Association between Consumption of Ultra-Processed Foods and Sociodemographic Characteristics in Brazilian Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database and Sample
2.2. Data Collection and Study Variables
2.3. Data Analysis
2.4. Ethical Aspects
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global Nutrition Transition and the Pandemic of Obesity in Developing Countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Vandevijvere, S.; Jaacks, L.M.; Monteiro, C.A.; Moubarac, J.; Girling-Butcher, M.; Lee, A.C.; Pan, A.; Bentham, J.; Swinburn, B. Global Trends in Ultraprocessed Food and Drink Product Sales and Their Association with Adult Body Mass Index Trajectories. Obes. Rev. 2019, 20, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-Processed Foods and Health Outcomes: A Narrative Review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.; Heshmati, J.; Shahinfar, H.; Tripathi, N.; Daneshzad, E. Ultra-Processed Food and the Risk of Overweight and Obesity: A Systematic Review and Meta-Analysis of Observational Studies. Int. J. Obes. 2020, 44, 2080–2091. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Guia Alimentar Para a População Brasileira, 2nd ed.; Ministério da Saúde: Brasilia, Brazil, 2014.
- Rauber, F.; Louzada, M.L.D.C.; Steele, E.M.; de Rezende, L.F.M.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-Processed Foods and Excessive Free Sugar Intake in the UK: A Nationally Representative Cross-Sectional Study. BMJ Open 2019, 9, e027546. [Google Scholar] [CrossRef]
- Machado, P.P.; Steele, E.M.; Louzada, M.L.D.C.; Levy, R.B.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-Processed Food Consumption Drives Excessive Free Sugar Intake among All Age Groups in Australia. Eur. J. Nutr. 2020, 59, 2783–2792. [Google Scholar] [CrossRef]
- Baraldi, L.G.; Steele, E.M.; Canella, D.S.; Monteiro, C.A. Consumption of Ultra-Processed Foods and Associated Sociodemographic Factors in the USA between 2007 and 2012: Evidence from a Nationally Representative Cross-Sectional Study. BMJ Open 2018, 8, e020574. [Google Scholar] [CrossRef]
- Shim, J.-S.; Shim, S.-Y.; Cha, H.-J.; Kim, J.; Kim, H.C. Socioeconomic Characteristics and Trends in the Consumption of Ultra-Processed Foods in Korea from 2010 to 2018. Nutrients 2021, 13, 1120. [Google Scholar] [CrossRef]
- Marrón-Ponce, J.A.; Sánchez-Pimienta, T.G.; Louzada, M.L.D.C.; Batis, C. Energy Contribution of NOVA Food Groups and Sociodemographic Determinants of Ultra-Processed Food Consumption in the Mexican Population. Public Health Nutr. 2018, 21, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Khandpur, N.; Cediel, G.; Obando, D.A.; Jaime, P.C.; Parra, D.C. Sociodemographic Factors Associated with the Consumption of Ultra-Processed Foods in Colombia. Rev. Saude Publica 2020, 54, 19. [Google Scholar] [CrossRef] [PubMed]
- Simões, B.D.S.; Barreto, S.M.; Molina, M.D.C.B.; Luft, V.C.; Duncan, B.B.; Schmidt, M.I.; Benseñor, I.J.M.; Cardoso, L.D.O.; Levy, R.B.; Giatti, L. Consumption of Ultra-Processed Foods and Socioeconomic Position: A Cross-Sectional Analysis of the Brazilian Longitudinal Study of Adult Health. Cad. Saude Publica 2018, 34, e00019717. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. Alimentação Na Primeira Infância: Conhecimentos, Atitudes e Práticas de Beneficiários do Programa Bolsa Família; Pessoa, M.B., Lima, P.I.A., Amaral, S., Eds.; UNICEF: Brasilia, Brazil, 2021; 58p. [Google Scholar]
- Gonçalves, H.V.B.; Canella, D.S.; Bandoni, D.H. Temporal Variation in Food Consumption of Brazilian Adolescents (2009–2015). PLoS ONE 2020, 15, e0239217. [Google Scholar] [CrossRef]
