Dietary Inflammatory Potential, Inflammation-Related Lifestyle Factors, and Incident Anxiety Disorders: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Dietary Assessment (2009–2012)
2.3. Calculation of E-DII Score
2.4. Assessment of Incident Outcomes of Anxiety Disorders
2.5. Assessment of Other Covariates
2.6. Statistical Analysis
3. Results
3.1. Baseline Population Characteristics
3.2. Associations between E-DII Scores and Incident Anxiety Outcomes
3.3. Stratified Associations between E-DII Scores and Incident Anxiety Outcomes
3.4. Joint Effects of Binary E-DII Groups and Inflammation-Related Lifestyle Factors on the Risk of Anxiety Outcomes
3.5. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Segal, D.L. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR). In The Corsini Encyclopedia of Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 1–3. [Google Scholar]
- Martin, P. The epidemiology of anxiety disorders: A review. Dialogues Clin. Neurosci. 2022, 5, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Ohi, K.; Otowa, T.; Shimada, M.; Sasaki, T.; Tanii, H. Shared genetic etiology between anxiety disorders and psychiatric and related intermediate phenotypes. Psychol. Med. 2020, 50, 692–704. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Moseley, G.; Berk, M.; Jacka, F. Nutritional psychiatry: The present state of the evidence. Proc. Nutr. Soc. 2017, 76, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Aucoin, M.; LaChance, L.; Naidoo, U.; Remy, D.; Shekdar, T.; Sayar, N.; Cardozo, V.; Rawana, T.; Chan, I.; Cooley, K. Diet and Anxiety: A Scoping Review. Nutrients 2021, 13, 4418. [Google Scholar] [CrossRef] [PubMed]
- Gianfredi, V.; Dinu, M.; Nucci, D.; Eussen, S.J.P.M.; Amerio, A.; Schram, M.T.; Schaper, N.; Odone, A. Association between dietary patterns and depression: An umbrella review of meta-analyses of observational studies and intervention trials. Nutr. Rev. 2022, 81, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Bear, T.L.K.; Dalziel, J.E.; Coad, J.; Roy, N.C.; Butts, C.A.; Gopal, P.K. The Role of the Gut Microbiota in Dietary Interventions for Depression and Anxiety. Adv. Nutr. 2020, 11, 890–907. [Google Scholar] [CrossRef]
- Renna, M.E.; O’Toole, M.S.; Spaeth, P.E.; Lekander, M.; Mennin, D.S. The association between anxiety, traumatic stress, and obsessive–compulsive disorders and chronic inflammation: A systematic review and meta-analysis. Depress. Anxiety 2018, 35, 1081–1094. [Google Scholar] [CrossRef]
- Godos, J.; Currenti, W.; Angelino, D.; Mena, P.; Castellano, S.; Caraci, F.; Galvano, F.; Del Rio, D.; Ferri, R.; Grosso, G. Diet and mental health: Review of the recent updates on molecular mechanisms. Antioxidants 2020, 9, 346. [Google Scholar] [CrossRef]
- Phillips, C.M.; Shivappa, N.; Hébert, J.R.; Perry, I.J. Dietary inflammatory index and mental health: A cross-sectional analysis of the relationship with depressive symptoms, anxiety and well-being in adults. Clin. Nutr. 2018, 37, 1485–1491. [Google Scholar] [CrossRef]
- Salari-Moghaddam, A.; Keshteli, A.H.; Afshar, H.; Esmaillzadeh, A.; Adibi, P. Association between dietary inflammatory index and psychological profile in adults. Clin. Nutr. 2019, 38, 2360–2368. [Google Scholar] [CrossRef]
- Attlee, A.; Saravanan, C.; Shivappa, N.; Wirth, M.D.; Aljaberi, M.; Alkaabi, R.; Bataineh, M.F.; Hebert, J.R. Higher Dietary Inflammatory Index Scores Are Associated with Stress and Anxiety in Dormitory-Residing Female University Students in the United Arab Emirates. Front. Nutr. 2022, 9, 814409. [Google Scholar] [CrossRef] [PubMed]
- Salari-Moghaddam, A.; Keshteli, A.H.; Afshar, H.; Esmaillzadeh, A.; Adibi, P. Empirically derived food-based dietary inflammatory index is associated with increased risk of psychological disorders in women. Nutr. Neurosci. 2021, 24, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Ghazizadeh, H.; Yaghooti-Khorasani, M.; Asadi, Z.; Zare-Feyzabadi, R.; Saeidi, F.; Shabani, N.; Safari-Ghalezou, M.; Yadegari, M.; Nosrati-Tirkani, A.; Shivappa, N.; et al. Association between Dietary Inflammatory Index (DII®) and depression and anxiety in the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) Study population. BMC Psychiatry 2020, 20, 282. [Google Scholar] [CrossRef] [PubMed]
