Boosting HSA Vaccination with Jujube Powder Modulating Gut Microbiota Favorable for Arginine Metabolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mice and Treatment
2.3. FMT
2.4. DNA Extraction and Bacterial Identification in Stool Samples
2.5. Bioinformatics Analysis
2.6. Flow Cytometry of Immune Cells in Mesenteric Lymph Nodes (MLNs), Blood, and Spleen
2.7. HSA-Specific IgG1 in Serum by ELISA
2.8. Statistical Analysis
3. Results
3.1. FMT and Jujube Powder Recover Antibody and Immune Cells’ Response to HSA Vaccine in ABX-Treated Mice
3.2. FMT and Jujube Powder Boosted HSA Vaccine Response by Enhancing Macrophages and Plasma Cells Proportions in MLNs of ABX-Treated Mice
3.3. Pre-Administration of Jujube Powder Boosted HSA Vaccination
3.4. Jujube Altered the Gut Microbiota Diversity and Composition in Mice
3.5. Jujube Influenced Metabolism Related to Vaccination
3.6. KEGG Pathway Enrichment Analysis of Biological Function Induced by Jujube
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakaya, H.I.; Hagan, T.; Duraisingham, S.S.; Lee, E.K.; Kwissa, M.; Rouphael, N.; Frasca, D.; Gersten, M.; Mehta, A.K.; Gaujoux, R.; et al. Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures. Immunity 2015, 43, 1186–1198. [Google Scholar] [CrossRef] [PubMed]
- PrabhuDas, M.; Adkins, B.; Gans, H.; King, C.; Levy, O.; Ramilo, O.; Siegrist, C.A. Challenges in infant immunity: Implications for responses to infection and vaccines. Nat. Immunol. 2011, 12, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Ciabattini, A.; Nardini, C.; Santoro, F.; Garagnani, P.; Franceschi, C.; Medaglini, D. Vaccination in the elderly: The challenge of immune changes with aging. Semin. Immunol. 2018, 40, 83–94. [Google Scholar] [CrossRef]
- Clark, A.; van Zandvoort, K.; Flasche, S.; Sanderson, C.; Bines, J.; Tate, J.; Parashar, U.; Jit, M. Efficacy of live oral rotavirus vaccines by duration of follow-up: A meta-regression of randomised controlled trials. Lancet Infect. Dis. 2019, 19, 717–727. [Google Scholar] [CrossRef]
- Hagan, T.; Cortese, M.; Rouphael, N.; Boudreau, C.; Linde, C.; Maddur, M.S.; Das, J.; Wang, H.; Guthmiller, J.; Zheng, N.Y.; et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell 2019, 178, 1313–1328.e13. [Google Scholar] [CrossRef] [PubMed]
- Lynn, D.J.; Benson, S.C.; Lynn, M.A.; Pulendran, B. Modulation of immune responses to vaccination by the microbiota: Implications and potential mechanisms. Nat. Rev. Immunol. 2022, 22, 33–46. [Google Scholar] [CrossRef]
- Oh, J.Z.; Ravindran, R.; Chassaing, B.; Carvalho, F.A.; Maddur, M.S.; Bower, M.; Hakimpour, P.; Gill, K.P.; Nakaya, H.I.; Yarovinsky, F.; et al. TLR5-Mediated Sensing of Gut Microbiota Is Necessary for Antibody Responses to Seasonal Influenza Vaccination. Immunity 2014, 41, 478–492. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.G.; Seo, S.U.; Kim, D.J.; Kamada, N.; Prescott, D.; Philpott, D.J.; Rosenstiel, P.; Inohara, N.; Nunez, G. Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nat. Med. 2016, 22, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Qie, Y.Q.; Park, J.; Kim, C.H. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe 2016, 20, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Tang, L.; He, W.; Jiang, X.; Hu, C.; Li, Y.; Zhang, Y.; Pang, K.; Lei, Y.; Li, S.; et al. Correlation of gut microbiota and metabolic functions with the antibody response to the BBIBP-CorV vaccine. Cell Rep. Med. 2022, 3, 100752. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Weng, S.; Wu, J.; Tian, X.; Zhang, Y.; Wang, X.; Wang, J.; Yan, D.; Wang, W.; Fang, F.; et al. Preexisting antibodies targeting SARS-CoV-2 S2 cross-react with commensal gut bacteria and impact COVID-19 vaccine induced immunity. Gut Microbes 2022, 14, 2117503. [Google Scholar] [CrossRef] [PubMed]