- Dahl, R.E.; Allen, N.B.; Wilbrecht, L.; Suleiman, A.B. Importance of Investing in Adolescence from a Developmental Science Perspective. Nature 2018, 554, 441–450. [Google Scholar] [CrossRef]
- de Oliveira, M.M.; Campos, M.O.; de Andreazzi, M.A.R.; Malta, D.C.; de Oliveira, M.M.; Campos, M.O.; de Andreazzi, M.A.R.; Malta, D.C. Características Da Pesquisa Nacional de Saúde Do Escolar—PeNSE. Epidemiol. Serv. Saúde 2017, 26, 605–616. [Google Scholar] [CrossRef]
- IBGE. Coordenação de Sociais População e Indicadores. In Pesquisa Nacional de Saúde do Escolar: 2019; IBGE: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Levy, R.B.; de Castro, I.R.R.; Cardoso, L.D.O.; Tavares, L.F.; Sardinha, L.M.V.; Gomes, F.D.S.; da Costa, A.W.N. Consumo e Comportamento Alimentar Entre Adolescentes Brasileiros: Pesquisa Nacional de Saúde Do Escolar (PeNSE), 2009. Cienc. Saude Colet. 2010, 15, 3085–3097. [Google Scholar] [CrossRef]
- Costa, C.D.S.; Flores, T.R.; Wendt, A.; Neves, R.G.; Assunção, M.C.F.; Santos, I.S. Comportamento Sedentário e Consumo de Alimentos Ultraprocessados Entre Adolescentes Brasileiros: Pesquisa Nacional de Saúde Do Escolar (PeNSE), 2015. Cad. Saude Publica 2018, 34, e00019717. [Google Scholar] [CrossRef]
- IBGE. Coordenação de Indicadores Sociais. In Pesquisa Nacional de Saúde Do Escolar: 2009; IBGE, Ed.; IBGE: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- IBGE. Coordenação de Indicadores Sociais. In Pesquisa Nacional de Saúde Do Escolar: 2012; IBGE, Ed.; IBGE: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- IBGE. Coordenação de Indicadores Sociais. In Pesquisa Nacional de Saúde Do Escolar: 2015; IBGE, Ed.; IBGE: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Costa, C.D.S.; Steele, E.M.; de Faria, F.R.; Monteiro, C.A. Score of Ultra-Processed Food Consumption and Its Association with Sociodemographic Factors in the Brazilian National Health Survey, 2019. Cad. Saude Publica 2022, 38, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Secretaria de Vigilância em Saúde. Departamento de Análise em Saúde e Vigilância de Doenças Não Transmissíveis. In Vigitel Brasil 2021: Vigilância de Fatores de Risco e Proteção Para Doenças Crônicas Por Inquérito Telefônico: Estimativas Sobre Frequência e Distribuição Sociodemográfica de Fatores de Risco e Proteção Para Doenças Crônicas Nas Capitais dos 26 Estados; Ministério da Saúde: Brasilia, Brazil, 2021; ISBN 978-65-5993-195-8.
- De Sousa, L.P.; Franzoi, M.A.H.; De Morais, R.D.C.M. Influência Das Mídias Sociais No Comportamento Alimentar de Adolescentes/Influence of Social Media on the Eating Behavior of Adolescents. Braz. J. Dev. 2022, 8, 43489–43502. [Google Scholar] [CrossRef]
- Maia, E.G.; da Silva, L.E.S.; Santos, M.A.S.; Barufaldi, L.A.; da Silva, S.U.; Claro, R.M. Padrões Alimentares, Características Sociodemográficas e Comportamentais Entre Adolescentes Brasileiros. Rev. Bras. Epidemiol. 2018, 21, e180009. [Google Scholar] [CrossRef]
- De Amorim, A.L.B.; Junior, J.R.S.R.; Gonçalves, H.V.B.; Bandoni, D.H. Use Database to Evaluate the Prevalence of Hunger Among Adolescents in Brazil. Front. Nutr. 2021, 8, 773260. [Google Scholar] [CrossRef] [PubMed]
- de Souza, B.F.D.N.J.; Bernardes, M.S.; Vieira, V.C.R.; Francisco, P.M.S.B.; Marín-León, L.; Camargo, D.F.M.; Segall-Corrêa, A.M. (In)Segurança Alimentar No Brasil No Pré e Pós Pandemia Da COVID-19: Reflexões e Perspectivas. Interam. J. Med. Health 2021, 4. [Google Scholar] [CrossRef]
- Rede Brasileira de Pesquisa em Soberania e Segurança Alimentar (PENSSAN). In II VIGISAN—Inquérito Nacional Sobre Insegurança Alimentar No Contexto da Pandemia da COVID-19 No Brasil; Rede PENSSAN: Brazil, 2022.
