Diet-Attributable Greenhouse Gas Emissions and Acute Myocardial Infarction in Costa Rica Heart Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Diet-Attributable GHGEs
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. How to Feed the World in 2050. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 10 October 2023).
- Branca, F.; Lartey, A.; Oenema, S.; Aguayo, V.; Stordalen, G.A.; Richardson, R.; Arvelo, M.; Afshin, A. Transforming the food system to fight non-communicable diseases. BMJ 2019, 364, l296. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme (UNEP). Food Systems and Natural Resources; A Report of the Working Group on Food Systems of the International Resource Panel; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2016. [Google Scholar]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 8 April 2023).
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, E.; Harris, F.; Dangour, A.D.; Gasparatos, A.; Hiramatsu, M.; Javadi, F.; Loken, B.; Murakami, T.; Scheelbeek, P.; Haines, A. Sustainable food systems-a health perspective. Sustain. Sci. 2018, 13, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.R.; Skea, J.; Slade, R.; van Diemen, R.; Haughey, E.; Malley, J.; Pathak, M. Technical Summary. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Pereira, P., Ed.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Burlingame, B.A.; Dernini, S. Sustainable Diets and Biodiversity: Directions and Solutions for Policy, Research and Action; FAO: Rome, Italy, 2012. [Google Scholar]
- Monterrosa, E.C.; Frongillo, E.A.; Drewnowski, A.; de Pee, S.; Vandevijvere, S. Sociocultural Influences on Food Choices and Implications for Sustainable Healthy Diets. Food Nutr. Bull. 2020, 41, 59s–73s. [Google Scholar] [CrossRef]
- Steenson, S.; Buttriss, J. The challenges of defining a healthy and ‘sustainable’diet. Nutr. Bull. 2020, 45, 206–222. [Google Scholar] [CrossRef]
- Bradfield, J.; Trigueiro, H.; Ray, S. Is global dietary change an effective strategy to curb climate change? BMJ Nutr. Prev. Health 2020, 3, 121–122. [Google Scholar] [CrossRef]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet. Health 2018, 2, e451–e461. [Google Scholar] [CrossRef]
- Hirvonen, K.; Bai, Y.; Headey, D.; Masters, W.A. Affordability of the EAT–Lancet reference diet: A global analysis. Lancet Glob. Health 2020, 8, e59–e66. [Google Scholar] [CrossRef]
- Vieux, F.; Perignon, M.; Gazan, R.; Darmon, N. Dietary changes needed to improve diet sustainability: Are they similar across Europe? Eur. J. Clin. Nutr. 2018, 72, 951–960. [Google Scholar] [CrossRef]
- Vellinga, R.E.; van de Kamp, M.; Toxopeus, I.B.; van Rossum, C.T.M.; de Valk, E.; Biesbroek, S.; Hollander, A.; Temme, E.H.M. Greenhouse Gas Emissions and Blue Water Use of Dutch Diets and Its Association with Health. Sustainability 2019, 11, 6027. [Google Scholar] [CrossRef]
- Chaudhary, A.; Krishna, V. Country-Specific Sustainable Diets Using Optimization Algorithm. Environ. Sci. Technol. 2019, 53, 7694–7703. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Vermeir, I.; Verbeke, W. Sustainable Food Consumption: Exploring the Consumer “Attitude—Behavioral Intention” Gap. J. Agric. Environ. Ethics 2006, 19, 169–194. [Google Scholar] [CrossRef]
