measurement Methodology
2.3. Quality Control
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zastrow, M.L.; Pecoraro, V.L. Designing hydrolytic zinc metalloenzymes. Biochemistry 2014, 53, 957–978. [Google Scholar] [CrossRef] [PubMed]
- Uriu-Adams, J.Y.; Keen, C.L. Copper, oxidative stress, and human health. Mol. Asp. Med. 2005, 26, 268–298. [Google Scholar] [CrossRef] [PubMed]
- Powell, S.R. The antioxidant properties of zinc. J. Nutr. 2000, 130, 1447s–1454s. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Makova, M.; Alomar, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef] [PubMed]
- Barceloux, D.G. Copper. J. Toxicol. Clin. Toxicol. 1999, 37, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.I.; Sarmento-Ribeiro, A.B.; Gonçalves, A.C. Zinc: From Biological Functions to Therapeutic Potential. Int. J. Mol. Sci. 2023, 24, 4822. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.H.; Chen, P.C.; Yeh, M.S.; Hsiung, D.Y.; Wang, C.L. Cu/Zn ratios are associated with nutritional status, oxidative stress, inflammation, and immune abnormalities in patients on peritoneal dialysis. Clin. Biochem. 2011, 44, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Maret, W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef]
- Falchuk, K.H. The molecular basis for the role of zinc in developmental biology. Mol. Cell. Biochem. 1998, 188, 41–48. [Google Scholar] [CrossRef]
- Skrajnowska, D.; Bobrowska-Korczak, B. Role of Zinc in Immune System and Anti-Cancer Defense Mechanisms. Nutrients 2019, 11, 2273. [Google Scholar] [CrossRef]
- Chasapis, C.T.; Loutsidou, A.C.; Spiliopoulou, C.A.; Stefanidou, M.E. Zinc and human health: An update. Arch. Toxicol. 2012, 86, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Fraker, P.J.; King, L.E.; Laakko, T.; Vollmer, T.L. The dynamic link between the integrity of the immune system and zinc status. J. Nutr. 2000, 130, 1399s–1406s. [Google Scholar] [CrossRef] [PubMed]
- Baltaci, A.K.; Mogulkoc, R.; Baltaci, S.B. Review: The role of zinc in the endocrine system. Pak. J. Pharm. Sci. 2019, 32, 231–239. [Google Scholar] [PubMed]
- Ho, E.; Wong, C.P.; King, J.C. Impact of zinc on DNA integrity and age-related inflammation. Free Radic. Biol. Med. 2022, 178, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, P.; Benedetti, G.; Albarède, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.C.; Anderle, P.; Bürzle, M.; Suzuki, Y.; Freeman, M.R.; Hediger, M.A.; Kovacs, G. Zinc transporters in prostate cancer. Mol. Asp. Med. 2013, 34, 735–741. [Google Scholar] [CrossRef]
- Tipton, I.H.; Schroeder, H.A.; Perry, H.M., Jr.; Cook, M.J. Trace Elements in Human Tissue. 3. Subjects from Africa, the Near and Far East and Europe. Health Phys. 1965, 11, 403–451. [Google Scholar] [CrossRef]
- Karcioglu, Z.A. Zinc in the eye. Surv. Ophthalmol. 1982, 27, 114–122. [Google Scholar] [CrossRef]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef]
- Kimura, T.; Kambe, T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int. J. Mol. Sci. 2016, 17, 336. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US): Washington, DC, USA, 2001. [Google Scholar]
- King, J.; Cousins, R.; Shils, M.; Shike, M.; Ross, A.; Caballero, B. Modern Nutrition in Health and Disease; Jones & Bartlett Learning: Burlington, MA, USA, 2006; pp. 271–285. [Google Scholar]
- Chasapis, C.T.; Ntoupa, P.A.; Spiliopoulou, C.A.; Stefanidou, M.E. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef]
- Glutsch, V.; Hamm, H.; Goebeler, M. Zinc and skin: An update. JDDG J. Dtsch. Dermatol. Ges. 2019, 17, 589–596. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front. Nutr. 2014, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Saper, R.B.; Rash, R. Zinc: An essential micronutrient. Am. Fam. Physician 2009, 79, 768–772. [Google Scholar]