- IBGE. Pesquisa de Orçamentos Familiares: 2017–2018: Perfil Das Despesas No Brasil: Indicadores de Qualidade de Vida; IBGE, Ed.; IBGE: Rio de Janeiro, Brazil, 2021.
- Steele, E.M.; Rauber, F.; Costa, C.D.S.; Leite, M.A.; Gabe, K.T.; Louzada, M.L.D.C.; Levy, R.B.; Monteiro, C.A. Mudanças Alimentares Na Coorte NutriNet Brasil Durante a Pandemia de COVID-19. Rev. Saude Publica 2020, 54, 91. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, C.S.; Lima, M.D.C.; Curioni, C.C.; Cabral, P.C.; Villareal, V.I.H.; Valente, F.L.S.; De Lira, P.I.C.; Filho, M.B. Globalização e Processamento de Alimentos: Consumo Alimentar No Nordeste Brasileiro. DEMETRA Aliment. Nutr. Saúde 2021, 16, e63180. [Google Scholar] [CrossRef]
- Canuto, R.; Fanton, M.; de Lira, P.I.C. Iniquidades Sociais No Consumo Alimentar No Brasil: Uma Revisão Crítica Dos Inquéritos Nacionais. Cienc. Saude Colet. 2019, 24, 3193–3212. [Google Scholar] [CrossRef]
- Simões, A.M.; Machado, C.O.; Höfelmann, D.A. Associação Do Consumo Regular de Café Da Manhã e Comportamentos Relacionados à Saúde Em Adolescentes. Cienc. Saude Colet. 2021, 26, 2243–2251. [Google Scholar] [CrossRef] [PubMed]
- Marlatt, K.L.; Farbakhsh, K.; Dengel, D.R.; Lytle, L.A. Breakfast and Fast Food Consumption Are Associated with Selected Biomarkers in Adolescents. Prev. Med. Rep. 2016, 3, 49–52. [Google Scholar] [CrossRef]
- Wang, L.; Martínez Steele, E.; Du, M.; Pomeranz, J.L.; O’Connor, L.E.; Herrick, K.A.; Luo, H.; Zhang, X.; Mozaffarian, D.; Zhang, F.F. Trends in Consumption of Ultraprocessed Foods among US Youths Aged 2–19 Years, 1999–2018. JAMA 2021, 326, 519. [Google Scholar] [CrossRef]
- Taher, A.K.; Evans, N.; Evans, C. EL The Cross-Sectional Relationships between Consumption of Takeaway Food, Eating Meals Outside the Home and Diet Quality in British Adolescents. Public Health Nutr. 2019, 22, 63–73. [Google Scholar] [CrossRef]
- Freitas, R.M.S.; Brandão, T.B.C.; da Silveira, J.A.C.; Oliveira, J.S.; Longo-Silva, G.; de Menezes, R.C.E. Commensality and Eating Patterns in Adolescents: An Analysis from Structural Equation Modeling. Appetite 2022, 178, 106183. [Google Scholar] [CrossRef]
- Locatelli, N.T.; Canella, D.S.; Bandoni, D.H. Fatores Associados Ao Consumo Da Alimentação Escolar Por Adolescentes No Brasil: Resultados Da PeNSE 2012. Cad. Saude Publica 2017, 33, e00183615. [Google Scholar] [CrossRef]
- Doan, N.; Parker, A.; Rosati, K.; van Beers, E.; Ferro, M.A. Sleep Duration and Eating Behaviours among Adolescents: A Scoping Review. Health Promot. Chronic Dis. Prev. Can. 2022, 42, 384–397. [Google Scholar] [CrossRef]