- Laine, J.E.; Huybrechts, I.; Gunter, M.J.; Ferrari, P.; Weiderpass, E.; Tsilidis, K.; Aune, D.; Schulze, M.B.; Bergmann, M.; Temme, E.H.M.; et al. Co-benefits from sustainable dietary shifts for population and environmental health: An assessment from a large European cohort study. Lancet Planet. Health 2021, 5, e786–e796. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C.A.; Bonet, C.; de Pablo, M.; Sanchez, M.J.; Salamanca-Fernandez, E.; Dorronsoro, M.; Amiano, P.; Huerta, J.M.; Chirlaque, M.D.; Ardanaz, E.; et al. Greenhouse gases emissions from the diet and risk of death and chronic diseases in the EPIC-Spain cohort. Eur. J. Public. Health 2021, 31, 130–135. [Google Scholar] [CrossRef]
- Biesbroek, S.; Bueno-de-Mesquita, H.B.; Peeters, P.H.; Verschuren, W.M.; van der Schouw, Y.T.; Kramer, G.F.; Tyszler, M.; Temme, E.H. Reducing our environmental footprint and improving our health: Greenhouse gas emission and land use of usual diet and mortality in EPIC-NL: A prospective cohort study. Environ. Health 2014, 13, 27. [Google Scholar] [CrossRef]
- Knuppel, A.; Papier, K.; Key, T.J.; Travis, R.C. EAT-Lancet score and major health outcomes: The EPIC-Oxford study. Lancet 2019, 394, 213–214. [Google Scholar] [CrossRef]
- Cobiac, L.J.; Scarborough, P. Modelling the health co-benefits of sustainable diets in the UK, France, Finland, Italy and Sweden. Eur. J. Clin. Nutr. 2019, 73, 624–633. [Google Scholar] [CrossRef]
- Chen, C.; Chaudhary, A.; Mathys, A. Dietary Change Scenarios and Implications for Environmental, Nutrition, Human Health and Economic Dimensions of Food Sustainability. Nutrients 2019, 11, 856. [Google Scholar] [CrossRef] [PubMed]
- Zagmutt, F.J.; Pouzou, J.G.; Costard, S. The EAT-Lancet Commission’s Dietary Composition May Not Prevent Noncommunicable Disease Mortality. J. Nutr. 2020, 150, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.F.; Santo, R.E.; Scatterday, A.P.; Fry, J.P.; Synk, C.M.; Cebron, S.R.; Mekonnen, M.M.; Hoekstra, A.Y.; de Pee, S.; Bloem, M.W.; et al. Country-specific dietary shifts to mitigate climate and water crises. Glob. Environ. Chang. 2020, 62, 101926. [Google Scholar] [CrossRef]
- Popkin, B.M.; Reardon, T. Obesity and the food system transformation in Latin America. Obes. Rev. 2018, 19, 1028–1064. [Google Scholar] [CrossRef] [PubMed]
- Bekelman, T.A.; Santamaría-Ulloa, C.; Dufour, D.L. Variation in dietary intake and body fatness by socioeconomic status among women in the context of Costa Rican nutrition transitions. J. Biosoc. Sci. 2020, 52, 230–247. [Google Scholar] [CrossRef] [PubMed]
- Wong-McClure, R.; Gregg, E.W.; Barcelo, A.; Sanabria-Lopez, L.; Lee, K.; Abarca-Gomez, L.; Cervantes-Loaiza, M.; Luman, E.T. Prevalence of diabetes and impaired fasting glucose in Costa Rica: Costa Rican National Cardiovascular Risk Factors Survey, 2010. J. Diabetes 2016, 8, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Rhee, J.J.; Mattei, J.; Campos, H. Association between commercial and traditional sugar-sweetened beverages and measures of adiposity in Costa Rica. Public. Health Nutr. 2012, 15, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Fisberg, M.; Kovalskys, I.; Gómez, G.; Rigotti, A.; Sanabria, L.Y.C.; García, M.C.Y.; Torres, R.G.P.; Herrera-Cuenca, M.; Zimberg, I.Z.; Koletzko, B.; et al. Total and Added Sugar Intake: Assessment in Eight Latin American Countries. Nutrients 2018, 10, 389. [Google Scholar] [CrossRef]