- Prasad, A.S.; Beck, F.W.; Snell, D.C.; Kucuk, O. Zinc in cancer prevention. Nutr. Cancer 2009, 61, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Rozenberg, J.M.; Kamynina, M.; Sorokin, M.; Zolotovskaia, M.; Koroleva, E.; Kremenchutckaya, K.; Gudkov, A.; Buzdin, A.; Borisov, N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022, 10, 1072. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, K.; Cymbaluk-Płoska, A. The Role of Zinc and Copper in Gynecological Malignancies. Nutrients 2020, 12, 3732. [Google Scholar] [CrossRef] [PubMed]
- Vostrikova, S.M.; Grinev, A.B.; Gogvadze, V.G. Reactive Oxygen Species and Antioxidants in Carcinogenesis and Tumor Therapy. Biochemistry 2020, 85, 1254–1266. [Google Scholar] [CrossRef]
- Cheung, E.C.; Vousden, K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Golub, M.S.; Gershwin, M.E.; Hurley, L.S.; Hendrickx, A.G.; Saito, W.Y. Studies of marginal zinc deprivation in rhesus monkeys: Infant behavior. Am. J. Clin. Nutr. 1985, 42, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Quesada, A.R.; Byrnes, R.W.; Krezoski, S.O.; Petering, D.H. Direct reaction of H2O2 with sulfhydryl groups in HL-60 cells: Zinc-metallothionein and other sites. Arch. Biochem. Biophys. 1996, 334, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Ho, E. Zinc deficiency, DNA damage and cancer risk. J. Nutr. Biochem. 2004, 15, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Ziliotto, S.; Ogle, O.; Taylor, K.M. Targeting Zinc(II) Signalling to Prevent Cancer. Met. Ions Life Sci. 2018, 18, 507–530. [Google Scholar] [CrossRef]
- Blanden, A.R.; Yu, X.; Blayney, A.J.; Demas, C.; Ha, J.H.; Liu, Y.; Withers, T.; Carpizo, D.R.; Loh, S.N. Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants. eLife 2020, 9, e61487. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.H.; Prela, O.; Carpizo, D.R.; Loh, S.N. p53 and Zinc: A Malleable Relationship. Front. Mol. Biosci. 2022, 9, 895887. [Google Scholar] [CrossRef] [PubMed]
- Jen, J.; Wang, Y.C. Zinc finger proteins in cancer progression. J. Biomed. Sci. 2016, 23, 53. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Ju, J.; Ding, Y.; Zhao, C.; Tian, C. The signaling pathways regulated by KRAB zinc-finger proteins in cancer. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188731. [Google Scholar] [CrossRef]
- Kim, B.; Lee, W.W. Regulatory Role of Zinc in Immune Cell Signaling. Mol. Cells 2021, 44, 335–341. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; Xu, Z.; Cheng, X. Zinc dysregulation in cancers and its potential as a therapeutic target. Cancer Biol. Med. 2020, 17, 612–625. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow-Johnson, H.S.; Chow, C.K. Copper: Toxicological relevance and mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. [Google Scholar] [CrossRef] [PubMed]
- Balsano, C.; Porcu, C.; Sideri, S. Is copper a new target to counteract the progression of chronic diseases? Metallomics 2018, 10, 1712–1722. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.F. Copper. In Modern Nutrition in Health and Disease, 11th ed.; Ross, A.C., Caballero, B., Cousins, R.J., Tucker, K.L., Ziegler, T.R., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2014; p. 206. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific Opinion on Dietary Reference Values for copper. EFSA J. 2015, 13, 4253. [Google Scholar] [CrossRef]
- Lopez, J.; Ramchandani, D.; Vahdat, L. Copper Depletion as a Therapeutic Strategy in Cancer. Met. Ions Life Sci. 2019, 19, 304–330. [Google Scholar] [CrossRef]
- Li, Y. Copper homeostasis: Emerging target for cancer treatment. IUBMB Life 2020, 72, 1900–1908. [Google Scholar] [CrossRef] [PubMed]
