Moderate Dose Bovine Colostrum Supplementation in Prevention of Upper Respiratory Tract Infections in Medical University Students: A Randomized, Triple Blind, Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment, Blinding and Randomization
2.2. Final Selection for Analysis
2.3. Study Group Characteristics
2.4. Medical vs. Health Science Group
2.5. Supplementation Material
2.6. Design of the Trial
2.7. The Surveys
2.8. Statistical Analysis
2.9. Bioethical Approval
3. Results
3.1. Participants Data
3.2. Colostrum Efficacy in Mitigating Frequency of URTIs
3.3. Colostrum Efficacy in Improving Daily Well-Being Perception
3.4. Adverse Events
4. Discussion
4.1. The URTIs Frequency and Severity
4.2. URTIs Episodes
4.3. Well-Being Change upon Supplementation
4.4. Side Effects Monitoring
5. Conclusions
- Colostrum supplementation significantly decreases number of days with symptoms of URTIs registered in young healthy population at increased risk of developing URTIs (MED group) versus population of their peers with no elevated risk of such infections (HSci group).
- The reduction in severity of URTIs symptoms is observed upon supplementation with colostrum in MED versus HSci group as well.
- Well-being is also significantly improved in the MED group supplemented with colostrum when compared with such supplemented HSci group.
- The above effects can be obtained with much smaller doses than in previous trials of parallel design.
- There were no serious side effects among those receiving colostrum in all participants of our trial, as well as none of the gastrointestinal symptoms have appeared among them with higher frequency than in PBO group.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heikkinen, T.; Ruuskanen, O. Upper respiratory tract infection. In Encyclopedia of Respiratory Medicine; Laurent, G.J., Shapiro, S.D., Eds.; Academic Press: Oxford, UK, 2006; pp. 385–388. ISBN 978-0-12-370879-3. [Google Scholar]
- Duse, M.; Leonardi, L.; Zicari, A.M.; De Castro, G.; Indinnimeo, L. Risk factors for upper airway diseases. Int. J. Immunopathol. Pharmacol. 2010, 23, 13–15. [Google Scholar] [CrossRef]
- Morris, P.S. Upper respiratory tract infections (including otitis media). Pediatr. Clin. N. Am. 2009, 56, 101–117. [Google Scholar] [CrossRef]
- Jain, N.; Lodha, R.; Kabra, S.K. Upper respiratory tract infections. Indian J. Pediatr. 2001, 68, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Grief, S.N. Upper respiratory infections. Prim. Care 2013, 40, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Shvartzman, P.; Lieberman, D.; Tandeter, H.; Portugeiz, E.; Pshetizky, Y.; Sasson, M.; Biderman, A.; Rosentsveig, A. Clinical and Laboratory Profile of Febrile Respiratory Infections in General Practice. J. Am. Board Fam. Pract. 2004, 17, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Maltezou, H.C.; Raftopoulos, V.; Vorou, R.; Papadima, K.; Mellou, K.; Spanakis, N.; Kossyvakis, A.; Gioula, G.; Exindari, M.; Froukala, E.; et al. Association Between Upper Respiratory Tract Viral Load, Comorbidities, Disease Severity, and Outcome of Patients With SARS-CoV-2 Infection. J. Infect. Dis. 2021, 223, 1132–1138. [Google Scholar] [CrossRef]
- Harper, A.; Vijayakumar, V.; Ouwehand, A.C.; ter Haar, J.; Obis, D.; Espadaler, J.; Binda, S.; Desiraju, S.; Day, R. Viral Infections, the Microbiome, and Probiotics. Front. Cell. Infect. Microbiol. 2021, 10, 596166. [Google Scholar] [CrossRef]
