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Abstract: Whereas vaccination is established as one of the most effective and available methods
against seasonal flu and holds high potential for many infectious diseases, immune response may
differ among individuals and regions. In this study we examined the effects of gut microbiota on
vaccination with human serum albumin (HSA) as the model vaccine in C57BL/6J mice. We observed
that a two-week antibiotic cocktail (ABX) treatment hampered HSA-specific IgG1 in serum, whereas
fecal microbiota transplantation (FMT) restored the gut microbiota impaired by the ABX treatment
and consequently increased the proportions of macrophages in the mesenteric lymph nodes (MLNs),
plasma cells in the peripheral blood, and HSA-specific immunoglobulin G1 (IgG1) in the serum.
A week of daily application of jujube powder (800 mg/kg) to ABX-treated mice achieved a signifi-
cantly higher HSA-specific IgG1 concentration in the serum compared with the ABX treatment group.
Of particular note was that the administration of the jujube powder did not increase the myeloid
cells, indicating a different mechanism of vaccination compared with FMT. More interestingly, daily
pre-administration of jujube powder (800 mg/kg) to healthy mice one week ahead of vaccination
boosted their immune response, as evidenced by the proportion of macrophages in the MLNs, B
cells in the spleen, plasma cells and memory B cells in the peripheral blood, and HSA-specific IgG1
concentration in the serum. The 16S rRNA sequencing of gut microbiota revealed that the administra-
tion of jujube powder increased the abundance of Coriobacteriaceae associated with the metabolism of
amino acids. The Kyoto encyclopedia of genes and genomes (KEGG) analysis suggested the altered
microbiota is more favorable for arginine and proline metabolism, which may promote macrophages
in the MLNs. These results indicate a high potential for boosting vaccination by manipulating gut
microbiota with natural products.

Keywords: vaccination response; ABX; FMT; jujube; gut microbiota

1. Introduction

Vaccination has been extensively applied against seasonal flu worldwide and holds
high potential for infectious diseases. However, and unfortunately, growing evidence has
been reported on the variation in vaccination response between individuals and regions.
Zimmermann. et al. [1] found, among 212 individuals, that the IgG concentrations induced
by seasonal influenza vaccine could vary more than 100-fold. PrabhuDas et al. [2] and
Ciabattini et al. [3] observed that the quality and durability of vaccines were poorer in
infants and the elderly in comparison with adults. Clark et al. [4] demonstrated that oral
rotavirus vaccine (ORV) efficacy was 94% in high-income countries (HICs) after 12 months,
whereas for low-income and middle-income countries, the efficacy was 44%. Given the
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painful experience of COVID-19, it is imperative to develop workable ways to improve
vaccination efficiency worldwide.

Gut microbiota may play a vital role in modulating the vaccine immune response.
Hagan et al. [5] found that gut microbiota impairment by antibiotics treatment hampered
immunoglobulin G1 (IgG1) and IgA responses to the trivalent influenza vaccine (TIV)
in individuals with low pre-existing immunity and induced inflammatory signatures
through AP-1/NR4A. Using mice models, Lynn et al. [6] demonstrated that antibiotic
exposure in early life severely hampered antibody responses to five vaccines, which could
be restored by fecal microbiota transplantation (FMT) from healthy mice of the same age.
Jason et al. [7] found that flagellin produced by gut microbiota stimulated toll-like receptor
5 (TLR-5) and enhanced plasma-cell differentiation and TIV-specific IgG concentration
by provoking macrophages in lymph nodes. Kim et al. [8] discovered that sensing of
the gut microbiota is critical for cholera toxin (CT) by means of the nucleotide-binding
oligomerization domain containing 2 (Nod2). Kim et al. [9] demonstrated that short-chain
fatty acids (SCFAs), fermented from dietary fiber in the gut microbiota, boosted IgA and IgG
response by stimulating B-cell metabolism and plasma-cell differentiation. Tang et al. [10]
found that the concentration of SCFAs in the feces and serum is positively correlated with
vaccination using the BBIBP-CorV vaccine. More recently, Jia et al. [11] demonstrated that
pre-existing antibodies in the gut microbiota cross-reacted with SARS-CoV-2, increasing
the receptor-binding domain (RBD) binding antibody titers of 28 healthy individuals after
vaccination with the BBIBP-CorV vaccine. All these results indicate the possibility of
boosting vaccination by modulating gut microbiota.

