Health Effects of Red Wine Consumption: A Narrative Review of an Issue That Still Deserves Debate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Antioxidant Status
3.2. Cardiovascular Function
3.3. Coagulation Pathway and Platelet Function
3.4. Endothelial Function and Arterial Stiffness
3.5. Hypertension
3.6. Immune Function and Inflammatory Status
3.7. Lipid Profile and Homocysteine Levels
3.8. Body Composition, Type 2 Diabetes, and Glucose Metabolism
3.9. Gut Microbiota and Gastrointestinal Tract
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement:
Conflicts of Interest
Abbreviations
References
- O’keefe, J.H.; Bhatti, S.K.; Bajwa, A.; DiNicolantonio, J.J.; Lavie, C.J. Alcohol and Cardiovascular Health: The Dose Makes the Poison or the Remedy. Mayo Clin. Proc. 2014, 89, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Narvaez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Minno, G.D.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Franchini, M.; Favaloro, E.; Targher, G. Moderate Red Wine Consumption and Cardiovascular Disease Risk: Beyond the “French Paradox”. Semin. Thromb. Hemost. 2010, 36, 059–070. [Google Scholar] [CrossRef] [PubMed]
- Liberale, L.; Bonaventura, A.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of Red Wine Consumption on Cardiovascular Health. Curr. Med. Chem. 2019, 26, 3542–3566. [Google Scholar] [CrossRef] [PubMed]
- Minzer, S.; Estruch, R.; Casas, R. Wine Intake in the Framework of a Mediterranean Diet and Chronic Non-Communicable Diseases: A Short Literature Review of the Last 5 Years. Molecules 2020, 25, 5045. [Google Scholar] [CrossRef] [PubMed]
- Scoccianti, C.; Cecchini, M.; Anderson, A.S.; Berrino, F.; Boutron-Ruault, M.-C.; Espina, C.; Key, T.J.; Leitzmann, M.; Norat, T.; Powers, H.; et al. European Code against Cancer 4th Edition: Alcohol drinking and cancer. Cancer Epidemiol. 2016, 45, 181–188. [Google Scholar] [CrossRef]
- Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- Muñoz-Bernal, Ó.A.; Coria-Oliveros, A.J.; de la Rosa, L.A.; Rodrigo-García, J.; Martínez-Ruiz, N.D.R.; Sayago-Ayerdi, S.G.; Alvarez-Parrilla, E. Cardioprotective effect of red wine and grape pomace. Food Res. Int. 2021, 140, 110069. [Google Scholar] [CrossRef]
- Haseeb, S.; Alexander, B.; Baranchuk, A. Wine and Cardiovascular Health: A Comprehensive Review. Circulation 2017, 136, 1434–1448. [Google Scholar] [CrossRef]
- Agewall, S.; Wright, S.; Doughty, R.N.; Whalley, G.A.; Duxbury, M.; Sharpe, N. Does a glass of red wine improve endothelial func-tion? Eur. Heart J. 2000, 21, 74–78. [Google Scholar] [CrossRef]
- Caccetta, R.A.; Croft, K.D.; Beilin, L.J.; Puddey, I.B. Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability. Am. J. Clin. Nutr. 2000, 71, 67–74. [Google Scholar] [CrossRef]
- Senault, C.; Betoulle, D.; Luc, G.; Hauw, P.; Rigaud, D.; Fumeron, F. Beneficial effects of a moderate consumption of red wine on cellular cholesterol efflux in young men. Nutr. Metab. Cardiovasc. Dis. 2000, 10, 63–69. [Google Scholar]
- Caccetta, R.; Burke, V.; Mori, T.A.; Beilin, L.J.; Puddey, I.B.; Croft, K.D. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free. Radic. Biol. Med. 2001, 30, 636–642. [Google Scholar] [CrossRef]
- Ceriello, A.; Bortolotti, N.; Motz, E.; Lizzio, S.; Catone, B.; Assaloni, R.; Tonutti, L.; Taboga, C. Red wine protects diabetic patients from meal-induced oxidative stress and thrombosis activation: A pleasant approach to the prevention of cardiovascular disease in diabetes. Eur. J. Clin. Investig. 2001, 31, 322–328. [Google Scholar] [CrossRef] [PubMed]
- De Vries, J.H.; Hollman, P.C.; van Amersfoort, I.; Olthof, M.R.; Katan, M.B. Red wine is a poor source of bioavailable flavonols in men. J. Nutr. 2001, 131, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Van der Gaag, M.S.; Sierksma, A.; Schaafsma, G.; van Tol, A.; Geelhoed-Mieras, T.; Bakker, M.; Hendriks, H.F. Moderate alcohol con-sumption and changes in postprandial lipoproteins of premenopausal and postmenopausal women: A diet-controlled, ran-domized intervention study. J. Women’s Health Gend.-Based Med. 2000, 9, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Mansvelt, E.P.; van Velden, D.P.; Fourie, E.; Rossouw, M.; van Rensburg, S.J.; Smuts, C.M. The in Vivo Antithrombotic Effect of Wine Consumption on Human Blood Platelets and Hemostatic Factors. Ann. N. Y. Acad. Sci. 2002, 957, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Foppa, M.; Fuchs, F.D.; Preissler, L.; Andrighetto, A.; Rosito, G.A.; Duncan, B.B. Red wine with the noon meal lowers post-meal blood pressure: A randomized trial in centrally obese, hypertensive patients. J. Stud. Alcohol 2002, 63, 247–251. [Google Scholar] [CrossRef]
- Watzl, B.; Bub, A.; Briviba, K.; Rechkemmer, G. Acute intake of moderate amounts of red wine or alcohol has no effect on the immune system of healthy men. Eur. J. Nutr. 2002, 41, 264–270. [Google Scholar] [CrossRef]
- Mezzano, D.; Leighton, F.; Strobel, P.; Martínez, C.; Marshall, G.; Cuevas, A.; Castillo, O.; Panes, O.; Muñoz, B.; Rozowski, J.; et al. Mediterranean diet, but not red wine, is associated with beneficial changes in primary haemostasis. Eur. J. Clin. Nutr. 2003, 57, 439–446. [Google Scholar] [CrossRef]
- Pignatelli, P.; Lenti, L.; Pulcinelli, F.M.; Catasca, R.; Saccani, G.; Germanò, G.; Marcoccia, A.; Silvestri, M.A.; Ghiselli, A.; Violi, F. Red and white wine differently affect collagen-induced platelet aggregation. Pathophysiol. Haemost. Thromb. 2002, 32, 356–358. [Google Scholar] [CrossRef]