- Monteiro, L.Z.; Varela, A.R.; de Souza, P.; Maniçoba, A.C.M.; Júnior, F.B. Hábitos Alimentares, Atividade Física e Comportamento Sedentário Entre Escolares Brasileiros: Pesquisa Nacional de Saúde Do Escolar, 2015. Rev. Bras. Epidemiol. 2020, 23, e200034. [Google Scholar] [CrossRef] [PubMed]
- Martins, B.G.; Ricardo, C.Z.; Machado, P.P.; Rauber, F.; Azeredo, C.M.; Levy, R.B. Fazer Refeições Com Os Pais Está Associado à Maior Qualidade Da Alimentação de Adolescentes Brasileiros. Cad. Saude Publica 2019, 35, e00153918. [Google Scholar] [CrossRef] [PubMed]
- Larson, N.; MacLehose, R.; Fulkerson, J.A.; Berge, J.M.; Story, M.; Neumark-Sztainer, D. Eating Breakfast and Dinner Together as a Family: Associations with Sociodemographic Characteristics and Implications for Diet Quality and Weight Status. J. Acad. Nutr. Diet. 2013, 113, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
% | IC 95% | ||
---|---|---|---|
Administrative dependence of the school | |||
Public | 85.14 | 84.50 | 85.76 |
Private | 14.86 | 14.24 | 15.50 |
Total | 100 (n = 159,245) | ||
Gender | |||
Male | 49.17 | 48.48 | 49.86 |
Female | 50.83 | 50.14 | 51.52 |
Total | 100 (n = 158,799) | ||
Race/skin color | |||
White | 35.72 | 34.94 | 36.51 |
Black | 13.24 | 12.75 | 13.76 |
Asian | 3.75 | 3.53 | 3.99 |
Mixed race | 44.06 | 43.31 | 44.82 |
Indigenous | 3.22 | 2.99 | 3.47 |
Total | 100 (n = 155,806) | ||
Region | |||
North | 10.62 | 9.87 | 11.42 |
Northeast | 28.59 | 27.57 | 29.63 |
Southeast | 39.09 | 37.74 | 40.45 |
South | 13.58 | 12.84 | 14.36 |
Midwest | 8.12 | 7.75 | 8.51 |
Total | 100 (n = 159,245) | ||
Type of municipality | |||
Capital | 22.84 | 22.09 | 23.62 |
Non Capital | 77.16 | 76.38 | 77.91 |
Total | 100 (n = 159,245) | ||
Age | |||
Less than 13 | 14.07 | 12.28 | 16.09 |
13 to 15 years old | 51.26 | 49.17 | 53.34 |
16 or 17 years old | 27.97 | 26.06 | 29.96 |
18 years old or more | 6.70 | 6.04 | 7.43 |
Total | 100 (n = 158,816) | ||
Lives with mother | |||
Yes | 87.79 | 87.33 | 88.23 |
No | 12.21 | 11.77 | 12.67 |
Total | 100 (n = 159,155) | ||
Lives with father | |||
Yes | 60.47 | 59.70 | 61.24 |
No | 39.53 | 38.76 | 40.30 |
Total | 100 (n = 159,107) | ||
Maternal education level | |||
No education | 4.63 | 4.31 | 4.97 |
Incomplete elementary school | 17.82 | 17.18 | 18.47 |
Complete elementary school | 6.39 | 6.10 | 6.69 |
Incomplete high school | 6.92 | 6.62 | 7.23 |
Complete high school | 18.92 | 18.29 | 19.58 |
Incomplete higher education | 5.73 | 5.44 | 6.04 |
Complete higher education | 17.52 | 16.97 | 18.09 |
Do not know | 22.06 | 21.34 | 22.79 |
Total | 100 (n = 158,910) |
n | % | IC 95% | ||
---|---|---|---|---|
Crackers | 159,082 | 49.59 | 48.90 | 50.29 |
Cookies | 159,075 | 46.66 | 46.04 | 47.28 |
Bread | 159,073 | 41.75 | 41.12 | 42.38 |
Soft drinks | 159,156 | 40.53 | 39.50 | 41.56 |