- Bergmans, R.S.; Malecki, K.M. The association of dietary inflammatory potential with depression and mental well-being among US adults. Prev. Med. 2017, 99, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, P.; Nejati, M.; Vahid, F.; Almasi-Hashiani, A.; Saleh-Ghadimi, S.; Parsi, R.; Jafari-Vayghan, H.; Shivappa, N.; R Hébert, J. The association between dietary inflammatory index, dietary antioxidant index, and mental health in adolescent girls: An analytical study. BMC Public Health 2022, 22, 1513. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Parastouei, K.; Rostami, H.; Fadel, A. The association between dietary inflammatory index and psychological profile among men with spinal cord injury. J. Spinal Cord Med. 2022, 45, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Correa-Rodríguez, M.; Casas-Barragán, A.; González-Jiménez, E.; Schmidt-RioValle, J.; Molina, F.; Aguilar-Ferrándiz, M.E. Dietary Inflammatory Index Scores Are Associated with Pressure Pain Hypersensitivity in Women with Fibromyalgia. Pain Med. 2019, 21, 586–594. [Google Scholar] [CrossRef]
- Torabynasab, K.; Shahinfar, H.; Effatpanah, M.; Jazayeri, S.; Azadbakht, L.; Abolghasemi, J.; Jamali, S. Association between empirical dietary inflammatory index, odds, and severity of anxiety disorders: A case-control study. Food Sci. Nutr. 2023, 11, 6349–6359. [Google Scholar] [CrossRef]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)—Lessons learned, improvements made, and future directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef]
- Christ, A.; Latz, E. The Western lifestyle has lasting effects on metaflammation. Nat. Rev. Immunol. 2019, 19, 267–268. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Young, H.; Crowe, F.L.; Benson, V.S.; Spencer, E.A.; Key, T.J.; Appleby, P.N.; Beral, V. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 2011, 14, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cornago, A.; Pollard, Z.; Young, H.; van Uden, M.; Andrews, C.; Piernas, C.; Key, T.J.; Mulligan, A.; Lentjes, M. Description of the updated nutrition calculation of the Oxford WebQ questionnaire and comparison with the previous version among 207,144 participants in UK Biobank. Eur. J. Nutr. 2021, 60, 4019–4030. [Google Scholar] [CrossRef]
- Greenwood, D.C.; Hardie, L.J.; Frost, G.S.; Alwan, N.A.; Bradbury, K.E.; Carter, M.; Elliott, P.; Evans, C.E.; Ford, H.E.; Hancock, N. Validation of the Oxford WebQ online 24-hour dietary questionnaire using biomarkers. Am. J. Epidemiol. 2019, 188, 1858–1867. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Tabung, F.K.; Steck, S.E.; Zhang, J.; Ma, Y.; Liese, A.D.; Agalliu, I.; Hingle, M.; Hou, L.; Hurley, T.G.; Jiao, L. Construct validation of the dietary inflammatory index among postmenopausal women. Ann. Epidemiol. 2015, 25, 398–405. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hébert, J.R. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef]
- Fitt, E.; Pell, D.; Cole, D. Assessing caffeine intake in the United Kingdom diet. Food Chem. 2013, 140, 421–426. [Google Scholar] [CrossRef]
- Kim, J.; Aschard, H.; Kang, J.H.; Lentjes, M.A.H.; Do, R.; Wiggs, J.L.; Khawaja, A.P.; Pasquale, L.R. Intraocular Pressure, Glaucoma, and Dietary Caffeine Consumption: A Gene–Diet Interaction Study from the UK Biobank. Ophthalmology 2021, 128, 866–876. [Google Scholar] [CrossRef]
- Remes, O.; Brayne, C.; van der Linde, R.; Lafortune, L. A systematic review of reviews on the prevalence of anxiety disorders in adult populations. Brain Behav. 2016, 6, e00497. [Google Scholar] [CrossRef]