- Heredia-Blonval, K.; Blanco-Metzler, A.; Montero-Campos, M.; Dunford, E.K. The salt content of products from popular fast-food chains in Costa Rica. Appetite 2014, 83, 173–177. [Google Scholar] [CrossRef]
- Cantor, A.; Peña, J.; Himmelgreen, D. “We never ate like that, not fast food, or junk foods”: Accounts of changing maternal diet in a tourist community in rural Costa Rica. Ecol. Food Nutr. 2013, 52, 479–496. [Google Scholar] [CrossRef]
- Luan, D.; Wang, D.; Campos, H.; Baylin, A. Red meat consumption and metabolic syndrome in the Costa Rica Heart Study. Eur. J. Nutr. 2020, 59, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaar, L.; Satija, A.; Wang, D.D.; Rimm, E.B.; Smith-Warner, S.A.; Stampfer, M.J.; Hu, F.B.; Willett, W.C. Red meat intake and risk of coronary heart disease among US men: Prospective cohort study. BMJ 2020, 371, m4141. [Google Scholar] [CrossRef] [PubMed]
- Papier, K.; Knuppel, A.; Syam, N.; Jebb, S.A.; Key, T.J. Meat consumption and risk of ischemic heart disease: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Campos, H.; Baylin, A. Red meat intake is positively associated with non-fatal acute myocardial infarction in the Costa Rica Heart Study. Br. J. Nutr. 2017, 118, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Poursafar, Z.; Joukar, F.; Hasavari, F.; Atrkar Roushan, Z. The Associations between Meat Group Consumption and Acute Myocardial Infarction Risks in an Iranian Population: A Case-Control Study. Clin. Nutr. Res. 2019, 8, 159–168. [Google Scholar] [CrossRef]
- Quintana Pacheco, D.A.; Sookthai, D.; Wittenbecher, C.; Graf, M.E.; Schübel, R.; Johnson, T.; Katzke, V.; Jakszyn, P.; Kaaks, R.; Kühn, T. Red meat consumption and risk of cardiovascular diseases—Is increased iron load a possible link? Am. J. Clin. Nutr. 2018, 107, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Campos, H.; Siles, X. Siesta and the risk of coronary heart disease: Results from a population-based, case-control study in Costa Rica. Int. J. Epidemiol. 2000, 29, 429–437. [Google Scholar] [CrossRef]
- Hall, C. Costa Rica. A Geographical Interpretation in Historical Perspective; Dellplain Latin American Studies, No. 17; Westview Press, Inc.: Boulder, CO, USA, 1985. [Google Scholar]
- Tunstall-Pedoe, H.; Kari, K.; Amouyel, P.; Arveiler, D.; Rajakangas, A.M.; Pajak, A. Myocardial infarction and coronary deaths in the World Health Organization MONICA Project: Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation 1994, 90, 583–612. [Google Scholar] [CrossRef]
- Kabagambe, E.K.; Baylin, A.; Allan, D.A.; Siles, X.; Spiegelman, D.; Campos, H. Application of the method of triads to evaluate the performance of food frequency questionnaires and biomarkers as indicators of long-term dietary intake. Am. J. Epidemiol. 2001, 154, 1126–1135. [Google Scholar] [CrossRef]
- Baylin, A.; Siles, X.; Donovan-Palmer, A.; Fernandez, X.; Campos, H. Fatty acid composition of Costa Rican foods including trans fatty acid content. J. Food Compost. Anal. 2007, 20, 182–192. [Google Scholar] [CrossRef]