- Turnlund, J.R. Human whole-body copper metabolism. Am. J. Clin. Nutr. 1998, 67, 960s–964s. [Google Scholar] [CrossRef] [PubMed]
- Kidane, T.Z.; Farhad, R.; Lee, K.J.; Santos, A.; Russo, E.; Linder, M.C. Uptake of copper from plasma proteins in cells where expression of CTR1 has been modulated. Biometals 2012, 25, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Cousins, R.J. Metallothionein—Aspects related to copper and zinc metabolism. J. Inherit. Metab. Dis. 1983, 6 (Suppl. S1), 15–21. [Google Scholar] [CrossRef]
- Scheiber, I.; Dringen, R.; Mercer, J.F. Copper: Effects of deficiency and overload. Met. Ions Life Sci. 2013, 13, 359–387. [Google Scholar] [CrossRef]
- Brewer, G.J. Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol. 2010, 23, 319–326. [Google Scholar] [CrossRef]
- Tisato, F.; Marzano, C.; Porchia, M.; Pellei, M.; Santini, C. Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev. 2010, 30, 708–749. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017, 387, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Aishajiang, R.; Liu, Z.; Wang, T.; Zhou, L.; Yu, D. Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy. Molecules 2023, 28, 2303. [Google Scholar] [CrossRef]
- Guan, D.; Zhao, L.; Shi, X.; Ma, X.; Chen, Z. Copper in cancer: From pathogenesis to therapy. Biomed. Pharmacother. 2023, 163, 114791. [Google Scholar] [CrossRef]
- Voli, F.; Valli, E.; Lerra, L.; Kimpton, K.; Saletta, F.; Giorgi, F.M.; Mercatelli, D.; Rouaen, J.R.C.; Shen, S.; Murray, J.E.; et al. Intratumoral Copper Modulates PD-L1 Expression and Influences Tumor Immune Evasion. Cancer Res. 2020, 80, 4129–4144. [Google Scholar] [CrossRef] [PubMed]
- Finney, L.; Vogt, S.; Fukai, T.; Glesne, D. Copper and angiogenesis: Unravelling a relationship key to cancer progression. Clin. Exp. Pharmacol. Physiol. 2009, 36, 88–94. [Google Scholar] [CrossRef]
- Das, A.; Ash, D.; Fouda, A.Y.; Sudhahar, V.; Kim, Y.M.; Hou, Y.; Hudson, F.Z.; Stansfield, B.K.; Caldwell, R.B.; McMenamin, M.; et al. Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nat. Cell Biol. 2022, 24, 35–50. [Google Scholar] [CrossRef]
- Xie, J.; Yang, Y.; Gao, Y.; He, J. Cuproptosis: Mechanisms and links with cancers. Mol. Cancer 2023, 22, 46. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef]
- Raglan, O.; Kalliala, I.; Markozannes, G.; Cividini, S.; Gunter, M.J.; Nautiyal, J.; Gabra, H.; Paraskevaidis, E.; Martin-Hirsch, P.; Tsilidis, K.K.; et al. Risk factors for endometrial cancer: An umbrella review of the literature. Int. J. Cancer 2019, 145, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Key, T.J.; Pike, M.C. The dose-effect relationship between ‘unopposed’ oestrogens and endometrial mitotic rate: Its central role in explaining and predicting endometrial cancer risk. Br. J. Cancer 1988, 57, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Pike, M.C.; Peters, R.K.; Cozen, W.; Probst-Hensch, N.M.; Felix, J.C.; Wan, P.C.; Mack, T.M. Estrogen-progestin replacement therapy and endometrial cancer. J. Natl. Cancer Inst. 1997, 89, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.A.; Long, B.J.; Sherman, M.E.; Lemens, M.A.; Podratz, K.C.; Hopkins, M.R.; Ahlberg, L.J.; Mc Guire, L.J.; Laughlin-Tommaso, S.K.; Bakkum-Gamez, J.N.; et al. Risk assessment of endometrial cancer and endometrial intraepithelial neoplasia in women with abnormal bleeding and implications for clinical management algorithms. Am. J. Obstet. Gynecol. 2020, 223, 549.E1–549.E13. [Google Scholar] [CrossRef]