- Baxter, A.J.; Vos, T.; Scott, K.M.; Ferrari, A.J.; Whiteford, H.A. The global burden of anxiety disorders in 2010. Psychol. Med. 2014, 44, 2363–2374. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Sun, D.; Zhou, T.; Heianza, Y.; Lv, J.; Li, L.; Qi, L. Sleep patterns, genetic susceptibility, and incident cardiovascular disease: A prospective study of 385 292 UK biobank participants. Eur. Heart J. 2020, 41, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Shakya, P.R.; Melaku, Y.A.; Shivappa, N.; Hébert, J.R.; Adams, R.J.; Page, A.J.; Gill, T.K. Dietary inflammatory index (DII®) and the risk of depression symptoms in adults. Clin. Nutr. 2021, 40, 3631–3642. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Ruíz-Canela, M.; de la Fuente-Arrillaga, C.; Gea, A.; Shivappa, N.; Hébert, J.R.; Martínez-González, M.A. Dietary inflammatory index, cardiometabolic conditions and depression in the Seguimiento Universidad de Navarra cohort study. Br. J. Nutr. 2015, 114, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.A.; Cullen, B.; Adams, M.; Brailean, A.; Breen, G.; Coleman, J.R.; Dregan, A.; Gaspar, H.A.; Hübel, C.; Lee, W. Indicators of mental disorders in UK Biobank—A comparison of approaches. Int. J. Methods Psychiatr. Res. 2019, 28, e1796. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, D. Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika 1980, 67, 145–153. [Google Scholar] [CrossRef]
- Desquilbet, L.; Mariotti, F. Dose-response analyses using restricted cubic spline functions in public health research. Stat. Med. 2010, 29, 1037–1057. [Google Scholar] [CrossRef]
- Shivappa, N.; Hébert, J.R.; Veronese, N.; Caruso, M.G.; Notarnicola, M.; Maggi, S.; Stubbs, B.; Firth, J.; Fornaro, M.; Solmi, M. The relationship between the dietary inflammatory index (DII(®)) and incident depressive symptoms: A longitudinal cohort study. J. Affect. Disord. 2018, 235, 39–44. [Google Scholar] [CrossRef]
- Sarris, J.; Thomson, R.; Hargraves, F.; Eaton, M.; de Manincor, M.; Veronese, N.; Solmi, M.; Stubbs, B.; Yung, A.R.; Firth, J. Multiple lifestyle factors and depressed mood: A cross-sectional and longitudinal analysis of the UK Biobank (N = 84,860). BMC Med. 2020, 18, 354. [Google Scholar] [CrossRef]
- Zheng, J.; Wirth, M.D.; Merchant, A.T.; Zhang, J.; Shivappa, N.; Stolzenberg-Solomon, R.Z.; Hebert, J.R.; Steck, S.E. Inflammatory potential of diet, inflammation-related lifestyle factors, and risk of pancreatic cancer: Results from the NIH-AARP diet and health study. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1266–1270. [Google Scholar] [CrossRef]
- Irwin, M.R.; Olmstead, R.; Carroll, J.E. Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol. Psychiatry 2016, 80, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Kivimäki, M.; Shipley, M.J.; Batty, G.D.; Hamer, M.; Akbaraly, T.N.; Kumari, M.; Jokela, M.; Virtanen, M.; Lowe, G.D.; Ebmeier, K.P.; et al. Long-term inflammation increases risk of common mental disorder: A cohort study. Mol. Psychiatry 2014, 19, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chambless, L. Test for Additive Interaction in Proportional Hazards Models. Ann. Epidemiol. 2007, 17, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Capellino, S.; Sulli, A.; Serioli, B.; Secchi, M.E.; Villaggio, B.; Straub, R.H. Estrogens and autoimmune diseases. Ann. N. Y. Acad. Sci. 2006, 1089, 538–547. [Google Scholar] [CrossRef]
- Bandelow, B.; Michaelis, S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin. Neurosci. 2015, 17, 327–335. [Google Scholar] [CrossRef]
- Taylor, A.M.; Holscher, H.D. A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci. 2020, 23, 237–250. [Google Scholar] [CrossRef]
- Erny, D.; Hrabě de Angelis, A.L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 2015, 18, 965–977. [Google Scholar] [CrossRef]
- Felger, J.C. Imaging the Role of Inflammation in Mood and Anxiety-related Disorders. Curr. Neuropharmacol. 2018, 16, 533–558. [Google Scholar] [CrossRef]