- Gong, J.; Campos, H.; Fiecas, J.M.; McGarvey, S.T.; Goldberg, R.; Richardson, C.; Baylin, A. A case-control study of physical activity patterns and risk of non-fatal myocardial infarction. BMC Public. Health 2013, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Hastert, T.A.; Gong, J.; Campos, H.; Baylin, A. Physical activity patterns and metabolic syndrome in Costa Rica. Prev. Med. 2015, 70, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Banna, J.C.; McCrory, M.A.; Fialkowski, M.K.; Boushey, C. Examining Plausibility of Self-Reported Energy Intake Data: Considerations for Method Selection. Front. Nutr. 2017, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- van de Kamp, M.E.; Seves, S.M.; Temme, E.H.M. Reducing GHG emissions while improving diet quality: Exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day. BMC Public. Health 2018, 18, 264. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Murakami, K.; Asakura, K.; Masayasu, S.; Sasaki, S. Diet-related greenhouse gas emissions and major food contributors among Japanese adults: Comparison of different calculation methods. Public. Health Nutr. 2021, 24, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Hyland, J.J.; Henchion, M.; McCarthy, M.; McCarthy, S.N. The climatic impact of food consumption in a representative sample of Irish adults and implications for food and nutrition policy. Public. Health Nutr. 2017, 20, 726–738. [Google Scholar] [CrossRef]
- Temme, E.H.; Toxopeus, I.B.; Kramer, G.F.; Brosens, M.C.; Drijvers, J.M.; Tyszler, M.; Ocké, M.C. Greenhouse gas emission of diets in the Netherlands and associations with food, energy and macronutrient intakes. Public. Health Nutr. 2015, 18, 2433–2445. [Google Scholar] [CrossRef]
- Murakami, K.; Livingstone, M.B.E. Greenhouse gas emissions of self-selected diets in the UK and their association with diet quality: Is energy under-reporting a problem? Nutr. J. 2018, 17, 27. [Google Scholar] [CrossRef]
- Song, G.; Li, M.; Fullana, I.P.P.; Williamson, D.; Wang, Y. Dietary changes to mitigate climate change and benefit public health in China. Sci. Total Environ. 2017, 577, 289–298. [Google Scholar] [CrossRef]
- Song, G.; Li, M.; Semakula, H.M.; Zhang, S. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China. Sci. Total Environ. 2015, 529, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Caulfield, L.E.; Garcia-Larsen, V.; Steffen, L.M.; Coresh, J.; Rebholz, C.M. Plant-Based Diets Are Associated With a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All-Cause Mortality in a General Population of Middle-Aged Adults. J. Am. Heart Assoc. 2019, 8, e012865. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Tierney, A.; Lordan, R.; Tsoupras, A.; Zabetakis, I. Chapter 8—Diet and Cardiovascular Disease: The Mediterranean Diet. In The Impact of Nutrition and Statins on Cardiovascular Diseases; Zabetakis, I., Lordan, R., Tsoupras, A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 267–288. [Google Scholar]
- Babalola, F.; Adesuyi, A.; David, F.; Kolajo, B.A.; Urhi, A.; Akinade, O.; Adedoyin, A.M.; Alugba, G.; Arisoyin, A.E.; Okereke, O.P.; et al. A Comprehensive Review on the Effects of Vegetarian Diets on Coronary Heart Disease. Cureus 2022, 14, e29843. [Google Scholar] [CrossRef] [PubMed]
- Tuso, P.; Stoll, S.R.; Li, W.W. A plant-based diet, atherogenesis, and coronary artery disease prevention. Perm. J. 2015, 19, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Rocque, R.J.; Beaudoin, C.; Ndjaboue, R.; Cameron, L.; Poirier-Bergeron, L.; Poulin-Rheault, R.-A.; Fallon, C.; Tricco, A.C.; Witteman, H.O. Health effects of climate change: An overview of systematic reviews. BMJ Open 2021, 11, e046333. [Google Scholar] [CrossRef] [PubMed]