- Watzl, B.; Bub, A.; Pretzer, G.; Roser, S.; Barth, S.W.; Rechkemmer, G. Daily moderate amounts of red wine or alcohol have no effect on the immune system of healthy men. Eur. J. Clin. Nutr. 2004, 58, 40–45. [Google Scholar] [CrossRef]
- Kikura, M.; Levy, J.H.; Safon, R.A.; Lee, M.K.; Szlam, F. The influence of red wine or white wine intake on platelet function and viscoelastic property of blood in volunteers. Platelets 2004, 15, 37–41. [Google Scholar] [CrossRef]
- Naissides, M.; Mamo, J.C.; James, A.P.; Pal, S. The effect of acute red wine polyphenol consumption on postprandial lipaemia in postmenopausal women. Atherosclerosis 2004, 177, 401–408. [Google Scholar] [CrossRef]
- Whelan, A.P.; Sutherland, W.H.; McCormick, M.P.; Yeoman, D.J.; de Jong, S.A.; Williams, M.J. Effects of white and red wine on endo-thelial function in subjects with coronary artery disease. Intern. Med. J. 2004, 34, 224–228. [Google Scholar] [CrossRef]
- Williams, M.J.; Sutherland, W.H.; Whelan, A.P.; McCormick, M.P.; de Jong, S.A. Acute effect of drinking red and white wines on cir-culating levels of inflammation-sensitive molecules in men with coronary artery disease. Metabolism 2004, 53, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, S.R.; Lage, S.H.; Brandizzi, L.; Yoshida, V.; da Luz, P.L. The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients. Braz. J. Med. Biol. Res. 2005, 38, 1339–1347. [Google Scholar] [CrossRef]
- Avellone, G.; Di Garbo, V.; Campisi, D.; De Simone, R.; Raneli, G.; Scaglione, R.; Licata, G. Effects of moderate Sicilian red wine con-sumption on inflammatory biomarkers of atherosclerosis. Eur. J. Clin. Nutr. 2006, 60, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Guarda, E.; Godoy, I.; Foncea, R.; Pérez, D.D.; Romero, C.; Venegas, R.; Leighton, F. Red wine reduces oxidative stress in patients with acute coronary syndrome. Int. J. Cardiol. 2005, 104, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.S.; Marckmann, P.; Dragsted, L.O.; Finné Nielsen, I.L.; Nielsen, S.E.; Grønbaek, M. Effect of red wine and red grape extract on blood lipids, haemostatic factors, and other risk factors for cardiovascular disease. Eur. J. Clin. Nutr. 2005, 59, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Karatzi, K.N.; Papamichael, C.M.; Karatzis, E.N.; Papaioannou, T.G.; Aznaouridis, K.A.; Katsichti, P.P.; Stamatelopoulos, K.S.; Zampelas, A.; Lekakis, J.P.; Mavrikakis, M.E. Red wine acutely induces favorable effects on wave reflections and central pressures in coro-nary artery disease patients. Am. J. Hypertens. 2005, 18 Pt 1, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Ghiselli, A.; Buchetti, B.; Carnevale, R.; Natella, F.; Germanò, G.; Fimognari, F.; Di Santo, S.; Lenti, L.; Violi, F. Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis 2006, 188, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Retterstol, L.; Berge, K.E.; Braaten, Ø.; Eikvar, L.; Pedersen, T.R.; Sandvik, L. A daily glass of red wine: Does it affect markers of inflammation? Alcohol Alcohol. 2005, 40, 102–105. [Google Scholar] [CrossRef]
- Tsang, C.; Higgins, S.; Duthie, G.G.; Duthie, S.J.; Howie, M.; Mullen, W.; Lean, M.E.; Crozier, A. The influence of moderate red wine consumption on antioxidant status and indices of oxidative stress associated with CHD in healthy volunteers. Br. J. Nutr. 2005, 93, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, S.; Kostner, K.; Thallinger, C.; Bur, A.; Brunner, M.; Wolzt, M.; Joukhadar, C. Wine ingestion has no effect on lipid peroxida-tion products. Pharmacology 2005, 75, 152–156. [Google Scholar] [CrossRef]
- Zilkens, R.R.; Burke, V.; Hodgson, J.M.; Barden, A.; Beilin, L.J.; Puddey, I.B. Red Wine and Beer Elevate Blood Pressure in Normotensive Men. Hypertension 2005, 45, 874–879. [Google Scholar] [CrossRef]
- Banini, A.E.; Boyd, L.C.; Allen, J.C.; Allen, H.G.; Sauls, D.L. Muscadine grape products intake, diet and blood constituents of non-diabetic and type 2 diabetic subjects. Nutrition 2006, 22, 1137–1145. [Google Scholar] [CrossRef]
- Beulens, J.W.; van Beers, R.M.; Stolk, R.P.; Schaafsma, G.; Hendriks, H.F. The effect of moderate alcohol consumption on fat distribu-tion and adipocytokines. Obesity 2006, 14, 60–66. [Google Scholar] [CrossRef]
- Blackhurst, D.M.; Marais, A.D. Concomitant consumption of red wine and polyunsaturated fatty acids in edible oil does not influence the peroxidation status of chylomicron lipids despite increasing plasma catechin concentration. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 550–558. [Google Scholar] [CrossRef]
- Boban, M.; Modun, D.; Music, I.; Vukovic, J.; Brizic, I.; Salamunic, I.; Obad, A.; Palada, I.; Dujic, Z. Red Wine Induced Modulation of Vascular Function: Separating the Role of Polyphenols, Ethanol, and Urates. J. Cardiovasc. Pharmacol. 2006, 47, 695–701. [Google Scholar] [CrossRef]
- Jensen, T.; Retterstøl, L.J.; Sandset, P.M.; Godal, H.C.; Skjønsberg, O.H. A daily glass of red wine induces a prolonged reduction in plasma viscosity: A randomized controlled trial. Blood Coagul. Fibrinolysis 2006, 17, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Marfella, R.; Cacciapuoti, F.; Siniscalchi, M.; Sasso, F.C.; Marchese, F.; Cinone, F.; Musacchio, E.; Marfella, M.A.; Ruggiero, L.; Chiorazzo, G.; et al. Effect of moderate red wine intake on cardiac prognosis after recent acute myocardial infarction of subjects with Type 2 diabetes mellitus. Diabet. Med. 2006, 23, 974–981, Erratum in Diabet. Med. 2017, 34, 1488. [Google Scholar] [CrossRef] [PubMed]