FMT [6], prebiotics [9,12], probiotics [13], and symbiotics [14] have been tested to
regulate gut microbiota for boosting vaccination. Lynn et al. [6] restored gut microbiota to
recover the impaired five live and adjuvanted vaccine immune responses using FMT. Cait
et al. [12] applied dietary fiber to improve the TIV-specific IgG level in mice but did not
find significant enhancement of the humoral response to the seasonal influenza vaccine.
Xu et al. [13] found that administration of Lactobacillus plantarum to mice boosted the
COVID-19 antibody concentration twofold and prolonged neutralization over 6 months.
Di Luccia et al. [14] demonstrated that five bacterial strains combined with nutraceuticals
enhanced cholera-toxin (CT)-specific IgA in the feces of hyporesponsive mice.

Ziziphus jujube is rich in flavonoids [15], phenolic acids [16], amino acids [17], and
polysaccharides [18], and has been widely applied in Chinese traditional medicine. Our
previous work demonstrated that the administration of jujube powder increased the abun-
dance of Bifidobacteria and enhanced the efficiency of cyclophosphamide on colon cancer
by enriching CD8+ T cells in the murine tumor environment [19]. Ultrafine jujube pow-
der improved the response of anti-PD-L1 treatment to murine colon cancer in mice by
increasing the abundance of Clostridia, which are associated with producing SCFAs [20].
All these indicate a high potential of jujube powder in boosting immune response by
modulating gut microbiota. In this study, we examined the effects of jujube powder on
vaccination using human serum albumin (HSA) as a model vaccine. We determined HSA-
specific IgG1 in serum and immune cells (B cells, plasma cells, macrophages, memory
B cells, and myeloid cells) in the mesenteric lymph nodes (MLNs). We determined the
gut microbiota diversity, composition, and metabolites using 16S rRNA gene sequenc-
ing and GC-MS untargeted metabolomics. We found that jujube powder increased the
abundance of Gordonibacter, which could induce antigen-presenting cell differentiation [21].
The abundance of Coriobacteriaceae, which is related to the metabolism of amino acids [22],
was enriched by administration of jujube. Kyoto encyclopedia of genes and genomes
(KEGG) pathway analysis indicated that jujube powder administration enhanced arginine
and proline metabolism, revealing the possible mechanism of promoting macrophages in
MLNs [23], consequently stimulating plasma-cell differentiation and IgG production. This
study demonstrates that jujube as a prebiotic provides a high potential method to enhance
HSA vaccine immune response and suggests a possible mechanism.



Nutrients 2023, 15, 1955 3 of 15

2. Materials and Methods
2.1. Materials

The jujube was purchased from Ruoqiang County, Xinjiang Province; the jujube
powder was milled to 1–10 µm with an ultrafine pulverizer (Pls, Jinan, China) at −20 ◦C
for 15 min. Human serum albumin (HSA) was purchased from Sigma-Aldrich (Merck,
Darmstadt, Germany). The vaccine adjuvant used was Class B CpG oligonucleotide Murine
TLR9 agonist, oligodeoxynucleotide 1826 (ODN1826) (Thermo Fisher, Waltham, MA, USA).

2.2. Mice and Treatment

C57BL/6J male mice (6–7 weeks) were purchased from the Vital River Laboratory
Animal Technology Co., Ltd. (Beijing, China). The mice were acclimatized in the animal
care facilities of Tsinghua University for a week before the animal experimental operation
under specific pathogen-free (SPF) conditions. In the ABX-treated mice model, firstly,
mice were fed water containing an antibiotic cocktail (ABX) (1 g/L ampicillin, 1 g/L
neomycin, 1 g/L metronidazole, and 0.5 g/L vancomycin) for 2 weeks. Then, mice in the
ABX+J+HSA group were given a daily oral administration of jujube powder (800 mg/kg)
dissolved in sterile water for a week. Mice in the ABX+FMT+HSA group were given daily
fecal microbiota transplantation (FMT) from the feces of mice of the same strain and age
for 3 days. After that, the mice were intramuscularly (i.m.) injected with HSA (90 µg)
and ODN1826 (5 µg) dissolved in 100 µL saline solution. The mice in the control (CTR)
group were i.m. injected with an equal volume of saline solution. Each of the CTR, HSA,
ABX+HSA, ABX+J+HSA, and ABX+FMT+HSA groups had eight mice.