- Romanello, M.; McGushin, A.; Di Napoli, C.; Drummond, P.; Hughes, N.; Jamart, L.; Kennard, H.; Lampard, P.; Rodriguez, B.S.; Arnell, N. The 2021 report of the Lancet Countdown on health and climate change: Code red for a healthy future. Lancet 2021, 398, 1619–1662. [Google Scholar] [CrossRef]
- Frumkin, H.; Haines, A. Global Environmental Change and Noncommunicable Disease Risks. Annu. Rev. Public. Health 2019, 40, 261–282. [Google Scholar] [CrossRef]
- Jacobsen, A.P.; Khiew, Y.C.; Duffy, E.; O’Connell, J.; Brown, E.; Auwaerter, P.G.; Blumenthal, R.S.; Schwartz, B.S.; McEvoy, J.W. Climate change and the prevention of cardiovascular disease. Am. J. Prev. Cardiol. 2022, 12, 100391. [Google Scholar] [CrossRef]
- Peters, A.; Schneider, A. Cardiovascular risks of climate change. Nat. Rev. Cardiol. 2021, 18, 1–2. [Google Scholar] [CrossRef]
- Alahmad, B.; Khraishah, H.; Shakarchi, A.F.; Albaghdadi, M.; Rajagopalan, S.; Koutrakis, P.; Jaffer, F.A. Cardiovascular Mortality and Exposure to Heat in an Inherently Hot Region: Implications for Climate Change. Circulation 2020, 141, 1271–1273. [Google Scholar] [CrossRef] [PubMed]
- Khatana, S.A.M.; Werner, R.M.; Groeneveld, P.W. Association of Extreme Heat and Cardiovascular Mortality in the United States: A County-Level Longitudinal Analysis From 2008 to 2017. Circulation 2022, 146, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Su, H.; Xu, Z.; Tong, S. Extreme temperature exposure and acute myocardial infarction: Elevated risk within hours? Environ. Res. 2021, 202, 111691. [Google Scholar] [CrossRef] [PubMed]
- García-Lledó, A.; Rodríguez-Martín, S.; Tobías, A.; Alonso-Martín, J.; Ansede-Cascudo, J.C.; de Abajo, F.J. Heat waves, ambient temperature, and risk of myocardial infarction: An ecological study in the Community of Madrid. Rev. Esp. Cardiol. 2020, 73, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Breitner, S.; Wolf, K.; Hampel, R.; Meisinger, C.; Heier, M.; von Scheidt, W.; Kuch, B.; Peters, A.; Schneider, A.; et al. Temporal variations in the triggering of myocardial infarction by air temperature in Augsburg, Germany, 1987–2014. Eur. Heart J. 2019, 40, 1600–1608. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Breitner, S.; Wolf, K.; Rai, M.; Meisinger, C.; Heier, M.; Kuch, B.; Peters, A.; Schneider, A. Projection of Temperature-Related Myocardial Infarction in Augsburg, Germany: Moving on From the Paris Agreement on Climate Change. Dtsch. Arztebl. Int. 2019, 116, 521–527. [Google Scholar] [CrossRef]
- Sjörs, C.; Hedenus, F.; Sjölander, A.; Tillander, A.; Bälter, K. Adherence to dietary recommendations for Swedish adults across categories of greenhouse gas emissions from food. Public. Health Nutr. 2017, 20, 3381–3393. [Google Scholar] [CrossRef]
- Vieux, F.; Soler, L.-G.; Touazi, D.; Darmon, N. High nutritional quality is not associated with low greenhouse gas emissions in self-selected diets of French adults. Am. J. Clin. Nutr. 2013, 97, 569–583. [Google Scholar] [CrossRef]
- Carbon Footprint Calculator. Available online: https://calculator.carbonfootprint.com/calculator.aspx?tab=3 (accessed on 22 December 2023).
- Baylin, A.; Kabagambe, E.K.; Siles, X.; Campos, H. Adipose tissue biomarkers of fatty acid intake. Am. J. Clin. Nutr. 2002, 76, 750–757. [Google Scholar] [CrossRef]