- Hemilä, H.; Chalker, E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev. 2013, CD000980. [Google Scholar] [CrossRef] [PubMed]
- Fahy, J.V.; Dickey, B.F. Airway mucus function and dysfunction. N. Engl. J. Med. 2010, 363, 2233–2247. [Google Scholar] [CrossRef]
- King, M. Experimental models for studying mucociliary clearance. Eur. Respir. J. 1998, 11, 222–228. [Google Scholar] [CrossRef]
- Carr, A.C.; Gombart, A.F. Multi-Level Immune Support by Vitamins C and D during the SARS-CoV-2 Pandemic. Nutrients 2022, 14, 689. [Google Scholar] [CrossRef]
- Crawford, C.; Brown, L.L.; Costello, R.B.; Deuster, P.A. Select Dietary Supplement Ingredients for Preserving and Protecting the Immune System in Healthy Individuals: A Systematic Review. Nutrients 2022, 14, 4604. [Google Scholar] [CrossRef]
- Struff, W.G.; Sprotte, G. Bovine colostrum as a biologic in clinical medicine: A review. Part I: Biotechnological standards, pharmacodynamic and pharmacokinetic characteristics and principles of treatment. Int. J. Clin. Pharmacol. Ther. 2007, 45, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Rathe, M.; Müller, K.; Sangild, P.T.; Husby, S. Clinical applications of bovine colostrum therapy: A systematic review. Nutr. Rev. 2014, 72, 237–254. [Google Scholar] [CrossRef]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef]
- Bagwe, S.; Tharappel, L.J.P.; Kaur, G.; Buttar, H.S. Bovine colostrum: An emerging nutraceutical. J. Complement. Integr. Med. 2015, 12, 175–185. [Google Scholar] [CrossRef]
- Brinkworth, G.D.; Buckley, J.D. Concentrated bovine colostrum protein supplementation reduces the incidence of self-reported symptoms of upper respiratory tract infection in adult males. Eur. J. Nutr. 2003, 42, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Davison, G. Bovine colostrum and immune function after exercise. Med. Sport Sci. 2012, 59, 62–69. [Google Scholar] [CrossRef]
- Patıroğlu, T.; Kondolot, M. The effect of bovine colostrum on viral upper respiratory tract infections in children with immunoglobulin A deficiency: Bovine colostrum in children with IgA deficiency. Clin. Respir. J. 2013, 7, 21–26. [Google Scholar] [CrossRef]
- Jones, A.W.; Cameron, S.J.S.; Thatcher, R.; Beecroft, M.S.; Mur, L.A.J.; Davison, G. Effects of bovine colostrum supplementation on upper respiratory illness in active males. Brain. Behav. Immun. 2014, 39, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.W.; March, D.S.; Curtis, F.; Bridle, C. Bovine colostrum supplementation and upper respiratory symptoms during exercise training: A systematic review and meta-analysis of randomised controlled trials. BMC Sports Sci. Med. Rehabil. 2016, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Rana, R. Pedimune in recurrent respiratory infection and diarrhoea—The Indian experience—The pride study. Indian J. Pediatr. 2006, 73, 585–591. [Google Scholar] [CrossRef]
- Saad, K.; Abo-Elela, M.G.M.; El-Baseer, K.A.A.; Ahmed, A.E.; Ahmad, F.-A.; Tawfeek, M.S.K.; El-Houfey, A.A.; Aboul Khair, M.D.; Abdel-Salam, A.M.; Abo-Elgheit, A.; et al. Effects of bovine colostrum on recurrent respiratory tract infections and diarrhea in children. Medicine 2016, 95, e4560. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Macdonald, C.; Wicks, A.C.; Holt, M.P.; Floyd, D.; Ghosh, S.; Wright, N.A.; Playford, R.J. Use of the ‘nutriceutical’, bovine colostrum, for the treatment of distal colitis: Results from an initial study. Aliment. Pharmacol. Ther. 2002, 16, 1917–1922. [Google Scholar] [CrossRef]