- Naissides, M.; Pal, S.; Mamo, J.C.; James, A.P.; Dhaliwal, S. The effect of chronic consumption of red wine polyphenols on vascular function in postmenopausal women. Eur. J. Clin. Nutr. 2006, 60, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Papamichael, C.; Karatzi, K.; Karatzis, E.; Papaioannou, T.G.; Katsichti, P.; Zampelas, A.; Lekakis, J. Combined acute effects of red wine consumption and cigarette smoking on haemodynamics of young smokers. J. Hypertens. 2006, 24, 1287–1292. [Google Scholar] [CrossRef]
- Addolorato, G.; Leggio, L.; Ojetti, V.; Capristo, E.; Gasbarrini, G.; Gasbarrini, A. Effects of short-term moderate alcohol administra-tion on oxidative stress and nutritional status in healthy males. Appetite 2008, 50, 50–56. [Google Scholar] [CrossRef]
- Djurovic, S.; Berge, K.E.; Birkenes, B.; Braaten, Ø.; Retterstøl, L. The effect of red wine on plasma leptin levels and vasoactive fac-tors from adipose tissue: A randomized crossover trial. Alcohol Alcohol. 2007, 42, 525–528. [Google Scholar] [CrossRef]
- Gorelik, S.; Ligumsky, M.; Kohen, R.; Kanner, J. A novel function of red wine polyphenols in humans: Prevention of absorption of cytotoxic lipid peroxidation products. FASEB J. 2007, 22, 41–46. [Google Scholar] [CrossRef]
- Karatzi, K.; Papamichael, C.; Karatzis, E.; Papaioannou, T.G.; Voidonikola, P.T.; Lekakis, J.; Zampelas, A. Acute smoking induces en-dothelial dysfunction in healthy smokers. Is this reversible by red wine’s antioxidant constituents? J. Am. Coll. Nutr. 2007, 26, 10–15. [Google Scholar] [CrossRef]
- Hijmering, M.L.; De Lange, D.W.; Lorsheyd, A.; Kraaijenhagen, R.J.; Van De Wiel, A. Binge drinking causes endothelial dysfunction, which is not prevented by wine polyphenols: A small trial in healthy volunteers. Neth. J. Med. 2007, 65, 29–35. [Google Scholar]
- Micallef, M.; Lexis, L.; Lewandowski, P. Red wine consumption increases antioxidant status and decreases oxidative stress in the circulation of both young and old humans. Nutr. J. 2007, 6, 27. [Google Scholar] [CrossRef]
- Modun, D.; Music, I.; Vukovic, J.; Brizic, I.; Katalinic, V.; Obad, A.; Palada, I.; Dujic, Z.; Boban, M. The increase in human plasma anti-oxidant capacity after red wine consumption is due to both plasma urate and wine polyphenols. Atherosclerosis 2008, 197, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Sacanella, E.; Vázquez-Agell, M.; Mena, M.P.; Antúnez, E.; Fernández-Solá, J.; Nicolás, J.M.; Lamuela-Raventós, R.M.; Ros, E.; Estruch, R. Down-regulation of adhesion molecules and other inflammatory biomarkers after moderate wine consumption in healthy women: A randomized trial. Am. J. Clin. Nutr. 2007, 86, 1463–1469. [Google Scholar] [CrossRef]
- Shai, I.; Wainstein, J.; Harman-Boehm, I.; Raz, I.; Fraser, D.; Rudich, A.; Stampfer, M.J. Glycemic effects of moderate alcohol intake among patients with type 2 diabetes: A multicenter, randomized, clinical intervention trial. Diabetes Care 2007, 30, 3011–3016. [Google Scholar] [CrossRef] [PubMed]
- Spaak, J.; Merlocco, A.C.; Soleas, G.J.; Tomlinson, G.; Morris, B.L.; Picton, P.; Notarius, C.F.; Chan, C.T.; Floras, J.S. Dose-related effects of red wine and alcohol on hemodynamics, sympathetic nerve activity, and arterial diameter. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H605–H612. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Agell, M.; Sacanella, E.; Tobias, E.; Monagas, M.; Antúnez, E.; Zamora-Ros, R.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M.; Fernández-Solá, J.; Nicolás, J.M.; et al. Inflammatory Markers of Atherosclerosis Are Decreased after Moderate Consumption of Cava (Sparkling Wine) in Men with Low Cardiovascular Risk. J. Nutr. 2007, 137, 2279–2284. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.; Woodside, J.V.; Young, I.S.; Sharpe, P.C.; Mercer, C.; Patterson, C.C.; McKinley, M.C.; Kluijtmans, L.A.; Whitehead, A.S.; Evans, A. Alcohol increases homocysteine and reduces B vitamin concentration in healthy male volunteers—A randomized, crossover intervention study. QJM 2008, 101, 881–887. [Google Scholar] [CrossRef]
- Marinaccio, L.; Lanza, G.A.; Niccoli, G.; Fabretti, A.; Lamendola, P.; Barone, L.; Di Monaco, A.; Di Clemente, F.; Crea, F. Effect of Low Doses of Alcohol on the Warm-Up Phenomenon in Patients With Stable Angina Pectoris. Am. J. Cardiol. 2008, 102, 146–149. [Google Scholar] [CrossRef]
- Tousoulis, D.; Ntarladimas, I.; Antoniades, C.; Vasiliadou, C.; Tentolouris, C.; Papageorgiou, N.; Latsios, G.; Stefanadis, C. Acute effects of different alcoholic beverages on vascular endothelium, inflammatory markers and thrombosis fibrinolysis system. Clin. Nutr. 2008, 27, 594–600. [Google Scholar] [CrossRef]
- Estruch, R.; Sacanella, E.; Mota, F.; Chiva-Blanch, G.; Antúnez, E.; Casals, E.; Deulofeu, R.; Rotilio, D.; Andres-Lacueva, C.; Lamuela-Raventos, R.M.; et al. Moderate consumption of red wine, but not gin, decreases erythrocyte superoxide dismutase activity: A randomised cross-over trial. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 46–53. [Google Scholar] [CrossRef]
- Nakamura, T.; Fujiwara, N.; Sugaya, T.; Ueda, Y.; Koide, H. Effect of red wine on urinary protein, 8-hydroxydeoxyguanosine, and liver-type fatty acid–binding protein excretion in patients with diabetic nephropathy. Metabolism 2009, 58, 1185–1190. [Google Scholar] [CrossRef]
- Huang, P.-H.; Chen, Y.-H.; Tsai, H.-Y.; Chen, J.-S.; Wu, T.-C.; Lin, F.-Y.; Sata, M.; Chen, J.-W.; Lin, S.-J. Intake of Red Wine Increases the Number and Functional Capacity of Circulating Endothelial Progenitor Cells by Enhancing Nitric Oxide Bioavailability. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Kaul, S.; Belcik, T.; Kalvaitis, S.; Jayaweera, A.R.; Choi, S.-W.; Wei, K. Effect of modest alcohol consumption over 1-2 weeks on the coronary microcirculation of normal subjects. Eur. J. Echocardiogr. 2010, 11, 683–689. [Google Scholar] [CrossRef]