- Ravelli, M.N.; Schoeller, D.A. Traditional Self-Reported Dietary Instruments Are Prone to Inaccuracies and New Approaches Are Needed. Front. Nutr. 2020, 7, 90. [Google Scholar] [CrossRef]
- Vieux, F.; Darmon, N.; Touazi, D.; Soler, L.G. Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less? Ecol. Econ. 2012, 75, 91–101. [Google Scholar] [CrossRef]
- Scarborough, P.; Appleby, P.N.; Mizdrak, A.; Briggs, A.D.; Travis, R.C.; Bradbury, K.E.; Key, T.J. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Change 2014, 125, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Raiten, D.J.; Allen, L.H.; Slavin, J.L.; Mitloehner, F.M.; Thoma, G.J.; Haggerty, P.A.; Finley, J.W. Understanding the Intersection of Climate/Environmental Change, Health, Agriculture, and Improved Nutrition: A Case Study on Micronutrient Nutrition and Animal Source Foods. Curr. Dev. Nutr. 2020, 4, nzaa087. [Google Scholar] [CrossRef] [PubMed]
Controls N = 1817 | Cases N = 1817 | p-Value | |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Age, years | 58 ± 11 | 59 ± 11 | - |
Female, % | 25 | 25 | - |
Marital status, % married b | 73 | 66 | <0.0001 |
Education, % post-secondary b | 15 | 13 | <0.0001 |
Income, USD/month c | 569 ± 423 | 496 ± 394 | <0.0001 |
Current smokers, % b | 21 | 40 | <0.0001 |
Physical activity, METs/day c | 35 ± 16 | 34 ± 16 | 0.0039 |
Waist circumference, cm d | 91 ± 10 | 91 ± 9 | 0.4603 |
Diabetes, % b | 14 | 24 | <0.0001 |
Hypertension, % b | 30 | 37 | <0.0001 |
Total caloric intake, kcal d | 2393 ± 641 | 2532 ± 686 | <0.0001 |
Total diet-attributable GHGEs, kg CO2 eq./year c | 3795 ± 1638 | 4238 ± 1811 | <0.0001 |
Intake (Serving/Year) | % of Total Diet-Attributable GHGEs (kg CO2 eq./year) | |||||
---|---|---|---|---|---|---|
Controls | Cases | p-Value | Controls | Cases | p-Value | |
Red meat | 426 ± 319 | 496 ± 373 | <0.0001 | 44.85 ± 17.74 | 46.74 ± 17.87 | 0.0029 |
Fish and chicken | 246 ± 145 | 260 ± 181 | 0.0546 | 8.81 ± 6.23 | 8.25 ± 5.95 | 0.0007 |
Dairy products | 689 ± 534 | 753 ± 594 | 0.0027 | 12.09 ± 9.87 | 11.91 ± 9.96 | 0.2852 |
Eggs | 199 ± 212 | 228 ± 259 | 0.0011 | 1.53 ± 1.85 | 1.57 ± 2.01 | 0.2916 |
Legumes | 650 ± 406 | 679 ± 415 | 0.0145 | 1.08 ± 0.92 | 1.01 ± 0.83 | 0.0204 |
Grains, cereals, and starchy vegetables | 3362 ± 1240 | 3531 ± 1337 | 0.0005 | 7.45 ± 3.66 | 6.97 ± 3.5 | <0.0001 |
Vegetables | 4726 ± 1757 | 4898 ± 1778 | 0.0010 | 1.84 ± 1.19 | 1.65 ± 1.03 | <0.0001 |
Fruits | 1053 ± 868 | 985 ± 769 | 0.0578 | 2.24 ± 2.21 | 1.91 ± 1.75 | <0.0001 |
Sugar | 1132 ± 898 | 1256 ± 1014 | 0.0008 | 7.84 ± 6.06 | 7.54 ± 6.52 | 0.0358 |
Unsaturated fat and oils | 444 ± 353 | 442 ± 370 | 0.6331 | 0.62 ± 0.97 | 0.49 ± 0.73 | <0.0001 |
Alcohol | 154 ± 348 | 167 ± 417 | 0.9643 | 1.01 ± 2.39 | 0.98 ± 2.56 | 0.0868 |
Coffee | 822 ± 516 | 947 ± 551 | <0.0001 | 10.02 ± 7.95 | 10.34 ± 7.4 | 0.0340 |
Chocolate | 37 ± 105 | 42 ± 130 | 0.5913 | 0.63 ± 1.76 | 0.63 ± 1.74 | 0.9111 |
Water, tea, and other beverages | 1139 ± 753 | 1085 ± 753 | 0.0368 | 0 ± 0 | 0 ± 0 | - |
Quintiles of Median Diet-Attributable GHGEs (kg CO2 eq./year) (min.–max.) | |||||
---|---|---|---|---|---|
Q1 2002 (536–2418) | Q2 2780 (2419–3150) | Q3 3567 (3152–3992) | Q4 4453 (4002–5024) | Q5 5857 (5025–18,169) | |