- Passarello, K.; Kurian, S.; Villanueva, V. Endometrial Cancer: An Overview of Pathophysiology, Management, and Care. Semin. Oncol. Nurs. 2019, 35, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, L. Endometrial cancer. In Contemporary Issues in Women’s Cancers; Lockwood, S., Ed.; Jones and Bartlett: Sudbury, MA, USA, 2009; pp. 59–84. [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, A.; McAlpine, J.N. Molecular Profiling of Endometrial Cancer from TCGA to Clinical Practice. J. Natl. Compr. Cancer Netw. 2023, 21, 210–216. [Google Scholar] [CrossRef]
- Lin, S.; Yang, H. Ovarian cancer risk according to circulating zinc and copper concentrations: A meta-analysis and Mendelian randomization study. Clin. Nutr. 2021, 40, 2464–2468. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, J.; Tan, S.W.; Ye, H.P.; Shan, X.Y. Association between serum copper/zinc ratio and lung cancer: A systematic review with meta-analysis. J. Trace Elem. Med. Biol. 2022, 74, 127061. [Google Scholar] [CrossRef]
- Zhang, C.; Cheng, R.; Ding, J.; Li, X.; Niu, H.; Li, X. Serum Copper and Zinc Levels and Colorectal Cancer in Adults: Findings from the National Health and Nutrition Examination 2011–2016. Biol. Trace Elem. Res. 2022, 200, 2033–2039. [Google Scholar] [CrossRef]
- Pala, V.; Agnoli, C.; Cavalleri, A.; Rinaldi, S.; Orlandi, R.; Segrado, F.; Venturelli, E.; Vinceti, M.; Krogh, V.; Sieri, S. Prediagnostic Levels of Copper and Zinc and Breast Cancer Risk in the ORDET Cohort. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.A.K.; Adly, H.M.; Abdelkhaliq, A.A.; Nassir, A.M. Serum Levels of Selenium, Zinc, Copper, Manganese, and Iron in Prostate Cancer Patients. Curr. Urol. 2020, 14, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Poo, J.L.; Rosas-Romero, R.; Montemayor, A.C.; Isoard, F.; Uribe, M. Diagnostic value of the copper/zinc ratio in hepatocellular carcinoma: A case control study. J. Gastroenterol. 2003, 38, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, Y.; Demircan, K.; Vallon-Christersson, J.; Malmberg, M.; Saal, L.H.; Rydén, L.; Borg, Å.; Schomburg, L.; Sandsveden, M.; Manjer, J. Serum copper, zinc and copper/zinc ratio in relation to survival after breast cancer diagnosis: A prospective multicenter cohort study. Redox Biol. 2023, 63, 102728. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Dwivedi, S.; Dhakad, U.; Murthy, R.C.; Choubey, V.K.; Goel, A.; Sankhwar, S.N. Status and Interrelationship of Zinc, Copper, Iron, Calcium and Selenium in Prostate Cancer. Indian J. Clin. Biochem. 2016, 31, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Tsilidis, K.K.; Papadimitriou, N.; Dimou, N.; Gill, D.; Lewis, S.J.; Martin, R.M.; Murphy, N.; Markozannes, G.; Zuber, V.; Cross, A.J.; et al. Genetically predicted circulating concentrations of micronutrients and risk of colorectal cancer among individuals of European descent: A Mendelian randomization study. Am. J. Clin. Nutr. 2021, 113, 1490–1502. [Google Scholar] [CrossRef] [PubMed]
- Dogan, C.; Yazıcı, C.M.; Akgül, M.; Türker, P. The Evaluation of the Relation between Bladder Cancer and Oxidative Stress Using NRF-2/KEAP-1 Pathway, Zinc and Copper Levels. Urol. J. 2021, 18, 422–428. [Google Scholar] [CrossRef]
- Kazi Tani, L.S.; Gourlan, A.T.; Dennouni-Medjati, N.; Telouk, P.; Dali-Sahi, M.; Harek, Y.; Sun, Q.; Hackler, J.; Belhadj, M.; Schomburg, L.; et al. Copper Isotopes and Copper to Zinc Ratio as Possible Biomarkers for Thyroid Cancer. Front. Med. 2021, 8, 698167. [Google Scholar] [CrossRef]
- Atakul, T.; Altinkaya, S.O.; Abas, B.I.; Yenisey, C. Serum Copper and Zinc Levels in Patients with Endometrial Cancer. Biol. Trace Elem. Res. 2020, 195, 46–54. [Google Scholar] [CrossRef]
- Michalczyk, K.; Kapczuk, P.; Kupnicka, P.; Witczak, G.; Michalczyk, B.; Bosiacki, M.; Chlubek, D.; Cymbaluk-Płoska, A. Assessment of Serum Zn, Cu, Mn, and Fe Concentration in Women with Endometrial Cancer and Different Endometrial Pathologies. Nutrients 2023, 15, 3605. [Google Scholar] [CrossRef]