- Kechagias, S.; Zanjani, S.; Gjellan, S.; Leinhard, O.D.; Kihlberg, J.; Smedby, O.; Johansson, L.; Kullberg, J.; Ahlström, H.; Lindström, T.; et al. Effects of moderate red wine consumption on liver fat and blood lipids: A prospective randomized study. Ann. Med. 2011, 43, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Kiviniemi, T.O.; Saraste, A.; Lehtimäki, T.; Toikka, J.O.; Saraste, M.; Raitakari, O.T.; Hartiala, J.J.; Viikari, J.; Koskenvuo, J.W. Decreased endothelin-1 levels after acute consumption of red wine and de-alcoholized red wine. Atherosclerosis 2010, 211, 283–286. [Google Scholar] [CrossRef]
- Cameli, M.; Ballo, P.; Garzia, A.; Lisi, M.; Bocelli, A.; Mondillo, S. Acute Effects of Low Doses of Ethanol on Left and Right Ventricular Function in Young Healthy Subjects. Alcohol. Clin. Exp. Res. 2011, 35, 1860–1865. [Google Scholar] [CrossRef] [PubMed]
- Chiva-Blanch, G.; Urpi-Sarda, M.; Ros, E.; Arranz, S.; Valderas-Martínez, P.; Casas, R.; Sacanella, E.; Llorach, R.; Lamuela-Raventos, R.M.; Andres-Lacueva, C.; et al. Dealcoholized red wine decreases systolic and diastolic blood pressure and increases plasma nitric oxide: Short communication. Circ. Res. 2012, 111, 1065–1068. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Urpi-Sarda, M.; Ros, E.; Valderas-Martinez, P.; Casas, R.; Arranz, S.; Guillén, M.; Lamuela-Raventós, R.M.; Llorach, R.; Andres-Lacueva, C.; et al. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clin. Nutr. 2013, 32, 200–206. [Google Scholar] [CrossRef]
- Noguer, M.A.; Cerezo, A.B.; Donoso Navarro, E.; Garcia-Parrilla, M.C. Intake of alcohol-free red wine modulates antioxidant enzyme activities in a human intervention study. Pharmacol. Res. 2012, 65, 609–614. [Google Scholar] [CrossRef]
- Queipo-Ortuño, M.I.; Boto-Ordóñez, M.; Murri, M.; Gomez-Zumaquero, J.M.; Clemente-Postigo, M.; Estruch, R.; Cardona Diaz, F.; Andrés-Lacueva, C.; Tinahones, F.J. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochem-ical biomarkers. Am. J. Clin. Nutr. 2012, 95, 1323–1334. [Google Scholar] [CrossRef]
- Schrieks, I.C.; van den Berg, R.; Sierksma, A.; Beulens, J.W.; Vaes, W.H.; Hendriks, H.F. Effect of Red Wine Consumption on Biomarkers of Oxidative Stress. Alcohol Alcohol. 2013, 48, 153–159. [Google Scholar] [CrossRef]
- Barden, A.E.; Croft, K.D.; Beilin, L.J.; Phillips, M.; Ledowski, T.; Puddey, I.B. Acute effects of red wine on cytochrome P450 eicosanoids and blood pressure in men. J. Hypertens. 2013, 31, 2195–2202. [Google Scholar] [CrossRef]
- Banach, J.; Żekanowska, E.; Bujak, R.; Gilewski, W.; Błażejewski, J.; Karasek, D.; Balak, W.; Pietrzak, J.; Sinkiewicz, W. Short-term alcohol consumption may have detrimental effect on fibrinolysis and endothelial function: Preliminary report of prospective randomised study. Kardiol. Polska 2013, 71, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Postigo, M.; Queipo-Ortuño, M.I.; Boto-Ordoñez, M.; Coin-Aragüez, L.; Roca-Rodriguez, M.M.; Delgado-Lista, J.; Cardona, F.; Andres-Lacueva, C.; Tinahones, F.J. Effect of acute and chronic red wine consumption on lipopolysaccharide concentrations. Am. J. Clin. Nutr. 2013, 97, 1053–1061, Erratum in Am. J. Clin. Nutr. 2013, 98, 512. [Google Scholar] [CrossRef] [PubMed]
- Droste, D.W.; Iliescu, C.; Vaillant, M.; Gantenbein, M.; De Bremaeker, N.; Lieunard, C.; Velez, T.; Meyer, M.; Guth, T.; Kuemmerle, A.; et al. A daily glass of red wine associated with lifestyle changes independentlyimproves blood lipids in patients with carotid arteriosclerosis: Results from arandomized controlled trial. Nutr. J. 2013, 12, 147. [Google Scholar] [CrossRef] [PubMed]
- Kasicka-Jonderko, A.; Jonderko, K.; Gajek, E.; Piekielniak, A.; Zawislan, R. Sluggish gallbladder emptying and gastrointestinal transit after intake of commonalcoholic beverages. J. Physiol. Pharmacol. 2014, 65, 55–66. [Google Scholar]
- Droste, D.W.; Iliescu, C.; Vaillant, M.; Gantenbein, M.; De Bremaeker, N.; Lieunard, C.; Velez, T.; Meyer, M.; Guth, T.; Kuemmerle, A.; et al. Advice on Lifestyle Changes (Diet, Red Wine and Physical Activity) Does Not Affect Internal Carotid and Middle Cerebral Artery Blood Flow Velocity in Patients with Carotid Arteriosclerosis in a Randomized Controlled Trial. Cerebrovasc. Dis. 2014, 37, 368–375. [Google Scholar] [CrossRef]
- Muñoz-González, I.; Espinosa-Martos, I.; Rodríguez, J.M.; Jiménez-Girón, A.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. Moderate Consumption of Red Wine Can Modulate Human Intestinal Inflammatory Response. J. Agric. Food Chem. 2014, 62, 10567–10575. [Google Scholar] [CrossRef]
- Fantin, F.; Bulpitt, C.J.; Zamboni, M.; Cheek, E.; Rajkumar, C. Arterial compliance may be reduced by ingestion of red wine. J. Hum. Hypertens. 2015, 30, 68–72. [Google Scholar] [CrossRef]
- Gepner, Y.; Henkin, Y.; Schwarzfuchs, D.; Golan, R.; Durst, R.; Shelef, I.; Harman-Boehm, I.; Spitzen, S.; Witkow, S.; Novack, L.; et al. Differential Effect of Initiating Moderate Red Wine Consumption on 24-h Blood Pressure by Alcohol Dehydrogenase Genotypes: Randomized Trial in Type 2 Diabetes. Am. J. Hypertens. 2015, 29, 476–483. [Google Scholar] [CrossRef]