Marital status, % married | 18 | 20 | 21 | 21 | 19 |
Education,% post-secondary | 16 | 20 | 24 | 19 | 21 |
Income, USD/month | 335 | 411 | 484 | 503 | 503 |
Current smokers, % | 17 | 18 | 18 | 22 | 24 |
Physical activity, METs/day | 32 | 32 | 33 | 33 | 34 |
Waist circumference, cm | 89 | 91 | 91 | 92 | 93 |
Diabetes, % | 21 | 26 | 19 | 19 | 16 |
Hypertension, % | 22 | 23 | 21 | 19 | 16 |
Total energy intake, kcal/day | 1782 | 2100 | 2317 | 2596 | 3061 |
Food Groups | Quintiles of Total Diet-Attributable GHGEs (kg CO2 eq./year) (Median) | ||||
---|---|---|---|---|---|
Q1 1890 | Q2 2779 | Q3 3560 | Q4 4477 | Q5 6270 | |
Red meat | 512 ± 351 | 1096 ± 420 | 1622 ± 508 | 2413 ± 551 | 3815 ± 1320 |
Fish and chicken | 224 ± 188 | 263 ± 178 | 313 ± 167 | 342 ± 169 | 385 ± 202 |
Dairy products | 268 ± 233 | 377 ± 299 | 456 ± 359 | 472 ± 384 | 595 ± 434 |
Eggs | 41 ± 58 | 46 ± 41 | 49 ± 47 | 58 ± 54 | 65 ± 69 |
Legumes | 30 ± 23 | 35 ± 23 | 35 ± 24 | 37 ± 21 | 41 ± 22 |
Grains, cereals, and starchy vegetables | 209 ± 65 | 231 ± 72 | 240 ± 72 | 261 ± 82 | 283 ± 73 |
Vegetables | 48 ± 28 | 58 ± 31 | 59 ± 28 | 68 ± 35 | 79 ± 41 |
Fruits | 60 ± 59 | 70 ± 60 | 77 ± 60 | 80 ± 63 | 88 ± 80 |
Sugar | 165 ± 137 | 225 ± 177 | 296 ± 237 | 321 ± 228 | 411 ± 275 |
Unsaturated fat and oils | 17 ± 26 | 19 ± 32 | 22 ± 29 | 23 ± 29 | 23 ± 28 |
Alcohol | 17 ± 50 | 26 ± 69 | 44 ± 95 | 50 ± 101 | 54 ± 96 |
Coffee | 286 ± 196 | 318 ± 195 | 324 ± 195 | 328 ± 202 | 389 ± 230 |
Chocolate | 13 ± 37 | 17 ± 53 | 24 ± 67 | 26 ± 76 | 44 ± 99 |
Water, tea, and other beverages | 0 | 0 | 0 | 0 | 0 |
Quintiles of Total Diet-Attributable GHGEs (kg CO2 eq./year) (Median) | p-Trend | For Every 1000 kg CO2 eq./year Increases in Diet-Attributable GHGEs | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Q1 2065 (n = 726) | Q2 2931 (n = 727) | Q3 3785 (n = 727) | Q4 4737 (n = 727) | Q5 6247 (n = 727) | ||||
Basic model b | 1.00 | 1.08 (0.87, 1.34) | 1.41 (1.14, 1.74) | 1.60 (1.29, 1.99) | 2.20 (1.78, 2.75) | <0.0001 | 1.17 (1.12, 1.22) | <0.0001 |
Multivariable model 1 c | 1.00 | 1.03 (0.82, 1.30) | 1.35 (1.06, 1.71) | 1.41 (1.09, 1.82) | 1.81 (1.35, 2.43) | 0.0001 | 1.12 (1.06, 1.18) | 0.0001 |
Multivariable model 2 d | 1.00 | 0.96 (0.76, 1.22) | 1.26 (0.99, 1.61) | 1.30 (0.99, 1.70) | 1.63 (1.20, 2.21) | 0.0012 | 1.10 (1.04, 1.17) | 0.0012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljahdali, A.A.; Campos, H.; Granados, K.; Jones, A.D.; Baylin, A. Diet-Attributable Greenhouse Gas Emissions and Acute Myocardial Infarction in Costa Rica Heart Study. Nutrients 2024, 16, 138. https://doi.org/10.3390/nu16010138
Aljahdali AA, Campos H, Granados K, Jones AD, Baylin A. Diet-Attributable Greenhouse Gas Emissions and Acute Myocardial Infarction in Costa Rica Heart Study. Nutrients. 2024; 16(1):138. https://doi.org/10.3390/nu16010138
Chicago/Turabian StyleAljahdali, Abeer A., Hannia Campos, Keylin Granados, Andrew D. Jones, and Ana Baylin. 2024. "Diet-Attributable Greenhouse Gas Emissions and Acute Myocardial Infarction in Costa Rica Heart Study" Nutrients 16, no. 1: 138. https://doi.org/10.3390/nu16010138
APA StyleAljahdali, A. A., Campos, H., Granados, K., Jones, A. D., & Baylin, A. (2024). Diet-Attributable Greenhouse Gas Emissions and Acute Myocardial Infarction in Costa Rica Heart Study. Nutrients, 16(1), 138. https://doi.org/10.3390/nu16010138