- Bettio, L.E.B.; Rajendran, L.; Gil-Mohapel, J. The effects of aging in the hippocampus and cognitive decline. Neurosci. Biobehav. Rev. 2017, 79, 66–86. [Google Scholar] [CrossRef]
- Martin-Subero, M.; Anderson, G.; Kanchanatawan, B.; Berk, M.; Maes, M. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut–brain pathways. CNS Spectr. 2016, 21, 184–198. [Google Scholar] [CrossRef]
- Arnson, Y.; Shoenfeld, Y.; Amital, H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J. Autoimmun. 2010, 34, J258–J265. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.; Coletta, R.; Silvério, K.; Benevides, L.; Casati, M.; Da Silva, J.; Nociti, F., Jr. Impact of smoking on inflammation: Overview of molecular mechanisms. Inflamm. Res. 2011, 60, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Perkins, K.A. Sex differences in nicotine reinforcement and reward: Influences on the persistence of tobacco smoking. In The Motivational Impact of Nicotine and Its Role in Tobacco Use; Springer: New York, NY, USA, 2009; pp. 143–169. [Google Scholar]
- Tabung, F.K.; Steck, S.E.; Liese, A.D.; Zhang, J.; Ma, Y.; Caan, B.; Chlebowski, R.T.; Freudenheim, J.L.; Hou, L.; Mossavar-Rahmani, Y. Association between dietary inflammatory potential and breast cancer incidence and death: Results from the Women’s Health Initiative. Br. J. Cancer 2016, 114, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Skelton, M.; Rayner, C.; Purves, K.L.; Coleman, J.R.I.; Gaspar, H.A.; Glanville, K.P.; Hunjan, A.K.; Hübel, C.; Breen, G.; Eley, T.C. Self-reported medication use as an alternate phenotyping method for anxiety and depression in the UK Biobank. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2021, 186, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Knuppel, A.; Papier, K.; Fensom, G.K.; Appleby, P.N.; Schmidt, J.A.; Tong, T.Y.N.; Travis, R.C.; Key, T.J.; Perez-Cornago, A. Meat intake and cancer risk: Prospective analyses in UK Biobank. Int. J. Epidemiol. 2020, 49, 1540–1552. [Google Scholar] [CrossRef] [PubMed]
- Townsend, P.; Beattie, A.; Phillimore, P. Health and Deprivation: Inequality and the North; Croom Helm: London, UK, 1988. [Google Scholar]
- Liu, Z.; Suo, C.; Zhao, R.; Yuan, H.; Chen, X. Genetic predisposition, lifestyle risk, and obesity associate with the progression of nonalcoholic fatty liver disease. Dig. Liver Dis. 2021, 53, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, K.E.; Murphy, N.; Key, T.J. Diet and colorectal cancer in UK Biobank: A prospective study. Int. J. Epidemiol. 2020, 49, 246–258. [Google Scholar] [CrossRef]
- Hepsomali, P.; Groeger, J.A. Diet, Sleep, and Mental Health: Insights from the UK Biobank Study. Nutrients 2021, 13, 2573. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Cassidy, S.; Chau, J.Y.; Catt, M.; Bauman, A.; Trenell, M.I. Cross-sectional study of diet, physical activity, television viewing and sleep duration in 233 110 adults from the UK Biobank; the behavioural phenotype of cardiovascular disease and type 2 diabetes. BMJ Open 2016, 6, e010038. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Seidell, J.C.; Flegal, K.M. Assessing obesity: Classification and epidemiology. Br. Med. Bull. 1997, 53, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Green, H.D.; Beaumont, R.N.; Thomas, A.; Hamilton, B.; Wood, A.R.; Sharp, S.; Jones, S.E.; Tyrrell, J.; Walker, G.; Goodhand, J.; et al. Genome-Wide Association Study of Microscopic Colitis in the UK Biobank Confirms Immune-Related Pathogenesis. J. Crohns. Colitis 2019, 13, 1578–1582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, X.; Jia, Y.; Wen, Y.; Cheng, S.; Meng, P.; Li, C.; Zhang, H.; Pan, C.; Zhang, J.; et al. Vitamin D and the Risks of Depression and Anxiety: An Observational Analysis and Genome-Wide Environment Interaction Study. Nutrients 2021, 13, 3343. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Chu, X.; Yang, X.; Wen, Y.; Jia, Y.; Liang, C.; Yao, Y.; Ye, J.; Cheng, S.; Liu, L.; et al. Dietary Habit Is Associated with Depression and Intelligence: An Observational and Genome-Wide Environmental Interaction Analysis in the UK Biobank Cohort. Nutrients 2021, 13, 1150. [Google Scholar] [CrossRef] [PubMed]