Margarine | 159,074 | 40.05 | 39.19 | 40.92 |
Sausages | 159,082 | 39.36 | 38.68 | 40.04 |
Industrialized desserts | 159,067 | 33.27 | 32.36 | 34.20 |
Industrialized sauces | 159,082 | 29.53 | 29.26 | 30.66 |
Chocolate drinks | 159,114 | 25.76 | 25.19 | 26.35 |
Box/canned juices | 159,112 | 24.89 | 24.35 | 25.43 |
Powdered refreshments | 159,079 | 24.39 | 23.73 | 25.07 |
Ready-made meals | 159,028 | 20.97 | 20.39 | 21.56 |
Flavored yogurts | 159,100 | 16.89 | 16.38 | 17.41 |
Crackers | Cookies | Bread | Soft Drinks | Margarine | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RP Adjusted ** | IC 95% Min–Max | RP Adjusted ** | IC 95% Min–Max | RP Adjusted ** | IC 95% Min–Max | RP Adjusted ** | IC 95% Min–Max | RP Adjusted ** | IC 95% Min–Max | |
Type of school | ||||||||||
Public | 1 | 1 | 1 | 1 | 1 | |||||
Private | 1044 * | 1034–1055 | 1026 * | 1017–1035 | 0.981 * | 0.973–0.989 | 1017 * | 1004–1030 | 1047 * | 1034–1060 |
Gender | ||||||||||
Male | 1 | 1 | 1 | 1 | 1 | |||||
Female | 0.992 | 0.984–1000 | 1008 * | 1000–1016 | 1020 * | 1011–1028 | 1019 * | 1012–1027 | 0.986 * | 0.979–0.993 |
Race/skin color | ||||||||||
White | 1 | 1 | 1 | 1 | 1 | |||||
Black | 0.967 | 0.953–0.981 | 0.971 | 0.956–0.985 | 1013 | 1000–1026 | 0.999 | 0.985–1014 | 0.968 | 0.957–0.979 |
Asian | 0.968 | 0.944–0.922 | 0.990 | 0.969–1011 | 1007 | 0.987–1028 | 1008 | 0.988–1028 | 0.972 | 0.954–0.991 |
Mixed race | 0.976 | 0.966–0.985 | 0.989 | 0.980–0.998 | 1012 | 1004–1021 | 1011 | 1001–1020 | 0.978 | 0.970–0.985 |
Indigenous | 0.981 | 0.959–1003 | 0.992 | 0.971–1013 | 1001 | 0.982–1021 | 0.999 | 0.979–1018 | 0.995 | 0.975–1016 |
Region | ||||||||||
North | 1 | 1 | 1 | 1 | 1 | |||||
Northeast | 0.980 * | 0.965–0.955 | 0.949 * | 0.937–0.960 | 1018 * | 1004–1033 | 0.999 | 0.980–1020 | 1006 | 0.991–1020 |
Southeast | 1039 * | 1022–1056 | 0.989 | 0.977–1002 | 1029 * | 1013–1045 | 0.945 * | 0.924–0.967 | 1084 * | 1067–1101 |
South | 1073 * | 1054–1091 | 1027 * | 1013–1042 | 0.918 * | 0.902–0.935 | 0.961 * | 0.940–0.983 | 1103 * | 1084–1122 |
Midwest | 1037 * | 1021–1054 | 1015 * | 1003–1028 | 1031 * | 1015–1047 | 0.945 * | 0.924–0.966 | 1098 * | 1082–1115 |
Type of municipality | ||||||||||
Capital | 1 | 1 | 1 | 1 | 1 | |||||
Non-capital | 0.991 * | 0.982–0.999 | 0.998 | 0.989–1007 | 1013 * | 1006–1020 | 1019 * | 1008–1031 | 1042 * | 1033–1051 |
Age (years) | ||||||||||
Less than 13 | 1 | 1 | 1 | 1 | 1 | |||||
13 to 15 | 1016 * | 1001–1030 | 0.994 | 0.980–1009 | 0.990 | 0.978–1003 | 0.996 | 0.978–1015 | 0.980 * | 0.967–0.992 |
16 or 17 | 1055 * | 1039–1071 | 1020 * | 1005–1036 | 0.994 | 0.980–1008 | 1000 | 0.980–1021 | 0.988 | 0.972–1003 |
18 or more | 1050 * | 1029–1072 | 1025 * | 1005–1045 | 1000 | 0.983–1018 | 1009 | 0.986–1032 | 0.984 | 0.964–1003 |