- Hałasa, M.; Baśkiewicz-Hałasa, M.; Jamioł-Milc, D.; Maciejewska-Markiewicz, D.; Skonieczna-Żydecka, K. Bovine colostrum supplementation in prevention of upper respiratory tract infections—Systematic review, meta-analysis and meta-regression of randomized controlled trials. J. Funct. Foods 2022, 99, 105316. [Google Scholar] [CrossRef]
- Crooks, C.V.; Wall, C.R.; Cross, M.L.; Rutherfurd-Markwick, K.J. The effect of bovine colostrum supplementation on salivary IgA in distance runners. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Crooks, C.; Cross, M.L.; Wall, C.; Ali, A. Effect of bovine colostrum supplementation on respiratory tract mucosal defenses in swimmers. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 224–235. [Google Scholar] [CrossRef]
- Cicchella, A.; Stefanelli, C.; Massaro, M. Upper Respiratory Tract Infections in Sport and the Immune System Response. A Review. Biology 2021, 10, 362. [Google Scholar] [CrossRef]
- Arghittu, A.; Dettori, M.; Azara, A.; Gentili, D.; Serra, A.; Contu, B.; Castiglia, P. Flu Vaccination Attitudes, Behaviours, and Knowledge among Health Workers. Int. J. Environ. Res. Public. Health 2020, 17, 3185. [Google Scholar] [CrossRef]
- Hałasa, M.; Maciejewska, D.; Baśkiewicz-Hałasa, M.; Machaliński, B.; Safranow, K.; Stachowska, E. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes. Nutrients 2017, 9, 370. [Google Scholar] [CrossRef]
- Hałasa, M.; Maciejewska-Markiewicz, D.; Baśkiewicz-Hałasa, M.; Safranow, K.; Stachowska, E. Post-Delivery Milking Delay Influence on the Effect of Oral Supplementation with Bovine Colostrum as Measured with Intestinal Permeability Test. Med. Kaunas Lith. 2020, 56, 495. [Google Scholar] [CrossRef] [PubMed]
- Chandwe, K.; Kelly, P. Colostrum Therapy for Human Gastrointestinal Health and Disease. Nutrients 2021, 13, 1956. [Google Scholar] [CrossRef] [PubMed]
- Shing, C.M.; Peake, J.; Suzuki, K.; Okutsu, M.; Pereira, R.; Stevenson, L.; Jenkins, D.G.; Coombes, J.S. Effects of bovine colostrum supplementation on immune variables in highly trained cyclists. J. Appl. Physiol. Bethesda Md 1985 2007, 102, 1113–1122. [Google Scholar] [CrossRef]
- Cesarone, M.R.; Belcaro, G.; Di Renzo, A.; Dugall, M.; Cacchio, M.; Ruffini, I.; Pellegrini, L.; Del Boccio, G.; Fano, F.; Ledda, A.; et al. Prevention of influenza episodes with colostrum compared with vaccination in healthy and high-risk cardiovascular subjects: The epidemiologic study in San Valentino. Clin. Appl. Thromb. Off. J. Int. Acad. Clin. Appl. Thromb. 2007, 13, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Little, P.; Gould, C.; Williamson, I.; Warner, G.; Gantley, M.; Kinmonth, A.L. Clinical and psychosocial predictors of illness duration from randomised controlled trial of prescribing strategies for sore throat. BMJ 1999, 319, 736–737. [Google Scholar] [CrossRef]
- Lindbaek, M.; Francis, N.; Cannings-John, R.; Butler, C.C.; Hjortdahl, P. Clinical course of suspected viral sore throat in young adults: Cohort study. Scand. J. Prim. Health Care 2006, 24, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.; Newbould, L.; Nesbitt, C.; Rogers, M.; Morris, R.L.; Hay, A.D.; Campbell, S.M.; Hayward, G. Predicting poor outcomes in children aged 1–12 with respiratory tract infections: A systematic review. PLoS ONE 2021, 16, e0249533. [Google Scholar] [CrossRef]