- Ronaldson, A.; Arias de la Torre, J.; Gaughran, F.; Bakolis, I.; Hatch, S.L.; Hotopf, M.; Dregan, A. Prospective associations between vitamin D and depression in middle-aged adults: Findings from the UK Biobank cohort. Psychol. Med. 2022, 52, 1866–1874. [Google Scholar] [CrossRef]
- Adjibade, M.; Lemogne, C.; Touvier, M.; Hercberg, S.; Galan, P.; Assmann, K.E.; Julia, C.; Kesse-Guyot, E. The Inflammatory Potential of the Diet is Directly Associated with Incident Depressive Symptoms among French Adults. J. Nutr. 2019, 149, 1198–1207. [Google Scholar] [CrossRef]
- Akbaraly, T.; Kerlau, C.; Wyart, M.; Chevallier, N.; Ndiaye, L.; Shivappa, N.; Hébert, J.R.; Kivimäki, M. Dietary inflammatory index and recurrence of depressive symptoms: Results from the Whitehall II Study. Clin. Psychol. Sci. 2016, 4, 1125–1134. [Google Scholar] [CrossRef]
- Vermeulen, E.; Brouwer, I.A.; Stronks, K.; Bandinelli, S.; Ferrucci, L.; Visser, M.; Nicolaou, M. Inflammatory dietary patterns and depressive symptoms in Italian older adults. Brain Behav. Immun. 2018, 67, 290–298. [Google Scholar] [CrossRef]
- Han, H.; Cao, Y.; Feng, C.; Zheng, Y.; Dhana, K.; Zhu, S.; Shang, C.; Yuan, C.; Zong, G. Association of a Healthy Lifestyle With All-Cause and Cause-Specific Mortality Among Individuals With Type 2 Diabetes: A Prospective Study in UK Biobank. Diabetes Care 2021, 45, 319–329. [Google Scholar] [CrossRef]
- Said, M.A.; Verweij, N.; van der Harst, P. Associations of Combined Genetic and Lifestyle Risks with Incident Cardiovascular Disease and Diabetes in the UK Biobank Study. JAMA Cardiol. 2018, 3, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Zhang, X.; Huang, Y.; Zhu, Z.; Zhang, X.; Liu, S.; Liu, J.; Tang, S.; Wang, W.; Yu, H.; et al. Temporal trajectories of important diseases in the life course and premature mortality in the UK Biobank. BMC Med. 2022, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Honigberg, M.C.; Zekavat, S.M.; Pirruccello, J.P.; Natarajan, P.; Vaduganathan, M. Cardiovascular and Kidney Outcomes across the Glycemic Spectrum: Insights From the UK Biobank. J. Am. Coll. Cardiol. 2021, 78, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Drozd, M.; Pujades-Rodriguez, M.; Lillie, P.J.; Straw, S.; Morgan, A.W.; Kearney, M.T.; Witte, K.K.; Cubbon, R.M. Non-communicable disease, sociodemographic factors, and risk of death from infection: A UK Biobank observational cohort study. Lancet Infect. Dis. 2021, 21, 1184–1191. [Google Scholar] [CrossRef]
- Geng, T.; Li, X.; Ma, H.; Heianza, Y.; Qi, L. Adherence to a Healthy Sleep Pattern and Risk of Chronic Kidney Disease: The UK Biobank Study. Mayo Clin. Proc. 2022, 97, 68–77. [Google Scholar] [CrossRef]
- Knutson, K.L.; von Schantz, M. Associations between chronotype, morbidity and mortality in the UK Biobank cohort. Chronobiol. Int. 2018, 35, 1045–1053. [Google Scholar] [CrossRef]
Characteristics 1 | E-DII Scores from Diet 2 | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | p-Value 3 | |
E-DII score range (min, max) | –6.27, –1.40 | –1.39, –0.03 | –0.02, 1.29 | 1.30, 6.06 | |
N | 24,170 | 24,170 | 24,170 | 24,169 | |
Mean (SD) | |||||
Age, years | 57.28 (7.45) | 56.96 (7.66) | 56.27 (7.90) | 55.37 (8.07) | <0.001 |
Average total energy intake, kcal/day 4 | 1865.85 (440.72) | 1992.27 (452.66) | 2091.82 (477.10) | 2225.64 (533.89) | <0.001 |
BMI, kg/m2 | 26.27 (4.52) | 26.39 (4.38) | 26.67 (4.39) | 27.15 (4.64) | <0.001 |
N (%) 5 | |||||
Sex | <0.001 | ||||
Male | 7503 (31.04) | 9911 (41.01) | 11,981 (49.57) | 14,289 (59.12) | |
Female | 16,667 (68.96) | 14,259 (58.99) | 12,189 (50.43) | 9880 (40.88) | |
Ethnicity | <0.001 | ||||
Asian or Asian British | 208 (0.86) | 187 (0.77) | 229 (0.95) | 255 (1.06) | |
Black or Black British | 205 (0.85) | 136 (0.56) | 165 (0.68) | 210 (0.87) | |