Lives with mother | ||||||||||
Yes | 1 | 1 | 1 | 1 | 1 | |||||
No | 1001 | 0.990–1013 | 1006 | 0.994–1019 | 1009 | 0.997–1021 | 0.986 * | 0.973–0.998 | 1001 | 0.989–1013 |
Lives with father | ||||||||||
Yes | 1 | 1 | 1 | 1 | 1 | |||||
No | 0.992 | 0.984–1000 | 1003 | 0.995–1011 | 0.999 | 0.991–1007 | 1003 | 0.996–1011 | 0.991 * | 0.983–0.998 |
Maternal education level | ||||||||||
No education | 1 | 1 | 1 | 1 | 1 | |||||
IES *** | 0.997 | 0.977–1016 | 0.982 | 0.963–1002 | 0.969 * | 0.956–0.983 | 0.981 * | 0.964–0.997 | 0.970 * | 0.953–0.987 |
CES *** | 0.977 | 0.955–1000 | 0.970 * | 0.948–0.993 | 0.954 * | 0.936–0.972 | 0.974 * | 0.954–0.994 | 0.960 * | 0.940–0.980 |
IHS *** | 1000 | 0.977–1024 | 0.983 | 0.963–1004 | 0.940 * | 0.923–0.957 | 0.963 * | 0.944–0.982 | 0.962 * | 0.942–0.983 |
CHS *** | 1010 | 0.990–1031 | 0.996 | 0.977–1016 | 0.941 * | 0.927–0.955 | 0.950 * | 0.933–0.967 | 0.965 * | 0.949–0.981 |
IHE *** | 1000 | 0.977–1024 | 0.982 | 0.959–1005 | 0.938 * | 0.918–0.959 | 0.947 * | 0.926–0.969 | 0.983 | 0.962–1004 |
CHE *** | 1013 | 0.992–1034 | 1006 | 0.986–1026 | 0.936 * | 0.921–0.952 | 0.948 * | 0.930–0.966 | 0.985 | 0.968–1003 |
Sausages | Industrialized Desserts | Industrialized Sauces | Chocolate Drinks | Boxed/Canned Juices | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RP Adjusted ** | IC 95% Min–Max | RP Adjusted ** | IC 95% Min–Max | RP Adjusted ** | IC 95% Min–Max | RP Adjusted ** | IC 95% Min–Max | RP Adjusted ** | IC 95% Min–Max | |
Type of school | ||||||||||
Public | 1 | 1 | 1 | 1 | 1 | |||||
Private | 1001 | 0.992–1011 | 0.958 * | 0.947–0.970 | 0.997 | 0.988–1005 | 0.983 * | 0.976–0.990 | 1064 * | 1056–1072 |
Gender | ||||||||||
Male | 1 | 1 | 1 | 1 | 1 | |||||
Female | 1010 * | 1002–1018 | 0.956 * | 0.950–0.962 | 1002 | 0.996–1009 | 1010 * | 1004–1017 | 1003 | 0.996–1010 |
Race/skin color | ||||||||||
White | 1 | 1 | 1 | 1 | 1 | |||||
Black | 0.995 | 0.983–1008 | 1033 * | 1021–1045 | 1009 | 0.996–1023 | 1012 * | 1002–1023 | 0.975 * | 0.964–0.987 |
Asian | 0.993 | 0.973–1014 | 1024 * | 1007–1041 | 1011 | 0.992–1,029 | 1012 | 0.994–1030 | 0.981 * | 0.964–0.999 |
Mixed race | 1000 | 0.991–1009 | 1022 * | 1013–1031 | 1013 * | 1006–1021 | 1008 * | 1001–1016 | 0.985 * | 0.978–0.992 |
Indigenous | 1011 | 0.991–1031 | 1044 * | 1025–1065 | 1011 | 0.990–1031 | 0.990 | 0.972–1008 | 0.981 * | 0.963–0.999 |
Region | ||||||||||
North | 1 | 1 | 1 | 1 | 1 | |||||
Northeast | 0.981 * | 0.971–0.991 | 0.991 | 0.979–1004 | 0.990 | 0.979–1000 | 1004 | 0.995–1014 | 0.996 | 0.988–1005 |
Southeast | 0.958 * | 0.946–0.970 | 0.937 * | 0.921–0.954 | 0.952 * | 0.939–0.964 | 0.938 * | 0.928–0.948 | 0.941 * | 0.931–0.952 |