- Gepner, Y.; Golan, R.; Harman-Boehm, I.; Henkin, Y.; Schwarzfuchs, D.; Shelef, I.; Durst, R.; Kovsan, J.; Bolotin, A.; Leitersdorf, E.; et al. Effects of Initiating Moderate Alcohol Intake on Cardiometabolic Risk in Adults With Type 2 Diabetes: A 2-year randomized, controlled trial. Ann. Intern. Med. 2015, 163, 569–579. [Google Scholar] [CrossRef]
- Moreno-Indias, I.; Sánchez-Alcoholado, L.; Pérez-Martínez, P.; Andrés-Lacueva, C.; Cardona, F.; Tinahones, F.; Queipo-Ortuño, M.I. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct. 2016, 7, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.A.; Burke, V.; Beilin, L.J.; Puddey, I.B. Randomized Controlled Intervention of the Effects of Alcohol on Blood Pressure in Premenopausal Women. Hypertension 2015, 66, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Barroso, E.; Muñoz-González, I.; Jiménez, E.; Bartolomé, B.; Moreno-Arribas, M.V.; Peláez, C.; Del Carmen Martínez-Cuesta, M.; Requena, T. Phylogenetic profile of gut microbiota in healthy adults after moderate intake of red wine. Mol. Nutr. Food Res. 2017, 61, 1600620. [Google Scholar] [CrossRef] [PubMed]
- Golan, R.; Shelef, I.; Shemesh, E.; Henkin, Y.; Schwarzfuchs, D.; Gepner, Y.; Harman-Boehm, I.; Witkow, S.; Friger, M.; Chassidim, Y.; et al. Effects of initiating moderate wine intake on abdominal adipose tissue in adults with type 2 diabetes: A 2-year randomized controlled trial. Public Health Nutr. 2017, 20, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Marhuenda, J.; Medina, S.; Martínez-Hernández, P.; Arina, S.; Zafrilla, P.; Mulero, J.; Genieser, H.G.; Ferreres, F.; Gil-Izquierdo, Á. Mel-atonin and hydroxytyrosol-rich wines influence the generation of DNA oxidation catabolites linked to mutagenesis after the ingestion of three types of wine by healthy volunteers. Food Funct. 2016, 7, 4781–4796. [Google Scholar] [CrossRef]
- Mori, T.A.; Burke, V.; Zilkens, R.R.; Hodgson, J.M.; Beilin, L.J.; Puddey, I.B. The effects of alcohol on ambulatory blood pressure and other cardiovascular risk factors in type 2 diabetes: A randomized intervention. J. Hypertens. 2016, 34, 421–428. [Google Scholar] [CrossRef]
- Xanthopoulou, M.N.; Kalathara, K.; Melachroinou, S.; Arampatzi-Menenakou, K.; Antonopoulou, S.; Yannakoulia, M.; Fragopoulou, E. Wine consumption reduced postprandial platelet sensitivity against platelet activating factor in healthy men. Eur. J. Nutr. 2016, 56, 1485–1492. [Google Scholar] [CrossRef]
- Chiu, H.-F.; Shen, Y.-C.; Huang, T.-Y.; Venkatakrishnan, K.; Wang, C.-K. Cardioprotective Efficacy of Red Wine Extract of Onion in Healthy Hypercholesterolemic Subjects. Phytother. Res. 2016, 30, 380–385. [Google Scholar] [CrossRef]
- Argyrou, C.; Vlachogianni, I.; Stamatakis, G.; Demopoulos, C.A.; Antonopoulou, S.; Fragopoulou, E. Postprandial effects of wine consumption on Platelet Activating Factor metabolic enzymes. Prostaglandins Other Lipid Mediat. 2017, 130, 23–29. [Google Scholar] [CrossRef]
- Barden, A.E.; Chavez, V.; Phillips, M.; Mas, E.; Beilin, L.J.; Croft, K.D.; Mori, T.A.; Puddey, I.B. A Randomized Trial of Effects of Alcohol on Cytochrome P450 Eicosanoids, Mediators of Inflammation Resolution, and Blood Pressure in Men. Alcohol. Clin. Exp. Res. 2017, 41, 1666–1674. [Google Scholar] [CrossRef]
- Taborsky, M.; Ostadal, P.; Adam, T.; Moravec, O.; Gloger, V.; Schee, A.; Skala, T. Red or white wine consumption effect on atherosclerosis in healthy individuals (In Vino Veritas study). Bratisl. Med. J. 2017, 118, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Barden, A.; Shinde, S.; Phillips, M.; Beilin, L.; Mas, E.; Hodgson, J.M.; Puddey, I.; Mori, T.A. The effects of alcohol on plasma lipid mediators of inflammation resolution in patients with Type 2 diabetes mellitus. Prostaglandins Leukot. Essent. Fat. Acids 2018, 133, 29–34. [Google Scholar] [CrossRef]
- Di Renzo, L.; Cioccoloni, G.; Salimei, P.S.; Ceravolo, I.; De Lorenzo, A.; Gratteri, S. Alcoholic Beverage and Meal Choices for the Prevention of Noncommunicable Diseases: A Randomized Nutrigenomic Trial. Oxid. Med. Cell. Longev. 2018, 2018, 5461436. [Google Scholar] [CrossRef] [PubMed]
- Golan, R.; Shai, I.; Gepner, Y.; Harman-Boehm, I.; Schwarzfuchs, D.; Spence, J.D.; Parraga, G.; Buchanan, D.; Witkow, S.; Friger, M.; et al. Effect of wine on carotid atherosclerosis in type 2 diabetes: A 2-year randomized controlled trial. Eur. J. Clin. Nutr. 2018, 72, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Wotherspoon, A.; Elshahat, S.; McAlinden, N.; Dean, K.; Young, I.S.; Sharpe, P.C.; Blankenburg, S.; Patterson, C.C.; McKinley, M.C.; Evans, A.; et al. Effect of Moderate Red Wine versus Vodka Consumption on Inflammatory Markers Related to Cardiovascular Disease Risk: A Randomized Crossover Study. J. Am. Coll. Nutr. 2020, 39, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Roth, I.; Casas, R.; Ribó-Coll, M.; Doménech, M.; Lamuela-Raventós, R.M.; Estruch, R. Acute consumption of Andalusian aged wine and gin decreases the expression of genes related to atherosclerosis in men with high cardiovascular risk: Randomized intervention trial. Clin. Nutr. 2019, 38, 1599–1606. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Argyrou, C.; Detopoulou, M.; Tsitsou, S.; Seremeti, S.; Yannakoulia, M.; Antonopoulou, S.; Kolovou, G.; Kalogeropoulos, P. The effect of moderate wine consumption on cytokine secretion by peripheral blood mononuclear cells: A randomized clinical study in coronary heart disease patients. Cytokine 2021, 146, 155629. [Google Scholar] [CrossRef]
- Briansó-Llort, L.; Simó-Servat, O.; Ramos-Perez, L.; Torres-Torronteras, J.; Hernandez, C.; Simó, R.; Selva, D.M. Effect of Resveratrol Content in Red Wine on Circulating Sex Hormone-Binding Globulin: Lessons from a Pilot Clinical Trial. Mol. Nutr. Food Res. 2022, 66, e2200125. [Google Scholar] [CrossRef]