In the healthy mice model, mice in the J group were given a daily pre-administration
of jujube powder (800 mg/kg) dissolved in sterile water for a week, and then they were i.m.
injected with HSA (90 µg) and ODN1826 [24] (5 µg) dissolved in 100 µL saline solution.
Each of the CTR, J, HSA, and HSA+J groups had 10 mice. Peripheral blood was collected
from the mice (30 µL) with 1.5% isoflurane every week through retro-orbital sinus puncture
into capillary tubes. The total number of mice used in the experiment was 80. All animal
experimental methods were conducted to conform to the guidelines of the Animal Care
and Use Committee of Tsinghua University (No. 20-LZ1#).

2.3. FMT

Feces were collected from mice of the same age and strain and were stored at −80 ◦C.
The frozen stool samples were defrosted in a 37.5 ◦C thermostatic water bath for 10 min.
The fecal samples were re-suspended in sterile phosphate buffered saline (PBS) 5% (w/v)
and then diluted (200 mg fecal sample into 2 mL volume) and stirred until there were no
significant large particles. A 200-mesh sterile mesh sieve was used to remove large particles
from the feces, and then the filtrate was passed through 400-mesh and 800-mesh sterile
mesh sieves to remove undigested food and smaller particulate matter. The filtrate obtained
through the 800-mesh screen was collected in a sterile centrifuge tube. The resuspension
was shaked with vortex for 5 min. The suspension was centrifuged at 600× g for 5 min to
remove the insoluble matter. Each mouse was daily garaged with a 200 µL suspension for
5 days.

2.4. DNA Extraction and Bacterial Identification in Stool Samples

Mice were fed with jujube daily for a week. The feces were collected and processed
for DNA extraction using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany)
according to standard protocols in www.qiagen.com/HB-1764. They were purified with
Gel Extraction Kit of AxyPrep DNA (Axygen, Corning, NY, USA). The PCR products
were quantitatively analyzed with the QuantiFluor-ST (Promega, Beijing, China). After
that, the fecal DNA was sequenced with the Illumina MiSeq (Majorbio, Shanghai, China)
using the standard methods required. The low-quality sequences were removed with
the FASTP tool, then the high-quality sequences were clustered to OTUs at 97% identity
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with the UPARSE tool. The raw sequences of 16S rRNA are acquirable after 18 June 2025
(https://www.ncbi.nlm.nih.gov/) through project ID PRJNA942135.

2.5. Bioinformatics Analysis

The gut microbiota alpha diversity was computed and drawn with the Vegan and
ggplot2 packages, respectively, in R (version R 3.6.1). The beta diversity and the principal
component analysis (PCA) of the different groups were calculated with a mixOmics package.
The top represented 5% OTUs of the first component were figured out of the partial
least squares discrimination analysis (PLS-DA) result and drawn with R package ggplot2.
KEGG enrichment was used to evaluate biological function caused by changes in the gut
microbiota metabolites.

2.6. Flow Cytometry of Immune Cells in Mesenteric Lymph Nodes (MLNs), Blood, and Spleen

MLNs and spleens were milled with Hank’s buffered solutions to single-cell suspen-
sions with a 70-µm nylon cell strainer. The cells were pelleted by centrifugation (350× g) for
5 min and the supernatant aspirated. The whole spleen cells were lysed with 5 mL mixing
red-blood lysis buffer (BioLegend, San Diego, CA, USA) for 5 min on ice. The reaction
was stopped by adding 20 mL PBS. Then the cells were spun (350× g) for 5 min and the
supernatant was discarded. Heparinized tubes were used to collect 200 µL of peripheral
blood, which was lysed with 2 mL red blood cell lysis buffer for 5 min. on ice; the reaction
was stopped by adding 8 mL PBS. Then the cells were spun (350× g) for 5 min and the
supernatant discarded.