South | 0.933 * | 0.922–0.944 | 0.944 * | 0.927–0.961 | 0.922 * | 0.910–0.935 | 0.950 * | 0.937–0.963 | 0.927 * | 0.915–0.938 |
Midwest | 0.979 * | 0.968–0.989 | 0.947 * | 0.933–0.960 | 0.964 * | 0.954–0.975 | 0.960 * | 0.950–0.969 | 0.966 * | 0.957–0.975 |
Type of municipality | ||||||||||
Capital | 1 | 1 | 1 | 1 | 1 | |||||
Non-capital | 1008 * | 1000–1016 | 1013 * | 1004–1023 | 1006 | 0.999–1013 | 1006 * | 1000–1011 | 1005 | 0.998–1012 |
Age (years) | ||||||||||
Less than 13 | 1 | 1 | 1 | 1 | 1 | |||||
13 to 15 | 0.987 * | 0.976–0.998 | 1003 | 0.990–1016 | 0.987 * | 0.976–0.998 | 1018 * | 1006–1030 | 0.986 * | 0.977–0.995 |
16 or 17 | 0.993 | 0.982–1004 | 1018 * | 1003–1033 | 0.974 * | 0.963–0.986 | 1042 * | 1031–1054 | 1003 | 0.993–1013 |
18 or more | 1008 | 0.993–1022 | 1025 * | 1007–1043 | 0.982 * | 0.966–0.997 | 1051 * | 1037–1067 | 0.998 | 0.985–1012 |
Lives with mother | ||||||||||
Yes | 1 | 1 | 1 | 1 | 1 | |||||
No | 0.997 | 0.983–1010 | 1005 | 0.995–1015 | 1000 | 0.989–1011 | 1004 | 0.994–1014 | 1005 | 0.995–1015 |
Lives with father | ||||||||||
Yes | 1 | 1 | 1 | 1 | 1 | |||||
No | 0.996 | 0.989–1003 | 1009 * | 1002–1016 | 0.998 | 0.991–1005 | 1008 * | 1002–1014 | 0.991 * | 0.985–0.998 |
Maternal education level | ||||||||||
No education | 1 | 1 | 1 | 1 | 1 | |||||
IES *** | 0.972 * | 0.955–0.989 | 0.974 * | 0.961–0.987 | 0.961 * | 0.947–0.974 | 0.973 * | 0.963–0.984 | 0.987 | 0.975–1000 |
CES *** | 0.960 * | 0.941–0.980 | 0.956 * | 0.941–0.972 | 0.943 * | 0.928–0.958 | 0.953 * | 0.940–0.967 | 0.982 * | 0.966–0.998 |
IHS *** | 0.963 * | 0.944–0.982 | 0.962 * | 0.946–0.978 | 0.939 * | 0.925–0.953 | 0.956 * | 0.942–0.970 | 0.980 * | 0.965–0.995 |
CHS *** | 0.962 * | 0.944–0.980 | 0.944 * | 0.930–0.959 | 0.930 * | 0.915–0.944 | 0.954 * | 0.944–0.964 | 0.989 | 0.976–1003 |
IHE *** | 0.979 * | 0.960–0.999 | 0.941 * | 0.924–0.958 | 0.927 * | 0.909–0.944 | 0.932 * | 0.919–0.945 | 0.993 | 0.976–1010 |
CHE *** | 0.975 * | 0.958–0.992 | 0.927 * | 0.913–0.941 | 0.926 * | 0.911–0.941 | 0.932 * | 0.924–0.948 | 1012 | 0.998–1023 |
Powdered Refreshments | Ready-Made Meals | Flavored Yogurts | ||||
---|---|---|---|---|---|---|
RP Adjusted ** | IC 95% Min–Max | RP Adjusted ** | IC 95% Min–Max | RP Adjusted ** | IC 95% Min–Max | |
Type of school | ||||||
Public | 1 | 1 | 1 | |||
Private | 1064 * | 1056–1072 | 1032 | 1026–1039 | 1012 * | 1006–1018 |
Gender | ||||||
Male | 1 | 1 | 1 | |||
Female | 1003 | 0.996–1010 | 0.995 | 0.989–1000 | 1008 * | 1003–1013 |
Race/skin color | ||||||
White | 1 | 1 | 1 | |||
Black | 0.975 * | 0.964–0.987 | 0.982 | 0.973–0.991 | 1002 | 0.993–1010 |
Asian | 0.981 * | 0.964–0.999 | 0.986 | 0.972–1001 | 0.996 | 0.983–1008 |