Chinese | 70 (0.29) | 66 (0.27) | 63 (0.26) | 51 (0.21) | |
Mixed | 131 (0.54) | 92 (0.38) | 119 (0.49) | 145 (0.60) | |
Other ethnic groups | 169 (0.70) | 114 (0.47) | 126 (0.52) | 129 (0.53) | |
White | 23,321 (96.49) | 23,500 (97.23) | 23,397 (96.80) | 23,279 (96.32) | |
Unknown | 66 (0.27) | 75 (0.31) | 71 (0.29) | 100 (0.41) | |
Education qualification 6 | <0.001 | ||||
College or university degree/vocational qualification | 17,729 (73.35) | 17,817 (73.72) | 17,698 (73.22) | 16,995 (70.32) | |
National examination at age 17–18 | 1453 (6.01) | 1477 (6.11) | 1505 (6.23) | 1564 (6.47) | |
National examination at age 16 | 3303 (13.67) | 3203 (13.25) | 3265 (13.51) | 3685 (15.25) | |
Unknown | 1685 (6.97) | 1673 (6.92) | 1702 (7.04) | 1925 (7.96) | |
Townsend deprivation index 7 | <0.001 | ||||
Least deprived, −6.26–−3.32 | 8149 (33.72) | 8352 (34.56) | 8158 (33.75) | 7535 (31.18) | |
Intermediate, −3.31–−1.09 | 8093 (33.48) | 8259 (34.17) | 8027 (33.21) | 7815 (32.33) | |
Most deprived, –1.08–10.27 | 7908 (32.72) | 7534 (31.17) | 7956 (32.92) | 8794 (36.39) | |
Unknown | 20 (0.08) | 25 (0.10) | 29 (0.12) | 25 (0.10) | |
Cigarette smoking status | <0.001 | ||||
Never | 14,247 (58.94) | 14,347 (59.36) | 14,011 (57.97) | 13,039 (53.95) | |
Past smokers, ≥15 cigarettes/d | 3725 (15.41) | 3651 (15.11) | 3888 (16.09) | 4130 (17.09) | |
Past smokers, <15 cigarettes/d | 1748 (7.23) | 1649 (6.82) | 1586 (6.56) | 1465 (6.06) | |
Past smokers, amount unknown | 3319 (13.73) | 3260 (13.49) | 3145 (13.01) | 2921 (12.09) | |
Current smokers, ≥15 cigarettes/d | 222 (0.92) | 292 (1.21) | 418 (1.73) | 1010 (4.18) | |
Current smokers, <15 cigarettes/d | 343 (1.42) | 364 (1.51) | 424 (1.75) | 712 (2.95) | |
Current smokers, amount unknown | 512 (2.12) | 565 (2.34) | 658 (2.72) | 838 (3.47) | |
Unknown status | 54 (0.22) | 42 (0.17) | 40 (0.17) | 54 (0.22) | |
Alcohol drinking status 7 | <0.001 | ||||
Never | 818 (3.38) | 646 (2.67) | 645 (2.67) | 738 (3.05) | |
Past drinkers | 802 (3.32) | 636 (2.63) | 561 (2.32) | 743 (3.07) | |
Current drinkers, ≤7.1 g/d | 8206 (33.95) | 7557 (31.27) | 7157 (29.61) | 7423 (30.71) | |
Current drinkers, 7.2–18.6 g/d | 8025 (33.20) | 8042 (33.27) | 7614 (31.50) | 6665 (27.58) | |
Current drinkers, >18.6 g/d | 6306 (26.09) | 7280 (30.12) | 8184 (33.86) | 8580 (35.50) | |
Unknown status | 13 (0.05) | 9 (0.04) | 9 (0.04) | 20 (0.08) | |
Sleep quality 8 | |||||
Healthy | 9174 (37.96) | 8835 (36.55) | 8381 (34.68) | 7638 (31.60) | <0.001 |
Intermediate | 10,701 (44.27) | 10,891 (45.06) | 11,167 (46.20) | 11,619 (48.07) | |
Poor | 525 (2.17) | 607 (2.51) | 684 (2.83) | 900 (3.72) | |
Unknown | 3770 (15.60) | 3837 (15.88) | 3938 (16.29) | 4012 (16.60) | |
Physical activity level 7,9 | <0.001 | ||||
Low, ≤1102 MET-minutes/week | 5799 (23.99) | 6643 (27.48) | 7274 (30.10) | 8022 (33.19) | |
Medium, 1103–2604 MET-minutes/week | 7115 (29.44) | 7161 (29.63) | 6977 (28.87) | 6457 (26.72) | |
High, >2604 MET-minutes/week | 7916 (32.75) | 7013 (29.02) | 6496 (26.88) | 6267 (25.93) | |
Unknown | 3340 (13.82) | 3353 (13.87) | 3423 (14.16) | 3423 (14.16) | |
BMI status | <0.001 | ||||
Underweight, <18.5 kg/m2 | 165 (0.68) | 116 (0.48) | 89 (0.37) | 105 (0.43) | |
Normal weight, 18.5–24.9 kg/m2 | 10,600 (43.86) | 10,165 (42.06) | 9391 (38.85) | 8416 (34.82) | |
Overweight, 25.0–29.9 kg/m2 | 9233 (38.20) | 9695 (40.11) | 10,123 (41.88) | 10,258 (42.44) | |
Obese, ≥30 kg/m2 | 4172 (17.26) | 4194 (17.35) | 4567 (18.9) | 5390 (22.30) | |
Vitamin/mineral supplement use | <0.001 | ||||
No | 12,700 (52.54) | 13,908 (57.54) | 15,178 (62.80) | 16,706 (69.12) | |
Yes | 11,470 (47.46) | 10,262 (42.46) | 8992 (37.20) | 7463 (30.88) | |
NSAIDs use | <0.001 | ||||
No | 18,799 (77.78) | 18,706 (77.39) | 18,590 (76.91) | 18,395 (76.11) | |
Yes | 5371 (22.22) | 5464 (22.61) | 5580 (23.09) | 5774 (23.89) | |
Depression status | <0.001 | ||||