- Margalioth, E.J.; Udassin, R.; Cohen, C.; Maor, J.; Anteby, S.O.; Schenker, J.G. Serum copper level in gynecologic malignancies. Am. J. Obstet. Gynecol. 1987, 157, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Glubb, D.M.; O’Mara, T.A. Dietary Factors and Endometrial Cancer Risk: A Mendelian Randomization Study. Nutrients 2023, 15, 603. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Li, Z.; Tang, L.; Shen, M.; Zhou, Z.; Wei, Y.; Zhao, Y.; Bai, S.; Song, L. Associations of Dietary Intakes with Gynecological Cancers: Findings from a Cross-Sectional Study. Nutrients 2022, 14, 5026. [Google Scholar] [CrossRef] [PubMed]
- Yaman, M.; Kaya, G.; Simsek, M. Comparison of trace element concentrations in cancerous and noncancerous human endometrial and ovary tissues. Int. J. Gynecol. Cancer 2007, 17, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Nasiadek, M.; Krawczyk, T.; Sapota, A. Tissue levels of cadmium and trace elements in patients with myoma and uterine cancer. Hum. Exp. Toxicol. 2005, 24, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Cunzhi, H.; Jiexian, J.; Xianwen, Z.; Jingang, G.; Shumin, Z.; Lili, D. Serum and tissue levels of six trace elements and copper/zinc ratio in patients with cervical cancer and uterine myoma. Biol. Trace Elem. Res. 2003, 94, 113–122. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, M.; Zhao, Y. Association between serum copper levels and cervical cancer risk: A meta-analysis. Biosci. Rep. 2018, 38, BSR20180161. [Google Scholar] [CrossRef] [PubMed]
- Marinov, B.; Tsachev, K.; Doganov, N.; Dzherov, L.; Atanasova, B.; Markova, M. The copper concentration in the blood serum of women with ovarian tumors (a preliminary report). Akush. Ginekol. 2000, 39, 36–37. [Google Scholar]
- Marinov, B.; Tsachev, K.; Doganov, N.; Dzherov, L.; Markova, M.; Atanasova, B.; Shtereva, K.; Dimitrov, R. The zinc concentration of the blood serum in women with ovarian tumors (preliminary report). Akush. Ginekol. 1998, 37, 16–18. [Google Scholar]
- Mao, S.; Huang, S. Zinc and copper levels in bladder cancer: A systematic review and meta-analysis. Biol. Trace Elem. Res. 2013, 153, 5–10. [Google Scholar] [CrossRef]
- Golabek, T.; Darewicz, B.; Borawska, M.; Socha, K.; Markiewicz, R.; Kudelski, J. Copper, zinc, and Cu/Zn ratio in transitional cell carcinoma of the bladder. Urol. Int. 2012, 89, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zeng, J.W.; Ma, Q.; Zhang, S.; Tang, J.; Feng, J.F. Serum copper and zinc levels in breast cancer: A meta-analysis. J. Trace Elem. Med. Biol. 2020, 62, 126629. [Google Scholar] [CrossRef] [PubMed]
- Stepien, M.; Jenab, M.; Freisling, H.; Becker, N.P.; Czuban, M.; Tjønneland, A.; Olsen, A.; Overvad, K.; Boutron-Ruault, M.C.; Mancini, F.R.; et al. Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Carcinogenesis 2017, 38, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Ghayour-Mobarhan, M.; Taylor, A.; New, S.A.; Lamb, D.J.; Ferns, G.A. Determinants of serum copper, zinc and selenium in healthy subjects. Ann. Clin. Biochem. 2005, 42, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Galan, P.; Viteri, F.E.; Bertrais, S.; Czernichow, S.; Faure, H.; Arnaud, J.; Ruffieux, D.; Chenal, S.; Arnault, N.; Favier, A.; et al. Serum concentrations of beta-carotene, vitamins C and E, zinc and selenium are influenced by sex, age, diet, smoking status, alcohol consumption and corpulence in a general French adult population. Eur. J. Clin. Nutr. 2005, 59, 1181–1190. [Google Scholar] [CrossRef]
- Milne, D.B.; Davis, C.D.; Nielsen, F.H. Low dietary zinc alters indices of copper function and status in postmenopausal women. Nutrition 2001, 17, 701–708. [Google Scholar] [CrossRef]