First, the cells were bound with anti-CD16/32 antibody. After that, the cells were
stained with mixed antibodies (CD45, CD19, CD11b, CD138, CD27, F4/80, and IgG1) in
Hank’s buffered saline solution for 15 min in a dark environment. The proportion of mixed
antibodies was the same (5 µL/100 µL Hank’s buffer). The stained cells were washed with
1.5 mL Hank’s buffered saline solution. Then the cells were spun (350× g) for 5 min and
the supernatant discarded. Then the precipitate was suspended with PBS and analyzed
with LSRII cell analyzers (BD Biosciences, Union City, CA, USA). The data was calculated
with FlowJo 10.6.2. Cell markers and fluorophore conjugates are shown in Tables 1 and 2.

Table 1. Cell-marker schemes for identification of cell populations.

Cells Markers [25]

B cells CD45+ CD19+

Plasma cells CD45+ CD19− CD138+

Memory B cells CD45+ CD19+ CD27+

IgG memory B cells CD45+ CD19+ CD27+ IgG+

Macrophages CD45+ CD11b+ F4/80+

Myeloid CD45+ CD11b+

Table 2. The fluorophore conjugates and manufacture of cell markers.

Markers Conjugate Manufacture

CD45 PerCP-Cy5.5 BioLegend
CD19 Alexa Fluor 700 BioLegend
CD138 PE-Cy7 BioLegend
CD27 APC BioLegend

CD11b FITC BioLegend
F4/80 Pacific Blue BioLegend

IgG PE BioLegend

2.7. HSA-Specific IgG1 in Serum by ELISA

The mice were bled weekly post-HSA vaccination through retro-orbital sinus puncture
into tubes. The peripheral blood was stored overnight, 50 µL at 4 ◦C. Then, serum was
obtained by centrifuging the peripheral blood (3000× g, 8 min). First, HSA (1 mg/µL) was

https://www.ncbi.nlm.nih.gov/
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used to coat 96-well Nunc Maxisorb plates at 4 ◦C overnight. The plates were washed
with 0.05% Tween 20 in PBS five times. Then, 150 µL of 10% fetal bovine serum in PBS
were added and incubated at 37 ◦C for 2 h for nonspecific protein binding. The plates were
washed with 0.05% Tween 20 in PBS five times. Then, 100 µL diluted samples (1:2000)
were added to the plates and incubated at 37 ◦C for 2 h. The plates were washed with
0.05% Tween 20 in PBS five times. An amount of 100 µL HRP conjugated anti-mouse IgG1
secondary antibody diluted with 10% FBS in PBS (1:10,000) was added to each well. After
that, the plates were incubated at 37 ◦C for 1 h. The plates were washed with 0.05% Tween
20 in PBS five times. Then, 100 µL of OptEIA 3,3′,5,5′-Tetramethylbenzidine substrate was
added to each well and stopped after 25 min with 100 µL of 1 M sulfuric acid. The 450 nm
absorbance data was obtained with a Versa Max microplate reader.

2.8. Statistical Analysis

All statistical analyses mentioned above were conducted with GraphPad Prism 9.
The two-tailed Student’s t-test was used to evaluate differences between groups. The
measure of one-way analysis of variance (ANOVA) was applied to evaluate differences
among all groups. The results were expressed as means ± SE. p < 0.05 and p < 0.01 stands
for statistically significant difference and high statistically significant difference, noted as
* p < 0.05 and ** p < 0.01, respectively.

3. Results
3.1. FMT and Jujube Powder Recover Antibody and Immune Cells’ Response to HSA Vaccine in
ABX-Treated Mice

To reveal the role of gut microbiota in vaccination response, we applied a cocktail
of antibiotics to the mice 2 weeks before they received the HSA vaccination (referred
to as ABX+HSA hereafter) to observe the vaccine immune response with hampered gut
microbiota. Then we applied FMT to the ABX group to restore their gut microbiota. FMT
was taken daily from the control mice of the same age and strain to the ABX group for
3 days (referred to as ABX+FMT+HSA); we then determined their vaccination responses.
We examined the effectiveness of jujube powder in recovering the gut microbiota of the
ABX-treated mice. The ABX-treated mice were fed daily with jujube (800 mg/kg) for
a week (referred to as ABX+J+HSA). We also tested the effectiveness of pre-administration
of jujube on enhancing the HSA vaccination of the healthy mice (referred to as HSA+J
group hereafter). We used 16S rRNA gene sequencing and untargeted metabolomics to
assess the above-mentioned gut microbiota and the metabolism related to HSA.