Mixed race | 0.985 * | 0.978–0.992 | 0.991 | 0.985–0.998 | 1001 | 0.995–1007 |
Indigenous | 0.981 * | 0.963–0.999 | 0.981 | 0.965–0.996 | 0.993 | 0.978–1009 |
Region | ||||||
North | 1 | 1 | 1 | |||
Northeast | 0.996 * | 0.988–1005 | 0.999 | 0.989–1008 | 1009 * | 1002–1016 |
Southeast | 0.941 * | 0.931–0.952 | 1008 | 0.997–1018 | 0.999 | 0.991–1007 |
South | 0.927 * | 0.915–0.938 | 0.996 | 0.984–1009 | 0.997 | 0.988–1007 |
Midwest | 0.966 * | 0.957–0.975 | 1016 | 1007–1026 | 1004 | 0.997–1013 |
Type of municipality | ||||||
Capital | 1 | 1 | 1 | |||
Non Capital | 1005 | 0.998–1012 | 0.997 | 0.992–1003 | 1005 * | 1000–1010 |
Age | ||||||
Less than 13 | 1 | 1 | 1 | |||
13 to 15 | 0.986 * | 0.977–0.995 | 1007 | 0.998–1016 | 1024 * | 1013–1036 |
16 or 17 | 1003 | 0.993–1013 | 1027 | 1017–1037 | 1040 * | 1028–1052 |
18 or more | 0.998 | 0.985–1012 | 1020 | 1007–1034 | 1040 * | 1026–1055 |
Lives with mother | ||||||
Yes | 1 | 1 | 1 | |||
No | 1005 | 0.995–1015 | 0.993 | 0.984–1003 | 1002 | 0.994–1010 |
Lives with father | ||||||
Yes | 1 | 1 | 1 | |||
No | 0.991 * | 0.985–0.998 | 0.993 | 0.987–0.999 | 1005 | 0.999–1010 |
Maternal education level | ||||||
No education | 1 | 1 | 1 | |||
IES *** | 0.987 | 0.975–1000 | 1009 | 0.995–1023 | 1007 | 0.997–1017 |
CES *** | 0.982 * | 0.966–0.998 | 1013 | 0.994–1031 | 0.996 | 0.983–1009 |
IHS *** | 0.980 * | 0.965–0.995 | 1009 | 0.992–1027 | 1008 | 0.995–1020 |
CHS *** | 0.989 | 0.976–1003 | 1027 | 1013–1042 | 0.995 | 0.985–1005 |
IHE *** | 0.993 | 0.976–1010 | 1026 | 1009–1043 | 0.996 | 0.981–1011 |
CHE *** | 1012 | 0.998–1027 | 1019 | 1005–1003 | 0.989 | 0.978–1001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, H.V.B.; Batista, L.S.; de Amorim, A.L.B.; Bandoni, D.H. Association between Consumption of Ultra-Processed Foods and Sociodemographic Characteristics in Brazilian Adolescents. Nutrients 2023, 15, 2027. https://doi.org/10.3390/nu15092027
Gonçalves HVB, Batista LS, de Amorim ALB, Bandoni DH. Association between Consumption of Ultra-Processed Foods and Sociodemographic Characteristics in Brazilian Adolescents. Nutrients. 2023; 15(9):2027. https://doi.org/10.3390/nu15092027
Chicago/Turabian StyleGonçalves, Hélida Ventura Barbosa, Letícia Spricido Batista, Ana Laura Benevenuto de Amorim, and Daniel Henrique Bandoni. 2023. "Association between Consumption of Ultra-Processed Foods and Sociodemographic Characteristics in Brazilian Adolescents" Nutrients 15, no. 9: 2027. https://doi.org/10.3390/nu15092027
APA StyleGonçalves, H. V. B., Batista, L. S., de Amorim, A. L. B., & Bandoni, D. H. (2023). Association between Consumption of Ultra-Processed Foods and Sociodemographic Characteristics in Brazilian Adolescents. Nutrients, 15(9), 2027. https://doi.org/10.3390/nu15092027