No | 20,997 (86.87) | 21,339 (88.29) | 21,303 (88.14) | 21,141 (87.47) | |
Yes | 3173 (13.13) | 2831 (11.71) | 2867 (11.86) | 3028 (12.53) | |
Number of related comorbidities 10 | 0.03 | ||||
0 | 10,631 (43.98) | 10,682 (44.20) | 10,759 (44.51) | 10,683 (44.20) | |
1–2 | 11,048 (45.71) | 10,913 (45.15) | 10,847 (44.88) | 10,778 (44.59) | |
≥3 | 2491 (10.31) | 2575 (10.65) | 2564 (10.61) | 2708 (11.2) |
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | Ptrend 1 | HRcontinuous (95% CI) 2 | Pinteraction-by-sex 3 | |
---|---|---|---|---|---|---|---|
Total anxiety disorders 4 | 0.57 | ||||||
No. of cases/person-years | 722/222,038 | 677/221,840 | 647/221,779 | 739/220,852 | |||
Model 1, HR (95% CI) 5 | Ref. | 0.99 (0.89–1.10) | 1.00 (0.90–1.11) | 1.21 (1.09–1.35) | <0.001 | 1.08 (1.04–1.12) | |
Model 2, HR (95% CI) 6 | Ref. | 1.00 (0.90–1.11) | 0.99 (0.89–1.10) | 1.12 (1.00–1.25) | 0.04 | 1.04 (1.00–1.08) | |
Males | |||||||
No. of cases/person-years | 145/68,717 | 202/90,872 | 218/109,875 | 320/130,288 | |||
Model 1, HR (95% CI) 5 | Ref. | 1.05 (0.85–1.31) | 0.94 (0.76–1.16) | 1.17 (0.95–1.43) | 0.23 | 1.04 (0.97–1.12) | |
Model 2, HR (95% CI) 6 | Ref. | 1.05 (0.85–1.31) | 0.94 (0.76–1.17) | 1.08 (0.88–1.32) | 0.95 | 1.00 (0.94–1.07) | |
Females | |||||||
No. of cases/person-years | 577/153,321 | 475/130,968 | 429/111,904 | 419/90,564 | |||
Model 1, HR (95% CI) 5 | Ref. | 0.96 (0.85–1.09) | 1.02 (0.90–1.16) | 1.24 (1.09–1.41) | <0.001 | 1.09 (1.04–1.14) | |
Model 2, HR (95% CI) 6 | Ref. | 0.97 (0.86–1.10) | 1.01 (0.89–1.15) | 1.15 (1.00–1.31) | 0.02 | 1.06 (1.01–1.11) | |
Phobic anxiety disorders 4 | 0.84 | ||||||
No. of cases/person-years | 80/224,777 | 84/224,242 | 63/223,988 | 84/223,457 | |||
Model 1, HR (95% CI) 5 | Ref. | 1.13 (0.83–1.53) | 0.91 (0.65–1.27) | 1.32 (0.96–1.82) | 0.03 | 1.14 (1.01–1.28) | |
Model 2, HR (95% CI) 6 | Ref. | 1.13 (0.83–1.53) | 0.88 (0.63–1.24) | 1.19 (0.86–1.65) | 0.17 | 1.09 (0.97–1.22) | |
Males | |||||||
No. of cases/person-years | 17/69,214 | 20/91,577 | 20/110,589 | 37/131,432 | |||
Model 1, HR (95% CI) 5 | Ref. | 0.90 (0.47–1.72) | 0.76 (0.40–1.46) | 1.21 (0.67–2.18) | 0.18 | 1.15 (0.93–1.43) | |
Model 2, HR (95% CI) 6 | Ref. | 0.90 (0.47–1.71) | 0.75 (0.39–1.44) | 1.12 (0.61–2.05) | 0.31 | 1.12 (0.90–1.39) | |
Females | |||||||
No. of cases/person-years | 63/155,563 | 64/132,664 | 43/113,399 | 47/92,024 | |||
Model 1, HR (95% CI) 5 | Ref. | 1.20 (0.85–1.70) | 0.96 (0.65–1.41) | 1.32 (0.90–1.95) | 0.10 | 1.12 (0.98–1.29) | |
Model 2, HR (95% CI) 6 | Ref. | 1.21 (0.85–1.71) | 0.93 (0.63–1.38) | 1.19 (0.80–1.76) | 0.30 | 1.08 (0.94–1.24) | |
Other anxiety disorders 4 | 0.39 | ||||||
No. of cases/person-years | 656/222,306 | 605/222,174 | 597/221,994 | 668/221,192 | |||
Model 1, HR (95% CI) 5 | Ref. | 0.97 (0.87–1.09) | 1.01 (0.90–1.13) | 1.20 (1.07–1.34) | <0.001 | 1.07 (1.03–1.12) | |
Model 2, HR (95% CI) 6 | Ref. | 0.98 (0.87–1.09) | 1.00 (0.89–1.12) | 1.11 (0.99–1.24) | 0.09 | 1.04 (0.995–1.08) | |
Males | |||||||
No. of cases/person-years | 130/68,775 | 185/90,943 | 203/109,948 | 286/130,453 | |||
Model 1, HR (95% CI) 5 | Ref. | 1.08 (0.86–1.35) | 0.98 (0.78–1.22) | 1.16 (0.94–1.43) | 0.43 | 1.03 (0.96–1.11) | |
Model 2, HR (95% CI) 6 | Ref. | 1.08 (0.86–1.35) | 0.98 (0.78–1.22) | 1.07 (0.86–1.33) | 0.78 | 0.99 (0.92–1.06) | |
Females | |||||||
No. of cases/person-years | 526/153,532 | 420/131,231 | 394/112,047 | 382/90,739 | |||
Model 1, HR (95% CI) 5 | Ref. | 0.93 (0.82–1.06) | 1.03 (0.90–1.17) | 1.23 (1.08–1.41) | <0.001 | 1.09 (1.04–1.15) | |
Model 2, HR (95% CI) 6 | Ref. | 0.94 (0.82–1.07) | 1.01 (0.89–1.15) | 1.14 (0.99–1.30) | 0.03 | 1.06 (1.01–1.11) | |
Panic disorder7 | 0.99 | ||||||
No. of cases/person-years | 38/224,913 | 35/224,472 | 44/224,095 | 54/223,694 | |||
Model 1, HR (95% CI) 5 | Ref. | 0.97 (0.61–1.53) | 1.27 (0.82–1.97) | 1.66 (1.09–2.54) | 0.002 | 1.28 (1.10–1.50) | |
Model 2, HR (95% CI) 6 | Ref. | 0.98 (0.62–1.55) | 1.26 (0.81–1.97) | 1.48 (0.95–2.31) | 0.02 | 1.22 (1.04–1.43) | |