As shown in Figure 1A, ABX treatment significantly decreased HSA-specific IgG1
concentrations in the serum of the ABX+HSA mice in weeks 3–6 compared with the HSA
group. FMT treatment dramatically increased HSA-specific IgG1 concentrations in the
serum, being significantly higher than the ABX+HSA group and closer to the HSA group
(Figure 1B). This suggests that a healthy gut microbiota is necessary for antibody response
to HSA vaccination. The J group showed a significant increase in HSA-specific IgG1
concentrations in the serum at weeks 4–6 (Figure 1C). The plasma cells and memory B
cells, especially IgG memory B cells, in the blood of the ABX+HSA group was much lower.
FMT and jujube powder improved those cells (Figure 1D,F–H). Notably, both FMT and
jujube powder treatment increased the percent of macrophages in the blood, indicating that
macrophages may be the point at which the gut microbiome affects HSA vaccination.
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Figure 1. FMT and jujube powder recover antibody and immune cells (plasma cells, macrophages,
memory B cells, and IgG memory B cells) of HSA-vaccinated mice models impaired by ABX.
(A–C) HSA-specific IgG1 concentrations in HSA, ABX+HSA group (A), ABX+FMT+HSA group
(B), and ABX+J+HSA group (C). (D–G) The percent of plasma cells (D), macrophages (E), memory
cells (F), and IgG memory cells (G) in the blood of the CTR, HSA, ABX+HSA, ABX+FMT+HSA,
and ABX+J+HSA groups (H). Representative flow cytometry results showing the percentage of
plasma cells in blood from mice of each group. no significance (ns), p > 0.05, * p < 0.05, ** p < 0.01,
*** p < 0.001.
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3.2. FMT and Jujube Powder Boosted HSA Vaccine Response by Enhancing Macrophages and
Plasma Cells Proportions in MLNs of ABX-Treated Mice

To assess the effects of the MLNs and spleen on HSA vaccination, we examined the
immune cell compositions of the MLNs and spleen. As shown in Figure 2A–C, ABX
treatment significantly decreased the percentage of macrophages, memory B cells, and
plasma cells in the MLNs, whereas FMT enhanced the ratios of macrophages, plasma cells,
and memory B cells. Administration of jujube powder also increased macrophages and
plasma cells. Interestingly, FMT increased myeloid cells in the spleen, whereas jujube
powder had no such effect. Moreover, ABX treatment did not change the proportions of
plasma cells and memory B cells in the spleen (Figure 2E,F), which were also not affected
by FMT and jujube powder treatment.
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Figure 2. FMT and jujube powder enhanced macrophages, plasma cells, and memory B cells of
HSA-vaccinated mice. (A–D) The proportions of macrophages, memory B cells, plasma cells, and
myeloid cells in the MLNs. (E,F) The proportions of memory B cells and plasma cells in the spleen.
no significance (ns), p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. Pre-Administration of Jujube Powder Boosted HSA Vaccination

During the experiment, healthy mice were daily administered jujube (800 mg/kg)
a week before vaccination. As shown in Figure 3A, jujube significantly enhanced the peak
value of HSA-specific IgG1 antibody response of the serum at 3 weeks, and it still held a
high level 6 weeks after HSA vaccination. Figure 3B shows that jujube powder significantly
promoted the ratio of B cells in the spleen but had little effect on plasma cells in the
spleen (Figure 3C). Plasma cells in the peripheral blood were enhanced (Figure 3D), which
was favorable for antibody production during vaccination. In addition, jujube powder
markedly improved memory B cells in the peripheral blood, which was more conducive to
resisting antigen secondary invasion (Figure 3E). However, jujube powder induced little
difference in memory B cells in the spleen (Figure 3F). Macrophages in the MLNs were
higher in the J group compared with the control group (Figure 3G), suggesting that jujube
powder enhanced B cells’ differentiation to plasma cells and memory B cells by increasing
macrophages in the MLNs.
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Figure 3. Administrating jujube powder a week in advance enhanced vaccine antibody and immune
cell response in mice. (A) The concentration of HSA-specific IgG1 antibody in mice serum post-
vaccine. (B,C) The proportions of B cells and plasma cells in the spleens of the HSA and HSA+J
groups. (D,E) The proportions of plasma cells and memory B cells in the peripheral blood of the
HSA and HSA+J groups. (F) The proportions of memory B cells in the spleens of the HSA and
HSA+J groups. (G) The proportions of macrophages in the MLNs of the HSA and HSA+J groups. no
significance (ns), p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001.