- Cait, A.; Mooney, A.; Poyntz, H.; Shortt, N.; Jones, A.; Gestin, A.; Gell, K.; Grooby, A.; O’Sullivan, D.; Tang, J.S.; et al. Potential Association Between Dietary Fibre and Humoral Response to the Seasonal Influenza Vaccine. Front. Immunol. 2021, 12, 765528. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Q.; Ren, Z.H.; Cao, K.L.; Li, X.P.; Yang, J.; Luo, X.L.; Zhu, L.Y.; Wang, X.W.; Ding, L.F.; Liang, J.R.; et al. Boosting Vaccine-Elicited Respiratory Mucosal and Systemic COVID-19 Immunity in Mice with the Oral Lactobacillus plantarum. Front. Nutr. 2021, 8, 1069. [Google Scholar] [CrossRef] [PubMed]
- Di Luccia, B.; Ahern, P.P.; Griffin, N.W.; Cheng, J.Y.; Guruge, J.L.; Byrne, A.E.; Rodionov, D.A.; Leyn, S.A.; Osterman, A.L.; Ahmed, T.; et al. Combined Prebiotic and Microbial Intervention Improves Oral Cholera Vaccination Responses in a Mouse Model of Childhood Undernutrition. Cell Host Microbe 2020, 27, 899–908.e5. [Google Scholar] [CrossRef] [PubMed]
- Pawlowska, A.M.; Camangi, F.; Bader, A.; Braca, A. Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food Chem. 2009, 112, 858–862. [Google Scholar] [CrossRef]
- Wojdylo, A.; Carbonell-Barrachina, A.A.; Legua, P.; Hernandez, F. Phenolic composition, ascorbic acid content, and antioxidant capacity of Spanish jujube (Ziziphus jujube Mill.) fruits. Food Chem. 2016, 201, 307–314. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, H.; Liu, Q.C.; Zhao, Y.; Cui, X.Q.; Guo, S.; Zhang, L.; Ho, C.T.; Bai, N.S. Chemical characterization of the main bioactive constituents from fruits of Ziziphus jujuba. Food Funct. 2016, 7, 2870–2877. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.H.; Tang, W.; Jin, M.L.; Li, J.E.; Xie, M.Y. Recent advances in bioactive polysaccharides from Lycium barbarum L., Zizyphus jujuba Mill, Plantago spp., and Morus spp.: Structures and functionalities. Food Hydrocoll. 2016, 60, 148–160. [Google Scholar] [CrossRef]
- Zhuang, H.R.; Jing, N.; Wang, L.Y.; Jiang, G.Q.; Liu, Z. Jujube Powder Enhances Cyclophosphamide Efficiency against Murine Colon Cancer by Enriching CD8(+) T Cells While Inhibiting Eosinophilia. Nutrients 2021, 13, 2700. [Google Scholar] [CrossRef]
- Jing, N.; Wang, L.Y.; Zhuang, H.R.; Jiang, G.Q.; Liu, Z. Ultrafine Jujube Powder Enhances the Infiltration of Immune Cells during Anti-PD-L1 Treatment against Murine Colon Adenocarcinoma. Cancers 2021, 13, 3987. [Google Scholar] [CrossRef]
- Zhang, M.W.; Cui, S.M.; Mao, B.Y.; Zhang, Q.X.; Zhao, J.X.; Zhang, H.; Tang, X.; Chen, W. Ellagic acid and intestinal microflora metabolite urolithin A: A review on its sources, metabolic distribution, health benefits, and biotransformation. Crit. Rev. Food Sci. Nutr. 2022, 1–23. [Google Scholar] [CrossRef]
- Huang, P.F.; Mou, Q.; Yang, Y.; Li, J.M.; Xu, M.L.; Huang, J.; Li, J.Z.; Yang, H.S.; Liang, X.X.; Yin, Y.L. Effects of supplementing sow diets during late gestation with Pennisetum purpureum on antioxidant indices, immune parameters and faecal microbiota. Vet. Med. Sci. 2021, 7, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.; Pearce, E.L. Amino Assests: How Amino Acids Support Immunity. Cell Metab. 2020, 32, 154–175. [Google Scholar] [CrossRef] [PubMed]
- Allacher, P.; Baumgartner, C.K.; Pordes, A.G.; Ahmad, R.U.; Schwarz, H.P.; Reipert, B.M. Stimulation and inhibition of FVIII-specific memory B-cell responses by CpG-B (ODN 1826), a ligand for Toll-like receptor 9. Blood 2011, 117, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Josefsdottir, K.S.; Baldridge, M.T.; Kadmon, C.S.; King, K.Y. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood 2017, 129, 729–739. [Google Scholar] [CrossRef]
- Huang, J.; Liu, D.; Wang, Y.; Liu, L.; Li, J.; Yuan, J.; Jiang, Z.; Jiang, Z.; Hsiao, W.L.W.; Liu, H.; et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut 2022, 71, 734–745. [Google Scholar] [CrossRef]