Males | |||||||
No. of cases/person-years | 10/69,243 | 12/91,605 | 18/110,630 | 27/131,547 | |||
Model 1, HR (95% CI) 5 | Ref. | 0.92 (0.40–2.13) | 1.18 (0.55–2.56) | 1.57 (0.76–3.24) | 0.07 | 1.26 (0.98–1.61) | |
Model 2, HR (95% CI) 6 | Ref. | 0.92 (0.40–2.14) | 1.19 (0.54–2.61) | 1.40 (0.66–2.97) | 0.19 | 1.19 (0.92–1.53) | |
Females | |||||||
No. of cases/person-years | 28/155,669 | 23/132,867 | 26/113,465 | 27/92,147 | |||
Model 1, HR (95% CI) 5 | Ref. | 0.97 (0.56–1.69) | 1.30 (0.76–2.23) | 1.70 (1.00–2.89) | 0.01 | 1.29 (1.06–1.57) | |
Model 2, HR (95% CI) 6 | Ref. | 0.98 (0.56–1.70) | 1.28 (0.74–2.20) | 1.53 (0.88–2.67) | 0.04 | 1.23 (1.01–1.51) | |
Mixed anxiety and depressive disorder 7 | 0.81 | ||||||
No. of cases/person-years | 65/224,809 | 67/224,381 | 73/223,950 | 96/223,478 | |||
Model 1, HR (95% CI) 5 | Ref. | 1.08 (0.77–1.53) | 1.23 (0.88–1.73) | 1.71 (1.24–2.36) | 0.001 | 1.22 (1.08–1.37) | |
Model 2, HR (95% CI) 6 | Ref. | 1.08 (0.76–1.52) | 1.20 (0.85–1.68) | 1.52 (1.09–2.13) | 0.02 | 1.15 (1.02–1.30) | |
Males | |||||||
No. of cases/person-years | 17/69,210 | 20/91,595 | 28/110,570 | 43/131,456 | |||
Model 1, HR (95% CI) 5 | Ref. | 0.89 (0.46–1.69) | 1.02 (0.56–1.86) | 1.29 (0.74–2.27) | 0.23 | 1.13 (0.93–1.36) | |
Model 2, HR (95% CI) 6 | Ref. | 0.87 (0.45–1.66) | 0.97 (0.53–1.78) | 1.08 (0.60–1.94) | 0.74 | 1.03 (0.85–1.26) | |
Females | |||||||
No. of cases/person-years | 48/155,598 | 47/132,786 | 45/113,380 | 53/92,023 | |||
Model 1, HR (95% CI) 5 | Ref. | 1.16 (0.78–1.74) | 1.32 (0.88–1.98) | 1.95 (1.31–2.88) | 0.001 | 1.26 (1.09–1.45) | |
Model 2, HR (95% CI) 6 | Ref. | 1.17 (0.78–1.76) | 1.31 (0.87–1.98) | 1.81 (1.20–2.73) | 0.01 | 1.22 (1.05–1.41) | |
Unspecified anxiety disorder 7 | 0.31 | ||||||
No. of cases/person-years | 486/223,364 | 429/223,209 | 439/222,867 | 470/222,286 | |||
Model 1, HR (95% CI) 5 | Ref. | 0.95 (0.83–1.08) | 1.04 (0.91–1.18) | 1.21 (1.06–1.38) | 0.002 | 1.08 (1.03–1.13) | |
Model 2, HR (95% CI) 6 | Ref. | 0.94 (0.83–1.07) | 1.01 (0.88–1.15) | 1.08 (0.94–1.24) | 0.26 | 1.03 (0.98–1.08) | |
Males | |||||||
No. of cases/person-years | 93/68,983 | 129/91,262 | 142/110,253 | 191/130,938 | |||
Model 1, HR (95% CI) 5 | Ref. | 1.06 (0.81–1.38) | 0.97 (0.75–1.26) | 1.12 (0.87–1.43) | 0.76 | 1.01 (0.93–1.10) | |
Model 2, HR (95% CI) 6 | Ref. | 1.05 (0.80–1.37) | 0.97 (0.74–1.26) | 1.02 (0.79–1.32) | 0.46 | 0.97 (0.89–1.06) | |
Females | |||||||
No. of cases/person-years | 393/154,380 | 300/131,947 | 297/112,614 | 279/91,348 | |||
Model 1, HR (95% CI) 5 | Ref. | 0.91 (0.78–1.06) | 1.07 (0.92–1.24) | 1.27 (1.09–1.48) | <0.001 | 1.11 (1.05–1.17) | |
Model 2, HR (95% CI) 6 | Ref. | 0.90 (0.77–1.05) | 1.03 (0.88–1.20) | 1.12 (0.95–1.32) | 0.07 | 1.05 (0.995–1.12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Liu, M.; Zhao, L.; Hébert, J.R.; Steck, S.E.; Wang, H.; Li, X. Dietary Inflammatory Potential, Inflammation-Related Lifestyle Factors, and Incident Anxiety Disorders: A Prospective Cohort Study. Nutrients 2024, 16, 121. https://doi.org/10.3390/nu16010121
Zheng J, Liu M, Zhao L, Hébert JR, Steck SE, Wang H, Li X. Dietary Inflammatory Potential, Inflammation-Related Lifestyle Factors, and Incident Anxiety Disorders: A Prospective Cohort Study. Nutrients. 2024; 16(1):121. https://doi.org/10.3390/nu16010121
Chicago/Turabian StyleZheng, Jiali, Mengdan Liu, Longgang Zhao, James R. Hébert, Susan E. Steck, Hui Wang, and Xiaoguang Li. 2024. "Dietary Inflammatory Potential, Inflammation-Related Lifestyle Factors, and Incident Anxiety Disorders: A Prospective Cohort Study" Nutrients 16, no. 1: 121. https://doi.org/10.3390/nu16010121
APA StyleZheng, J., Liu, M., Zhao, L., Hébert, J. R., Steck, S. E., Wang, H., & Li, X. (2024). Dietary Inflammatory Potential, Inflammation-Related Lifestyle Factors, and Incident Anxiety Disorders: A Prospective Cohort Study. Nutrients, 16(1), 121. https://doi.org/10.3390/nu16010121