3.4. Jujube Altered the Gut Microbiota Diversity and Composition in Mice

As shown in Figure 4A, jujube treatment of the healthy mice increased the alpha diver-
sity of the gut microbiota according to the Shannon and Simpson indexes. Figure 4B shows
there was a significant difference in the gut microbiota between the control and jujube
groups, which was verified by partial least squares discriminant analysis (PLS-DA). The
top 5% representative OTUs could repeat those results through PLS-DA (Figure 4C). The
most discriminative phyla, which contributed to structural changes in the gut microbiota,
are Actinobacteria, Bacteroidota, and Firmicutes (Figure 4D). The Firmicutes to Bacteroidota
ratio decreased in the jujube group compared with the control group (Figures 4E and S2A).
At the genus level, jujube significantly increased the abundance of Muribaculaceae and
Eubacterium in the gut microbiota (Figure 4F), which contribute to the metabolism of car-
bohydrates. Moreover, Coriobacteriaceae, association with the metabolism of amino acids,
was enriched by administration of jujube, and the relative abundance of Gordonibacter was
much higher in the jujube group than the control group (Figure 4F), which could induce
antigen-presenting cell differentiation.
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Figure 4. The impact of jujube on gut microbiota diversity and compositions. (A) Pre-administration
of jujube for a week affected the alpha diversity of gut microbiota according to different indexes.
(B) Partial least squares discriminant analysis based on OTU abundance. (C) Partial least squares
discriminant analysis based on the top five representative OTU abundance. (D) The critical OTUs
conducive to partial least squares discriminant analysis component 1 and component 2. (E) The
difference in the gut microbiota composition of each mouse at the phylum level. (F) The relative
abundance of Muribaculaceae, Coriobacteriaceae, Gordonibacter, and Eubacterium in the jujube group and
the control group.
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3.5. Jujube Influenced Metabolism Related to Vaccination

To investigate the metabolite variations in gut microbiota, we used metabolomics to
analyze changes in mice feces a week after jujube administration. As shown in Figure 5A,B,
jujube significantly transformed the metabolite structure of the gut microbiota in mice,
as confirmed with PLS-DA and orthogonal partial least squares discriminant analysis
(OPLS-DA). As shown in Figure 5C, there were 84 metabolite changes in the jujube group
compared with the control group (p < 0.05, VIP_OPLS-DA > 1). Jujube enhanced the
expression of glycine, lysine, and phenylalanine, which might promote B-cell differentia-
tion. Moreover, the increase in lacto-N-biose and estriol 3-sulfate 16-glucuronide suggests
improved utilization of carbohydrates in the mice.
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(A) Partial least squares discriminant analysis based on metabolism variations between the jujube
and control groups. (B) Orthogonal partial least squares discriminant analysis based on metabolism
variations between the jujube and control groups. (C) Volcano plot of differences in metabolites
between the jujube and control groups (p < 0.05); variable importance in the projection of orthogonal
partial least squares discriminant analysis (VIP_OPLS-DA > 1). (D) Heatmap of important changes in
gut microbiota metabolites in each mouse. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.6. KEGG Pathway Enrichment Analysis of Biological Function Induced by Jujube

We performed KEGG pathway enrichment analysis based on different metabolites
caused by jujube to evaluate their biological significance. As shown in Figure 6A, there
were several differential KEGG pathways between the jujube and control groups. Ju-
jube administration enhanced arginine and proline metabolism (Figure 6B), revealing the
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possible mechanism of promoting macrophages in MLNs (Figure 3G). Moreover, jujube
upregulated pyrimidine metabolism, which was associated with activating the immune
system. Metabolism of xenobiotics by cytochrome P450 was boosted by jujube, which was
conducive to antioxidation.
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4. Discussion