- Haas, E.A.; Saad, M.J.A.; Santos, A.; Vitulo, N.; Lemos, W.J.F.; Martins, A.M.A.; Picossi, C.R.C.; Favarato, D.; Gaspar, R.S.; Magro, D.O.; et al. A red wine intervention does not modify plasma trimethylamine N-oxide but is associated with broad shifts in the plasma metabolome and gut microbiota composition. Am. J. Clin. Nutr. 2022, 116, 1515–1529. [Google Scholar] [CrossRef]
- Choleva, M.; Argyrou, C.; Detopoulou, M.; Donta, M.-E.; Gerogianni, A.; Moustou, E.; Papaemmanouil, A.; Skitsa, C.; Kolovou, G.; Kalogeropoulos, P.; et al. Effect of Moderate Wine Consumption on Oxidative Stress Markers in Coronary Heart Disease Patients. Nutrients 2022, 14, 1377. [Google Scholar] [CrossRef]
- GBD 2020 Alcohol Collaborators. Population-level risks of alcohol consumption by amount, geography, age, sex, and year: A systematic analysis for the Global Burden of Disease Study 2020. Lancet 2022, 400, 185–235. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.; Guseva, E.; Perrone, M.A.; Müller, A.; Rizzo, G.; Storz, M.A. Changes in Eating Habits and Physical Activity after COVID-19 Pandemic Lockdowns in Italy. Nutrients 2021, 13, 4522. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Giovannini, M.; Mezzadri, M.; Grandi, E.; Borghi, C. The Brisighella Heart Study Group COVID-19-Related Quarantine Effect on Dietary Habits in a Northern Italian Rural Population: Data from the Brisighella Heart Study. Nutrients 2021, 13, 309. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.; Irving, H.; Kanteres, F.; Room, R.; Borges, G.; Cherpitel, C.; Greenfield, T.; Rehm, J. The more you drink, the harder you fall: A systematic review and meta-analysis of how acute alcohol consumption and injury or collision risk increase together. Drug Alcohol Depend. 2010, 110, 108–116. [Google Scholar] [CrossRef]
- Trevejo-Nunez, G.; Kolls, J.K.; de Wit, M. Alcohol Use As a Risk Factor in Infections and Healing: A Clinician’s Perspective. Alcohol Res. 2015, 37, 177–184. [Google Scholar]
- Shorey, R.C.; Stuart, G.L.; McNulty, J.K.; Moore, T.M. Acute alcohol use temporally increases the odds of male perpetrated dating violence: A 90-day diary analysis. Addict. Behav. 2014, 39, 365–368. [Google Scholar] [CrossRef]
- Crawford-Williams, F.; Steen, M.; Esterman, A.; Fielder, A.; Mikocka-Walus, A. “My midwife said that having a glass of red wine was actually better for the baby”: A focus group study of women and their partner’s knowledge and experiences relating to alcohol consumption in pregnancy. BMC Pregnancy Childbirth 2015, 15, 79. [Google Scholar] [CrossRef]
- Mostofsky, E.; Chahal, H.S.; Mukamal, K.J.; Rimm, E.B.; Mittleman, M.A. Alcohol and Immediate Risk of Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis. Circulation 2016, 133, 979–987. [Google Scholar] [CrossRef]
- Bell, S.; Daskalopoulou, M.; Rapsomaniki, E.; George, J.; Britton, A.; Bobak, M.; Casas, J.P.; Dale, C.E.; Denaxas, S.; Shah, A.D.; et al. Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: Population based cohort study using linked health records. BMJ 2017, 356, j909. [Google Scholar] [CrossRef]
- Koppes, L.L.; Dekker, J.M.; Hendriks, H.F.; Bouter, L.M.; Heine, R.J. Moderate alcohol consumption lowers the risk of type 2 diabetes: A meta-analysis of prospective observational studies. Diabetes Care 2005, 28, 719–725. [Google Scholar] [CrossRef]
- Solomon, C.G.; Hu, F.B.; Stampfer, M.J.; Colditz, G.A.; Speizer, F.E.; Rimm, E.B.; Willett, W.C.; Manson, J.E. Moderate alcohol consumption and risk of coronary heart disease among women with type 2 diabetes mellitus. Circulation 2000, 102, 494–499. [Google Scholar] [CrossRef]
- World Cancer Research Fund; American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective; AICR: Washington, DC, USA, 2018; Available online: https://www.wcrf.org/wp-content/uploads/2021/02/Summary-of-Third-Expert-Report-2018.pdf (accessed on 9 October 2022).
- Shield, K.D.; Parry, C.; Rehm, J. Chronic Diseases and Conditions Related to Alcohol Use. Alcohol Res. Curr. Rev. 2013, 35, 155–171. [Google Scholar]
- Anderson, P. The Impact of Alcoholic Beverages on Human Health. Nutrients 2021, 13, 4417. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.F.; Heilig, M.; Perez, A.; Probst, C.; Rehm, J. Alcohol use disorders. Lancet 2019, 394, 781–792. [Google Scholar] [CrossRef]
- Friedmann, P.D. Clinical practice. Alcohol use in adults. N. Engl. J. Med. 2013, 368, 365–373, Erratum in N. Engl. J. Med. 2013, 368, 1661; Erratum in N. Engl. J. Med. 2013, 368, 781. [Google Scholar] [CrossRef] [PubMed]
- Jani, B.D.; McQueenie, R.; Nicholl, B.I.; Field, R.; Hanlon, P.; Gallacher, K.I.; Mair, F.S.; Lewsey, J. Association between patterns of alcohol consumption (beverage type, frequency and consumption with food) and risk of adverse health outcomes: A prospective cohort study. BMC Med. 2021, 19, 8. [Google Scholar] [CrossRef]
- Csengeri, D.; Sprünker, N.-A.; Di Castelnuovo, A.; Niiranen, T.; Vishram-Nielsen, J.K.; Costanzo, S.; Söderberg, S.; Jensen, S.M.; Vartiainen, E.; Donati, M.B.; et al. Alcohol consumption, cardiac biomarkers, and risk of atrial fibrillation and adverse outcomes. Eur. Heart J. 2021, 42, 1170–1177, Erratum in Eur. Heart J. 2021, 42, 2711. [Google Scholar] [CrossRef]
- Tu, S.J.; Gallagher, C.; Elliott, A.D.; Linz, D.; Pitman, B.M.; Hendriks, J.M.L.; Lau, D.H.; Sanders, P.; Wong, C.X. Risk Thresholds for Total and Beverage-Specific Alcohol Consumption and Incident Atrial Fibrillation. JACC: Clin. Electrophysiol. 2021, 7, 1561–1569. [Google Scholar] [CrossRef]