- Gonoodi, K.; Moslem, A.; Darroudi, S.; Ahmadnezhad, M.; Mazloum, Z.; Tayefi, M.; Zadeh, S.A.T.; Eslami, S.; Shafiee, M.; Khashayarmanesh, Z.; et al. Serum and dietary zinc and copper in Iranian girls. Clin. Biochem. 2018, 54, 25–31. [Google Scholar] [CrossRef]
- Al-Ansari, R.F.; Al-Gebori, A.M.; Sulaiman, G.M. Serum levels of zinc, copper, selenium and glutathione peroxidase in the different groups of colorectal cancer patients. Casp. J. Intern. Med. 2020, 11, 384–390. [Google Scholar] [CrossRef]
- Scanni, A.; Tomirotti, M.; Licciardello, L.; Annibali, E.; Biraghi, M.; Trovato, M.; Fittipaldi, M.; Adamoli, P.; Curtarelli, G. Variations in serum copper and ceruloplasmin levels in advanced gastrointestinal cancer treated with polychemotherapy. Tumori 1979, 65, 331–338. [Google Scholar] [CrossRef]
- Hill, D.A.; Weiss, N.S.; Voigt, L.F.; Beresford, S.A. Endometrial cancer in relation to intra-uterine device use. Int. J. Cancer 1997, 70, 278–281. [Google Scholar] [CrossRef]
- Guleria, K.; Agarwal, N.; Mishra, K.; Gulati, R.; Mehendiratta, A. Evaluation of endometrial steroid receptors and cell mitotic activity in women using copper intrauterine device: Can Cu-T prevent endometrial cancer? J. Obstet. Gynaecol. Res. 2004, 30, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Beining, R.M.; Dennis, L.K.; Smith, E.M.; Dokras, A. Meta-analysis of intrauterine device use and risk of endometrial cancer. Ann. Epidemiol. 2008, 18, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.E.; Milne, D.B.; Lykken, G.I. Effects of age and sex on copper absorption, biological half-life, and status in humans. Am. J. Clin. Nutr. 1992, 56, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.J.; Suter, P.M.; Russell, R.M. Mineral requirements of elderly people. Am. J. Clin. Nutr. 1995, 62, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Fabris, N.; Mocchegiani, E. Zinc, human diseases and aging. Aging 1995, 7, 77–93. [Google Scholar] [CrossRef]
- Vir, S.C.; Love, A.H. Zinc and copper nutriture of women taking oral contraceptive agents. Am. J. Clin. Nutr. 1981, 34, 1479–1483. [Google Scholar] [CrossRef]
- Michos, C.; Kalfakakou, V.; Karkabounas, S.; Kiortsis, D.; Evangelou, A. Changes in copper and zinc plasma concentrations during the normal menstrual cycle in women. Gynecol. Endocrinol. 2010, 26, 250–255. [Google Scholar] [CrossRef]
- Hoffman, H.N., 2nd; Phyliky, R.L.; Fleming, C.R. Zinc-induced copper deficiency. Gastroenterology 1988, 94, 508–512. [Google Scholar] [CrossRef]
Variables | Overall, n = 306 | Control, n = 153 | Diseased, n = 153 | p-Value |
---|---|---|---|---|
Micronutrients in serum | ||||
Zn [μg/L] | 144.94–2154.51 (804.36) | 393.71–2154.51 (901.67) | 144.94–1436.25 (707.05) | |
I tertile 144.94–688.20 (580.27 ± 97.26) | 101 (33%) | 19 (12%) | 82 (54%) | <0.001 |
II tertile 688.76–892.91 (786.85 ± 59.72) | 101 (33%) | 52 (34%) | 49 (32%) | <0.001 |
III tertile (reference) 894.33–2154.51 (1039.00 ± 163.06) | 104 (34%) | 82 (54%) | 22 (14%) | |
Cu [μg/L] | 136.21–2373.72 (1067.91) | 499.30–2373.72 (1176.42) | 136.21–1504.92 (959.39) | |
I tertile 136.21–963.33 (785.41 ± 154.65) | 101 (33%) | 25 (16%) | 76 (50%) | <0.001 |
II tertile 966.10–1176.60 (1068.81 ± 61.07) | 101 (33%) | 50 (33%) | 51 (33%) | <0.001 |
III tertile (reference) 1178.85–2373.72 (1341.38 ± 159.97) | 104 (34%) | 78 (51%) | 26 (17%) | |
Cu/Zn ratio | ||||
I tertile 0.46–1.20 (1.01 ± 0.14) | 101 (33%) | 52 (34%) | 49 (32%) | 0.3 |
II tertile (reference) 1.20–1.46 (1.34 ± 0.08) | 101 (33%) | 60 (39%) | 41 (27%) | |
III tertile 1.47–3.18 (1.77 ± 0.30) | 104 (34%) | 41 (27%) | 63 (41%) | 0.006 |
Health history | ||||
BMI | 18.03–56.50 (29.38) | 18.03–43.51 (27.50) | 19.63–56.50 (31.27) | <0.001 |
Smoking | ||||