- Hijano, D.R.; Maron, G.; Hayden, R.T. Respiratory Viral Infections in Patients With Cancer or Undergoing Hematopoietic Cell Transplant. Front. Microbiol. 2018, 9, 3097. [Google Scholar] [CrossRef]
- Sanctuary, M.R.; Kain, J.N.; Chen, S.Y.; Kalanetra, K.; Lemay, D.G.; Rose, D.R.; Yang, H.T.; Tancredi, D.J.; German, J.B.; Slupsky, C.M.; et al. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS ONE 2019, 14, e0210064. [Google Scholar] [CrossRef]
URTIs in Childhood/Youth Per Year | |||||||||
---|---|---|---|---|---|---|---|---|---|
0–1 | 2–3 | 4–5 | >5 | p | |||||
COL | 23 | 38 | 14 | 2 | 0.21 | ||||
PBO | 26 | 40 | 8 | 7 | |||||
Surgery in childhood/youth | |||||||||
Abdominal/cancer | Abdominal | Orthopedic | Orthopedic/abdominal | None | p | ||||
COL | 0 | 3 | 10 | 1 | 63 | 0.49 | |||
PBO | 1 | 4 | 6 | 0 | 70 | ||||
Serious ailments in childhood/youth | |||||||||
Autoimmune | Cancer | Infections | Infections/autoimmune | Infections/autoimmune/injury | Infections/injury | Injury | None | p | |
COL | 1 | 0 | 5 | 1 | 0 | 2 | 0 | 68 | 0.21 |
PBO | 4 | 1 | 1 | 1 | 1 | 0 | 1 | 72 | |
Chronic Disease at present | |||||||||
Allergy | Allergy/autoimmune | Autoimmune | Autoimmune/diabetes | Autoimmune/IBD | Diabetes | IBD | None | p | |
COL | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 72 | 0.52 |
PBO | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 72 | |
Mean number of ABX course in the last 3 autumn winter seasons | |||||||||
1 | 2 | 3 | 4 | p | |||||
COL | 63 | 12 | 1 | 1 | 0.94 | ||||
PBO | 67 | 11 | 2 | 1 | |||||
Mean number of URTI in the last 3 autumn winter seasons | |||||||||
1 | 2 | 3 | 4 | p | |||||
COL | 31 | 37 | 7 | 2 | 0.61 | ||||
PBO | 27 | 40 | 9 | 5 | |||||
Prolonged (>2 weeks) ABX during last 3 months | |||||||||
NO | YES | p | |||||||
COL | 74 | 3 | 0.95 | ||||||
PBO | 78 | 3 |
Variable | Colostrum | Placebo | p | Factor R | DF | F | p | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Median | IQR | n | Median | IQR | ||||||
URTIs number of days 1–45 | 77 | 2 | 0.000–6.000 | 81 | 3 | 1.000–9.000 | 0.1594 | Intervention | 1 | 2.953 | 0.088 |
Faculty | 1 | 2.285 | 0.133 | ||||||||
Intervention*Faculty | 1 | 4.582 | 0.034 | ||||||||
URTIs number of days 46–86 | 1 | 0.000–5.000 | 1 | 0.000–6.250 | 0.8113 | Intervention | 1 | 0.3 | 0.585 | ||
Faculty | 1 | 0.922 | 0.338 | ||||||||
Intervention*Faculty | 1 | 4.576 | 0.034 | ||||||||
URTIs number of days 87–107 | 0 | 0.000–1.250 | 0 | 0.000–3.250 | 0.069 | Intervention R | 1 | 4.887 | 0.029 | ||
Faculty R | 1 | 6.472 | 0.012 | ||||||||
Intervention R *Faculty | 1 | 6.197 | 0.014 | ||||||||
URTIs severity score days 1–45 | 4 | 0.000–9.000 | 4 | 0.000–12.250 | 0.3604 | Intervention | 1 | 1.353 | 0.247 | ||
Faculty | 1 | 3 | 0.085 | ||||||||
Intervention*Faculty | 1 | 3.275 | 0.072 | ||||||||
URTIs severity score days 46–86 | 0 | 0.000–6.250 | 1 | 0.000–6.500 | 0.8459 | Intervention | 1 | 0.106 | 0.746 | ||
Faculty | 1 | 0.617 | 0.433 | ||||||||
Intervention*Faculty | 1 | 0.929 | 0.337 | ||||||||
URTIs severity score days 87–107 | 0 | 0.000–1.000 | 0 | 0.000–2.000 | 0.5264 | Intervention | 1 | 0.691 | 0.407 | ||
Faculty | 1 | 4.656 | 0.033 | ||||||||
Intervention*Faculty | 1 | 2.316 | 0.13 |
Variable | Colostrum | Placebo | p | Factor | DF | F | p | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Median | IQR | n | Median | IQR | ||||||
Well-being score | 77 | 196 | 168.000–210.250 | 81 | 192 | 171.750–215.250 | 0.6127 | Intervention | 1 | 0.0578 | 0.81 |
Faculty | 1 | 1.327 | 0.251 | ||||||||