- Mukamal, K.J.; Tolstrup, J.S.; Friberg, J.; Jensen, G.; Grønbaek, M. Alcohol Consumption and Risk of Atrial Fibrillation in Men and Women: The Copenhagen City Heart Study. Circulation 2005, 112, 1736–1742. [Google Scholar] [CrossRef]
- Surma, S.; Lip, G.Y. Alcohol and Atrial Fibrillation. Rev. Cardiovasc. Med. 2023, 24, 73. [Google Scholar] [CrossRef]
- Conen, D.; Tedrow, U.B.; Cook, N.R.; Moorthy, M.V.; Buring, J.E.; Albert, C.M. Alcohol Consumption and Risk of Incident Atrial Fibrillation in Women. JAMA 2008, 300, 2489–2496. [Google Scholar] [CrossRef] [PubMed]
- Calvert, C.M.; Toomey, T.; Jones-Webb, R. Are people aware of the link between alcohol and different types of Cancer? BMC Public Health 2021, 21, 734. [Google Scholar] [CrossRef]
- Krittanawong, C.; Isath, A.; Rosenson, R.S.; Khawaja, M.; Wang, Z.; Fogg, S.E.; Virani, S.S.; Qi, L.; Cao, Y.; Long, M.T.; et al. Alcohol Consumption and Cardiovascular Health. Am. J. Med. 2022, 135, 1213–1230.e3. [Google Scholar] [CrossRef] [PubMed]
- Johansen, D.; Friis, K.; Skovenborg, E.; Grønbaek, M. Food buying habits of people who buy wine or beer: Cross sectional study. BMJ 2006, 332, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.-J.; Tan, L.; Ren, L.; Shao, Y.; Tao, W.; Wang, Y. COVID-19 Risk Appears to Vary Across Different Alcoholic Beverages. Front. Nutr. 2022, 8, 1146. [Google Scholar] [CrossRef]
- Inan-Eroglu, E.; Powell, L.; Hamer, M.; O’Donovan, G.; Duncan, M.J.; Stamatakis, E. Is There a Link between Different Types of Alcoholic Drinks and Obesity? An Analysis of 280,183 UK Biobank Participants. Int. J. Environ. Res. Public Health 2020, 17, 5178. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Ohishi, T.; Fukutomi, R.; Shoji, Y.; Goto, S.; Isemura, M. The Beneficial Effects of Principal Polyphenols from Green Tea, Coffee, Wine, and Curry on Obesity. Molecules 2021, 26, 453. [Google Scholar] [CrossRef]
- Zhang, X.; Molsberry, S.A.; Yeh, T.S.; Cassidy, A.; Schwarzschild, M.A.; Ascherio, A.; Gao, X. Intake of Flavonoids and Flavonoid-Rich Foods and Mortality Risk Among Individuals With Parkinson Disease: A Prospective Cohort Study. Neurology. Neurology 2022, 98, e1064–e1076. [Google Scholar] [CrossRef]
- Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns. Molecules 2021, 26, 4021. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Urpi-Sarda, M.; Llorach, R.; Rotches-Ribalta, M.; Guillén, M.; Casas, R.; Arranz, S.; Valderas-Martinez, P.; Portoles, O.; Corella, D.; et al. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: A randomized clinical trial. Am. J. Clin. Nutr. 2012, 95, 326–334, Erratum in Am. J. Clin. Nutr. 2012, 95, 1506. [Google Scholar] [CrossRef]
- Chudzińska, M.; Wołowiec, Ł.; Banach, J.; Rogowicz, D.; Grześk, G. Alcohol and Cardiovascular Diseases—Do the Consumption Pattern and Dose Make the Difference? J. Cardiovasc. Dev. Dis. 2022, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.L. J-curve revisited: Cardiovascular benefits of moderate alcohol use cannot be dismissed. Med. J. Aust. 2013, 198, 419–422. [Google Scholar] [CrossRef]
- Yoon, S.J.; Jung, J.G.; Lee, S.; Kim, J.S.; Ahn, S.K.; Shin, E.S.; Jang, J.E.; Lim, S.H. The protective effect of alcohol consumption on the incidence of cardiovascular diseases: Is it real? A systematic review and meta-analysis of studies conducted in community settings. BMC Public Health 2020, 20, 90. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef]
- Pintać, D.; Bekvalac, K.; Mimica-Dukić, N.; Rašeta, M.; Anđelić, N.; Lesjak, M.; Orčić, D. Comparison study between popular brands of coffee, tea and red wine regarding polyphenols content and antioxidant activity. Food Chem. Adv. 2022, 1, 100030. [Google Scholar] [CrossRef]
- Lee, K.W.; Kim, Y.J.; Lee, A.H.J.; Lee, C.Y. Cocoa Has More Phenolic Phytochemicals and a Higher Antioxidant Capacity than Teas and Red Wine. J. Agric. Food Chem. 2003, 51, 7292–7295. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Bueno Ottoboni, A.M.M.; Fiorini, A.M.R.; Guiguer, É.L.; Nicolau, C.C.T.; Goulart, R.A.; Flato, U.A.P. Grape juice or wine: Which is the best option? Crit. Rev. Food Sci. Nutr. 2020, 60, 3876–3889. [Google Scholar] [CrossRef]
- Marhuenda, J.; Villaño, D.; Arcusa, R.; Zafrilla, P. Melatonin in Wine and Beer: Beneficial Effects. Molecules 2021, 26, 343. [Google Scholar] [CrossRef] [PubMed]
- Lamont, K.T.; Somers, S.; Lacerda, L.; Opie, L.H.; Lecour, S. Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection. J. Pineal Res. 2011, 50, 374–380. [Google Scholar] [CrossRef]
- Lombardo, M.; Aulisa, G.; Marcon, D.; Rizzo, G. The Influence of Animal- or Plant-Based Diets on Blood and Urine Trimethylamine-N-Oxide (TMAO) Levels in Humans. Curr. Nutr. Rep. 2022, 11, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.; Aulisa, G.; Marcon, D.; Rizzo, G.; Tarsisano, M.G.; Di Renzo, L.; Federici, M.; Caprio, M.; De Lorenzo, A. Association of Urinary and Plasma Levels of Trimethylamine N-Oxide (TMAO) with Foods. Nutrients 2021, 13, 1426. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Zhang, H.; Xiang, Q.; Shen, L.; Guo, X.; Zhai, C.; Hu, H. Targeting Trimethylamine N-Oxide: A New Therapeutic Strategy for Alleviating Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 864600. [Google Scholar] [CrossRef] [PubMed]