The present study confirmed that the gut microbiota plays an indispensable role
in HSA vaccination, in that ABX treatment significantly impaired immunity induced by
vaccines (Figure 1A,D–H), while FMT increased the HSA-IgG1 level in serum (Figure 1B)
and enhanced macrophages in MLNs (Figure 2A), plasma cells, and memory B cells
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in the peripheral blood (Figure 1D–F). Lynn et al. [6] found that recovering the com-
mensal microbiota via FMT restored the antibody response impaired by antibiotics in
infant mice. The administration of jujube powder resecured poor vaccine immune re-
sponse induced by ABX treatment; increased the concentration of HSA-IgG1 in serum
(Figure 1C); and increased the percentage of plasma cells and memory B cells in the periph-
eral blood (Figure 1D) and macrophages, memory B cells, and plasma cells in the MLNs
(Figure 2A–C). The administration of jujube powder did not improve myeloid cells in
comparison with the ABX+FMT+HSA group (Figure 2D). Moreover, pre-administration of
jujube powder boosted HSA vaccine immune response in healthy mice, including increas-
ing the HSA-IgG1 level in the serum (Figure 3A), enhancing B cells and plasma cells in the
spleen, and inducing differentiation of plasma cells and memory B cells in the peripheral
blood and macrophages in the MLNs (Figure 3B–G) at week 6 post vaccine.

The study demonstrated that jujube powder increased the alpha diversity of gut
microbiota (Figure 4A) and changed the composition of gut microbiota according to PLS-
DA (Figure 4B–E). At the genus level, jujube significantly increased the abundance of
Muribaculaceae [26,27] and Eubacterium [28] in gut microbiota, which contribute to the
metabolism of carbohydrates. Moreover, Coriobacteriaceae, associated with metabolism
of amino acids [22], was enriched by the administration of jujube, and the abundance of
Gordonibacter was much higher in the jujube group than the control group (Figure 4F), which
could induce antigen-presenting cell differentiation [21]. Metabolomics revealed that jujube
altered the composition of gut microbiota metabolites according to PLS-DA and OPLS-DA
(Figure 5A,B) and enhanced the expression of glycine, lysine, and phenylalanine, which
might promote B-cell differentiation (Figure 5C,D). Moreover, the increase in the lacto-
N-biose [29,30] and estriol 3-sulfate 16-glucuronide [31] suggests improved utilization of
carbohydrates in the mice. KEGG pathway enrichment suggests that jujube administration
enhanced arginine and proline metabolism (Figure 6A,B), revealing the possible mechanism
of promoting macrophages in MLNs [32–34] (Figure 3G). Moreover, jujube upregulated
pyrimidine metabolism [35], which was associated with activating the immune system.

Interestingly, metabonomic data suggested that the administration of jujube could
boost xenobiotics with cytochrome P450, which is conducive to antioxidation. Platelet
activation was also enhanced by the administration of jujube, deserving further study in
autoimmune diseases. It should be noted, however, that the current study was performed
in mice models. Considering the interspecies and individual diversities, the results may
not be fully applicable to humans, which need further study in clinical trials.

5. Conclusions

We observed that vaccine immune responses were impaired in HSA-vaccinated mice
with ABX treatment. FMT recovered the HSA-specific IgG1 concentration in the serum by
increasing the proportions of macrophages in the MLNs and plasma cells in the peripheral
blood. Meanwhile, the administration of jujube powder induced higher HSA-specific IgG1
concentration in the serum than the ABX+HSA group without improving myeloid cells
in comparison with the ABX+FMT+HSA group. Moreover, pre-administration of jujube
powder boosted vaccine immune response in healthy mice. Jujube powder improved the
proportion of macrophages in the MLNs, B cells in the spleen, and plasma cells in the periph-
eral blood, which are responsible for producing HSA-specific IgG1. The administration of
jujube powder enhanced the percentage of memory B cells, which are conducive to resisting
antigen-secondary invasion. Jujube powder raised the alpha diversity of the gut microbiota.
Especially, Eubacterium enriched by jujube powder could induce antigen-presenting cell
differentiation, and Coriobacteriaceae are associated with the metabolism of amino acids.
Through KEGG pathway enrichment analysis, we found that jujube administration en-
hanced arginine, proline, and pyrimidine metabolism, revealing the possible mechanism of
promoting macrophages and plasma cells. All these results suggest the utilization of jujube
powder as prebiotics to recover the vaccine immune response of ABX-treated mice and
enhance that of healthy mice by regulating gut microbiota.
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