Intervention*Faculty | 1 | 4.414 | 0.037 | ||||||||
Well-being score days 1–45 | 81 | 71.500–88.000 | 82 | 71.000–90.000 | 0.4164 | Intervention | 1 | 0.012 | 0.913 | ||
Faculty | 1 | 0.608 | 0.437 | ||||||||
Intervention*Faculty | 1 | 3.721 | 0.056 | ||||||||
Well-being score days 46–86 | 75 | 62.000–81.000 | 76 | 61.500–83.000 | 0.7941 | Intervention | 1 | 0.0272 | 0.869 | ||
Faculty | 1 | 1.775 | 0.185 | ||||||||
Intervention*Faculty | 1 | 2.108 | 0.149 | ||||||||
Well-being score days 87–107 | 39 | 30.500–42.000 | 39 | 31.750–43.000 | 0.4529 | Intervention | 1 | 0.235 | 0.628 | ||
Faculty | 1 | 0.877 | 0.351 | ||||||||
Intervention*Faculty | 1 | 6.771 | 0.01 |
Variable | Colostrum | Placebo | p | ||||
---|---|---|---|---|---|---|---|
n | Median | IQR | n | Median | IQR | ||
Bloating_45days | 77 | 0 | 0.000–2.000 | 81 | 1 | 0.000–2.250 | 0.7104 |
Bloating_WT | 1 | 0.000–2.000 | 1 | 0.000–4.000 | 0.7437 | ||
Diarrhea_45days | 0 | 0.000–2.000 | 0 | 0.000–1.000 | 0.2605 | ||
Diarrhea_WT | 1 | 0.000–3.000 | 0 | 0.000–2.000 | 0.2437 | ||
Pain_45days | 1 | 0.000–4.000 | 1 | 0.000–5.000 | 0.6648 | ||
Pain_WT | 2 | 0.000–6.000 | 2 | 0.000–7.250 | 0.7909 | ||
No symptoms_45days | 41 | 37.000–44.000 | 40 | 35.000–44.000 | 0.9624 | ||
No symptoms_WT | 88 | 81.750–93.000 | 89 | 80.750–93.000 | 0.8836 | ||
MED | HSci | ||||||
Bloating_45days | 67 | 1 | 0.000–2.000 | 91 | 0 | 0.000–2.000 | 0.3787 |
Bloating_WT | 1 | 0.000–3.000 | 0 | 0.000–3.000 | 0.2871 | ||
Diarrhea_45days | 0 | 0.000–2.000 | 0 | 0.000–2.000 | 0.7103 | ||
Diarrhea_WT | 1 | 0.000–2.750 | 0 | 0.000–2.750 | 0.3133 | ||
Pain_45days | 1 | 0.000–4.000 | 2 | 0.000–4.000 | 0.1596 | ||
Pain_WT | 2 | 0.000–5.000 | 3 | 0.000–7.000 | 0.2452 | ||
No symptoms_45days | 41 | 37.250–44.000 | 40 | 35.000–44.000 | 0.3835 | ||
No symptoms_WT | 89 | 83.000–93.000 | 88 | 78.500–92.750 | 0.5019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baśkiewicz-Hałasa, M.; Stachowska, E.; Grochans, E.; Maciejewska-Markiewicz, D.; Bühner, L.; Skonieczna-Żydecka, K.; Hałasa, M. Moderate Dose Bovine Colostrum Supplementation in Prevention of Upper Respiratory Tract Infections in Medical University Students: A Randomized, Triple Blind, Placebo-Controlled Trial. Nutrients 2023, 15, 1925. https://doi.org/10.3390/nu15081925
Baśkiewicz-Hałasa M, Stachowska E, Grochans E, Maciejewska-Markiewicz D, Bühner L, Skonieczna-Żydecka K, Hałasa M. Moderate Dose Bovine Colostrum Supplementation in Prevention of Upper Respiratory Tract Infections in Medical University Students: A Randomized, Triple Blind, Placebo-Controlled Trial. Nutrients. 2023; 15(8):1925. https://doi.org/10.3390/nu15081925
Chicago/Turabian StyleBaśkiewicz-Hałasa, Magdalena, Ewa Stachowska, Elżbieta Grochans, Dominika Maciejewska-Markiewicz, Leonard Bühner, Karolina Skonieczna-Żydecka, and Maciej Hałasa. 2023. "Moderate Dose Bovine Colostrum Supplementation in Prevention of Upper Respiratory Tract Infections in Medical University Students: A Randomized, Triple Blind, Placebo-Controlled Trial" Nutrients 15, no. 8: 1925. https://doi.org/10.3390/nu15081925
APA StyleBaśkiewicz-Hałasa, M., Stachowska, E., Grochans, E., Maciejewska-Markiewicz, D., Bühner, L., Skonieczna-Żydecka, K., & Hałasa, M. (2023). Moderate Dose Bovine Colostrum Supplementation in Prevention of Upper Respiratory Tract Infections in Medical University Students: A Randomized, Triple Blind, Placebo-Controlled Trial. Nutrients, 15(8), 1925. https://doi.org/10.3390/nu15081925