- Smith, B.J.; Miller, R.A.; Schmidt, T.M. Muribaculaceae Genomes Assembled from Metagenomes Suggest Genetic Drivers of Differential Response to Acarbose Treatment in Mice. Msphere 2021, 6, e00851-21. [Google Scholar] [CrossRef]
- Liang, S.; Ke, C.; Huang, H.; Guan, J.; Zhao, L.; Li, B.; Huo, G. Butyrate-producing bacteria in the intestinal tract and the physiological function of their metabolite butyrate: A review. Microbiol. China 2021, 48, 948–959. [Google Scholar]
- Murtini, D.; Aryantini, N.P.D.; Sujaya, I.N.; Urashima, T.; Fukuda, K. Effects of prebiotic oligosaccharides consumption on the growth and expression profile of cell surface-associated proteins of a potential probiotic Lactobacillus rhamnosus FSMM15. Biosci. Microbiota Food Health 2016, 35, 41–49. [Google Scholar] [CrossRef]
- Xie, W.; Li, W.; Gao, F.; Li, T. In vitro digestion and fermentation of lacto-N-biose, a core building block of human milk oligosaccharides. Int. J. Food Sci. Technol. 2023; early view. [Google Scholar] [CrossRef]
- Liu, L.; Xu, H.-J.; Chen, J.-L.; Chen, Z.; Zhan, H.-Y.; Xu, D.-X.; Chen, Y.; Xu, Z.-F.; Chen, D.-Z. Detection of Vaginal Metabolite Changes in Premature Rupture of Membrane Patients in Third Trimester Pregnancy: A Prospective Cohort Study. Reprod. Sci. 2021, 28, 585–594. [Google Scholar] [CrossRef]
- Sigoillot, F.D.; Berkowski, J.A.; Sigoillot, S.M.; Kotsis, D.H.; Guy, H.I. Cell cycle-dependent regulation of pyrimidine biosynthesis. J. Biol. Chem. 2003, 278, 3403–3409. [Google Scholar] [CrossRef]
- Mondanelli, G.; Bianchi, R.; Pallotta, M.T.; Orabona, C.; Albini, E.; Iacono, A.; Belladonna, M.L.; Vacca, C.; Fallarino, F.; Macchiarulo, A.; et al. A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells. Immunity 2017, 46, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Rath, M.; Muller, I.; Kropf, P.; Closs, E.I.; Munder, M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol. 2014, 5, 532. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, K.; Wu, Q.; Kim, L.J.Y.; Morton, A.R.; Gimple, R.C.; Prager, B.C.; Shi, Y.; Zhou, W.; Bhargava, S.; et al. Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Sci. Transl. Med. 2019, 11, eaau4972. [Google Scholar] [CrossRef] [PubMed]
Cells | Markers [25] |
---|---|
B cells | CD45+ CD19+ |
Plasma cells | CD45+ CD19− CD138+ |
Memory B cells | CD45+ CD19+ CD27+ |
IgG memory B cells | CD45+ CD19+ CD27+ IgG+ |
Macrophages | CD45+ CD11b+ F4/80+ |
Myeloid | CD45+ CD11b+ |
Markers | Conjugate | Manufacture |
---|---|---|
CD45 | PerCP-Cy5.5 | BioLegend |
CD19 | Alexa Fluor 700 | BioLegend |
CD138 | PE-Cy7 | BioLegend |
CD27 | APC | BioLegend |
CD11b | FITC | BioLegend |
F4/80 | Pacific Blue | BioLegend |
IgG | PE | BioLegend |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, H.; Yang, Z.; Chen, T.; Jing, N.; Zhou, Y.; Jiang, G.; Wang, Y.; Wang, Z.; Liu, Z. Boosting HSA Vaccination with Jujube Powder Modulating Gut Microbiota Favorable for Arginine Metabolism. Nutrients 2023, 15, 1955. https://doi.org/10.3390/nu15081955
Zhuang H, Yang Z, Chen T, Jing N, Zhou Y, Jiang G, Wang Y, Wang Z, Liu Z. Boosting HSA Vaccination with Jujube Powder Modulating Gut Microbiota Favorable for Arginine Metabolism. Nutrients. 2023; 15(8):1955. https://doi.org/10.3390/nu15081955
Chicago/Turabian StyleZhuang, Huiren, Zhenghuan Yang, Tianhao Chen, Nan Jing, Yalin Zhou, Guoqiang Jiang, Yi Wang, Zhao Wang, and Zheng Liu. 2023. "Boosting HSA Vaccination with Jujube Powder Modulating Gut Microbiota Favorable for Arginine Metabolism" Nutrients 15, no. 8: 1955. https://doi.org/10.3390/nu15081955
APA StyleZhuang, H., Yang, Z., Chen, T., Jing, N., Zhou, Y., Jiang, G., Wang, Y., Wang, Z., & Liu, Z. (2023). Boosting HSA Vaccination with Jujube Powder Modulating Gut Microbiota Favorable for Arginine Metabolism. Nutrients, 15(8), 1955. https://doi.org/10.3390/nu15081955