No | 272 (89%) | 140 (92%) | 132 (86%) | |
Yes | 34 (11%) | 13 (8.5%) | 21 (14%) | 0.2 |
Diabetes | ||||
No | 249 (81%) | 133 (87%) | 116 (76%) | |
Yes | 57 (19%) | 20 (13%) | 37 (24%) | 0.014 |
Hypertension | ||||
No | 132 (43%) | 73 (48%) | 59 (39%) | |
Yes | 174 (57%) | 80 (52%) | 94 (61%) | 0.073 |
Hypothyroidism | ||||
No | 261 (85%) | 130 (85%) | 131 (86%) | |
Yes | 45 (15%) | 23 (15%) | 22 (14%) | 0.9 |
Gynecology history | ||||
Age of first menstruation | 10.00–20.00 (14.16) | 11.00–20.00 (14.16) | 10.00–18.00 (14.46) | >0.9 |
Number of deliveries | 0.00–8.00 (2.61) | 0.00–8.00 (2.77) | 0.00–7.00 (2.44) | 0.033 |
Breastfeeding | ||||
No | 78 (25%) | 26 (17%) | 52 (34%) | |
Yes | 228 (75%) | 127 (83%) | 101 (66%) | 0.002 |
Menopause | ||||
No | 24 (7.8%) | 13 (8.5%) | 11 (7.2%) | |
Yes | 282 (92%) | 140 (92%) | 142 (93%) | 0.5 |
Contraception | ||||
No | 286 (93%) | 140 (92%) | 146 (95%) | |
Yes | 20 (6.5%) | 13 (8.5%) | 7 (4.6%) | 0.12 |
Menopausal hormone therapy | ||||
No | 283 (92%) | 148 (97%) | 135 (88%) | |
Yes | 23 (7.5%) | 5 (3.3%) | 18 (12%) | 0.011 |
Endometriosis | ||||
No | 272 (89%) | 141 (92%) | 131 (86%) | |
Yes | 34 (11%) | 12 (7.8%) | 22 (14%) | 0.074 |
Univariable Conditional Logistic Regression | Multivariable Conditional Logistic Regression | |||||
---|---|---|---|---|---|---|
Variables | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Zn | ||||||
I tertile 144.94–688.20 (580.27 ± 97.26) | 15.0 | 6.54–34.5 | <0.001 | 23.2 | 6.92–78.0 | <0.001 |
II tertile 688.76–892.91 (786.85 ± 59.72) | 3.67 | 1.79–7.54 | <0.001 | 4.81 | 1.75–13.3 | 0.002 |
III (reference) 894.33–2154.51 (1039.00 ± 163.06) | — | — | — | — | ||
BMI | 1.15 | 1.08–1.21 | <0.001 | 1.16 | 1.06–1.26 | <0.001 |
Smoking | ||||||
No | — | — | — | — | ||
Yes | 1.67 | 0.81–3.41 | 0.2 | 0.67 | 0.18–2.53 | 0.6 |
Diabetes | ||||||
No | — | — | — | — | ||
Yes | 2.21 | 1.18–4.16 | 0.014 | 2.05 | 0.69–6.07 | 0.2 |
Hypertension | ||||||
No | — | — | — | — | ||
Yes | 1.61 | 0.96–2.71 | 0.073 | 1.36 | 0.59–3.12 | 0.5 |
Hypothyroidism | ||||||
No | — | — | — | — | ||
Yes | 0.94 | 0.49–1.83 | 0.9 | 1.70 | 0.54–5.29 | 0.4 |
Age of first menstruation | 1.00 | 0.87–1.15 | >0.9 | 1.12 | 0.88–1.41 | 0.4 |
Number of deliveries | 0.82 | 0.69–0.99 | 0.033 | 0.89 | 0.66–1.20 | 0.4 |
Breastfeeding | ||||||
No | — | — | — | — | ||
Yes | 0.42 | 0.25–0.72 | 0.002 | 0.31 | 0.12–0.76 | 0.011 |
Menopause | ||||||
No | — | — | — | — | ||
Yes | 1.67 | 0.40–6.97 | 0.5 | 0.26 | 0.04–1.85 | 0.2 |
Contraception | ||||||
No | — | — | — | — | ||
Yes | 0.40 | 0.13–1.28 | 0.12 | 1.07 | 0.19–6.15 | >0.9 |
Menopausal hormone therapy | ||||||
No | — | — | — | — | ||
Yes | 3.60 | 1.34–9.70 | 0.011 | 1.84 | 0.41–8.21 | 0.4 |
Endometriosis | ||||||
No | — | — | — | — | ||
Yes | 2.00 | 0.94–4.27 | 0.074 | 4.12 | 1.03–16.4 | 0.045 |
Univariable Conditional Logistic Regression | Multivariable Conditional Logistic Regression | |||||
---|---|---|---|---|---|---|
Variables | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Cu | ||||||
I tertile 136.21–963.33 (785.41 ± 154.65) | 8.54 | 4.14–17.6 | <0.001 | 13.9 | 4.96–38.8 | <0.001 |
II tertile 966.10–1176.60 (1068.81 ± 61.07) | 3.33 | 1.69–6.57 | <0.001 | 7.49 | 2.61–21.5 | <0.001 |
III tertile (reference) 1178.85–2373.72 (1341.38 ± 159.97) | — | — | — | — | ||
BMI | 1.15 | 1.08–1.21 | <0.001 | 1.23 | 1.12–1.35 | <0.001 |
Smoking | ||||||
No | — | — | — | — | ||
Yes | 1.67 | 0.81–3.41 | 0.2 | 1.38 | 0.45–4.29 | 0.6 |
Diabetes | ||||||
No | — | — | — | — | ||
Yes | 2.21 | 1.18–4.16 | 0.014 | 1.93 | 0.73–5.09 | 0.2 |
Hypertension | ||||||
No | — | — | — | — | ||
Yes | 1.61 | 0.96–2.71 | 0.073 | 0.90 | 0.39–2.07 | 0.8 |
Hypothyroidism | ||||||
No | — | — | — | — | ||
Yes | 0.94 | 0.49–1.83 | 0.9 | 0.96 | 0.29–3.24 | >0.9 |
Age of first menstruation | 1.00 | 0.87–1.15 | >0.9 | 1.11 | 0.89–1.39 | 0.4 |
Number of deliveries | 0.82 | 0.69–0.99 | 0.033 | 0.91 | 0.68–1.22 | 0.5 |
Breastfeeding | ||||||
No | — | — | — | — | ||
Yes | 0.42 | 0.25–0.72 | 0.002 | 0.30 | 0.12–0.75 | 0.010 |
Menopause | ||||||
No | — | — | — | — | ||
Yes | 1.67 | 0.40–6.97 | 0.5 | 1.53 | 0.19–12.7 | 0.7 |
Contraception | ||||||
No | — | — | — | — | ||
Yes | 0.40 | 0.13–1.28 | 0.12 | 0.51 | 0.08–3.24 | 0.5 |
Menopause hormonal therapy | ||||||
No | — | — | — | — | ||
Yes | 3.60 | 1.34–9.70 | 0.011 | 2.07 | 0.42–10.2 | 0.4 |
Endometriosis | ||||||
No | — | — | — | — | ||
Yes | 2.00 | 0.94–4.27 | 0.074 | 4.12 | 1.15–14.7 | 0.029 |
Univariable Conditional Logistic Regression | Multivariable Conditional Logistic Regression | |||||
---|---|---|---|---|---|---|
Variables | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Cu/Zn | ||||||
I tertile 0.46–1.20 (1.01 ± 0.14) | 1.38 | 0.78–2.43 | 0.3 | 1.69 | 0.79–3.62 | 0.2 |
II tertile (reference) 1.20–1.46 (1.34 ± 0.08) | — | — | — | — | ||
III tertile 1.47–3.18 (1.77 ± 0.30) | 2.21 | 1.25–3.89 | 0.006 | 1.86 | 0.88–3.91 | 0.10 |
BMI | 1.15 | 1.08–1.21 | <0.001 | 1.18 | 1.10–1.27 | <0.001 |
Smoking | ||||||
No | — | — | — | — | ||
Yes | 1.67 | 0.81–3.41 | 0.2 | 1.75 | 0.68–4.51 | 0.2 |
Diabetes | ||||||
No | — | — | — | — | ||
Yes | 2.21 | 1.18–4.16 | 0.014 | 1.27 | 0.56–2.87 | 0.6 |
Hypertension | ||||||
No | — | — | — | — | ||
Yes | 1.61 | 0.96–2.71 | 0.073 | 1.33 | 0.68–2.61 | 0.4 |
Hypothyroidism | ||||||
No | — | — | — | — | ||
Yes | 0.94 | 0.49–1.83 | 0.9 | 1.28 | 0.49–3.37 | 0.6 |
Age of first menstruation | 1.00 | 0.87–1.15 | >0.9 | 1.16 | 0.95–1.41 | 0.14 |
Number of deliveries | 0.82 | 0.69–0.99 | 0.033 | 0.95 | 0.74–1.22 | 0.7 |
Breastfeeding | ||||||
No | — | — | — | — | ||
Yes | 0.42 | 0.25–0.72 | 0.002 | 0.40 | 0.19–0.84 | 0.016 |
Menopause | ||||||
No | — | — | — | — | ||
Yes | 1.67 | 0.40–6.97 | 0.5 | 0.41 | 0.07–2.41 | 0.3 |
Contraception | ||||||
No | — | — | — | — | ||
Yes | 0.40 | 0.13–1.28 | 0.12 | 0.39 | 0.09–1.76 | 0.2 |
Menopause hormonal therapy | ||||||
No | — | — | — | — | ||
Yes | 3.60 | 1.34–9.70 | 0.011 | 4.94 | 1.31–18.6 | 0.018 |
Endometriosis | ||||||
No | — | — | — | — | ||
Yes | 2.00 | 0.94–4.27 | 0.074 | 2.62 | 0.89–7.66 | 0.080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluza, K.; Zawlik, I.; Janowska, M.; Kmieć, A.; Paszek, S.; Potocka, N.; Skrzypa, M.; Zuchowska, A.; Kluz, M.; Wróbel, A.; et al. Study of Serum Copper and Zinc Levels and Serum Cu/Zn Ratio among Polish Women with Endometrial Cancer. Nutrients 2024, 16, 144. https://doi.org/10.3390/nu16010144
Kluza K, Zawlik I, Janowska M, Kmieć A, Paszek S, Potocka N, Skrzypa M, Zuchowska A, Kluz M, Wróbel A, et al. Study of Serum Copper and Zinc Levels and Serum Cu/Zn Ratio among Polish Women with Endometrial Cancer. Nutrients. 2024; 16(1):144. https://doi.org/10.3390/nu16010144
Chicago/Turabian StyleKluza, Katarzyna, Izabela Zawlik, Magdalena Janowska, Aleksandra Kmieć, Sylwia Paszek, Natalia Potocka, Marzena Skrzypa, Alina Zuchowska, Marta Kluz, Andrzej Wróbel, and et al. 2024. "Study of Serum Copper and Zinc Levels and Serum Cu/Zn Ratio among Polish Women with Endometrial Cancer" Nutrients 16, no. 1: 144. https://doi.org/10.3390/nu16010144
APA StyleKluza, K., Zawlik, I., Janowska, M., Kmieć, A., Paszek, S., Potocka, N., Skrzypa, M., Zuchowska, A., Kluz, M., Wróbel, A., Baszuk, P., Pietrzak, S., Marciniak, W., Miotla, P., Lubiński, J., Gronwald, J., & Kluz, T. (2024). Study of Serum Copper and Zinc Levels and Serum Cu/Zn Ratio among Polish Women with Endometrial Cancer. Nutrients, 16(1), 144. https://doi.org/10.3390/nu16010144