Ref. | Year | Author | Antioxidant Effects | Indicators of Total Antioxidant Capacity | Endogenous Oxidation Biomarkers | Nucleic Acid Oxidation | Lipid Peroxidation | Other Antioxidant Effects | Type of Study | Type of Wine | Subjects | Patients | Age Range | Total Number of Participants | Wine Consumption Duration (Days) | Control | Dosage (mL/Day) | Funding |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[14] | 2001 | Ceriello A | ↑ ç | ↑ (TRAP) ç | ↓ ox-LDL ç | RCT | RW | M + F | T2DM | 50–60 | 20 | 7 | W | 300 | Not declared | |||
[15] | 2001 | de Vries JH | = | = & | RCT | RW | M | H | 20–35 | 12 | 4 | 50 g fried onions or 375 mL of black tea | 750 | Netherlands Heart Foundation | ||||
[17] | 2002 | Mansvelt EP | ↑ (TAS) | RCT | RW | M + F | H | 25–56 | 13 | 28 | WW | ET: 23 g for F, 32 g for M | Not declared | |||||
[29] | 2005 | Guarda E | ↑ | ↑ (FRAP), ↑ (TAS) | ↓ 8-OH-dGuo | RCT | RW | M + F | CVD patients | 55–62 | 20 | 60 | W | 250 | Not declared | |||
[32] | 2005 | Pignatelli P | ↑ | ↓ PGF2 | ↓ Isoprostanes £, ↓ PKC-mediated NADPH oxidase activation | RCT | RW | M + F | H | 35–50 | 20 | 15 | WW, W | 300 | Not declared | |||
[34] | 2005 | Tsang C | ↑ | ↓ (TBARS), = ox-LDL | RCT | RW | M + F | H | 23–50 | 20 | 14 | W | 375 | Not declared | ||||
[39] | 2006 | Blackhurst DM | = | = (ORAC, LOOH) | = (TBARS) | ↑ Catechins | RCT | RW | M + F | H | 25–45 | 15 | acute | W | M: 230, F: 160 | Wine Industry of South Africa | ||
[45] | 2007 | Addolorato G | ↓ | ↑ MDA, ↓GSH | ↑ | ↓ Vitamin E | RCT | RW | M + F | H | 20–30 | 30 | 30 | beer, spirit | 400; 11% ET | Association for Research in Medicine’ Foundation Bologna-Rome(Italy). | ||
[50] | 2007 | Micallef M | ↑ | ↑ (TAS) | ↓ MDA, ↓ GSH | ↓ | RCT CO | RW | M + F | H | 18–30 | 20 | 14 | W | 400 | Not declared | ||
[51] | 2007 | Modun D | ↑ | ↑ (FRAP) $ | ↑ plasma urate $ | RCT CO | RW | M | H | 25–40 | 36 | acute | DRW, PSRW, W, ET | 195–280 | Ministry of Science, Education and Sports of the Republic of Croatia | |||
[59] | 2009 | Estruch R | ↑ | ↓ MDA, ↓SOD | ↓ ox-LDL | ↑ Vitamin E | RCT CO | RW | M | H | 30–50 | 40 | 28 | gin | 30 g/ET | Institutional | ||
[60] | 2009 | Nakamura T | ↑ ° | ↓ 8-OHdG | ↓ L-FABP | RCT | RW, WW | M + F | T2DM with nephropathy | 45–65 | 20 | 6 months | W | 118 | Not declared | |||
[68] | 2012 | Noguer MA | ↑ § | ↑ (FRAP) § | =GSH/ GSSG | RCT CO | DRW | M + F | H | 25–40 | 8 | 14 | LPD | 300 (+low phenolic diet) | Institutional | |||
[70] | 2012 | Schrieks IC | ↑ = (TEAC) | ↑ (TAS) | ↑ 8-iso-PGF2α # | ↓ NF-κB activation 8-iso-PGF2α. | RCT CO | RW | M | Overweight | 35–68 | 19 | 30 | DRW | 450 (41.4 g ET) | Dutch Foundation for Alcohol Research | ||
[85] | 2016 | Marhuenda J | ↑ | ↓ 8-OH-dGuo ↓ 8-OH-GUa ↓ 8-NO2-Guo | ↑ Homovanillic acid | RCT CO | RW | F | H | 18–27 | 9/9 | 37 | RW (3 types) | 200 | Institutional | |||
[88] | 2016 | Chiu HF | = (TEAC) | ↓ (TBARS) | RCT | RW | M + F | H, Hypercholesterolaemic | ? | 21 | 10 weeks | red onion extract | 250 | Taiwan Tobacco and Liquor Corporation (TTL) | ||||
[90] | 2017 | Barden AE | ↓ | ↑ F 2 -isoprostanes | RCT CO | RW / DRW | M | H | 20–65 | 22 | 28 | W | 375 | Institutional | ||||
[93] | 2018 | Di Renzo L | ↑ | ↑ (SOD2) | = | ↑ Antioxidant gene expression | RCT | RW/WW | M + F | H | 18–65 | 54 | acute | VDK, MeDM, HFM | 30 g ET | The Ministry of Agriculture, Italy | ||
[100] | 2002 | Choleva M | =(SOD2) | ↓ 8-OH-dGuo ↓ 8-OH-Gua ↓ 8-NO2-Guo | = (TBARS) | RCT | RW | M + F | CAD | 50–75 | 64 | 2 months | ET, W | 200 | Graduate Program of the Department of Nutrition and Dietetics, Harokopio University and the Hellenic Atherosclerosis Society. |
Ref. | Year | Author | IPC | Coronary | LV | RV | Carotid Plaque | Cerebral Blood Flow Velocity | Genes | Type of Study | Type of Wine | Subjects | Patients | Age Range | Total Number of Participants | Wine Consumption Duration (Days) | Control | Dosage (mL/Day) | Funding |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[57] | 2008 | Marinaccio L | = | RCT | RW | M + F | Stable CVD | 50–70 | 45 | Acute | Gin, W | 180 (18.9 g ET) | Not declared | ||||||
[62] | 2010 | Kaul S | = | RCT | RW, WW | M + F | H | 30–50 | 12/11/11/11 | 14 | WW, W, VDK | 355; 59 mL VDK | National Institutes of Health | ||||||
[64] | 2010 | Kiviniemi TO | = | RCT CO | RW, DRW | M | H | 20–25 | 22 | Acute | DRW | 120 | Institutional | ||||||
[65] | 2011 | Cameli M | ↓ | ↑ | RCT CO | RW | M + F | H | 20–30 | 64 | 1 | Fruit juice | 337.6 ± 68.9 (0.5 g ET/kg) | Not declared | |||||
[76] | 2014 | Droste DW | = | RCT | RW | M + F | Carotid atherosclerosis | 55–75 | 56/52 | 20 weeks | Med diet, no alcohol | F 100; M 200 | Centre de Recherche Public-Santé | ||||||
[94] | 2018 | Golan R | = §, ↑ ^ | RCT (post hoc analysis) | RW and WW | M + F | TD2M | 50–70 | 117/57 | 2 years | W | 150: dry RW, (16.9 g ET), dry WW (15.8 g ET) or W | Institutional | ||||||
[96] | 2018 | Roth I | ↓ | RCT CO | RW | M | High CVD risk | 55–80 | 41 | acute | Gin | AAW or gin (0.5 g ET/kg) | Fundación dela Investigación sobre Vinos y Nutricia |
Ref. | Year | Author | Thrombosis/Fibrinolysis System | Thrombotic Activation/Plasma Viscosity | Fibrinogen | PAF | PAI-1 § | vWF ^ | Bleeding Time | D-Dimer | Type of Study | Type of Wine | Subjects | Patients | Age Range | Total Number of Participants | Wine Consumption Duration (Days) | Control | Dosage (mL) | Funding |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[14] | 2001 | Ceriello A | ↓ | ↓ | RCT | RW | M + F | T2DM | 50–60 | 20 | 7 | W | 300 | Not declared | ||||||
[17] | 2002 | Mansvelt EP | ↓ | = | ↓ | RCT | RW | M + F | H | 25–56 | 13 | 28 | WW | ET: 23 g for F, 32 g for M | Not declared | |||||
[20] | 2003 | Mezzano D | ↑ | = | = | RCT | RW | M | H | 19–25 | 21 | 90 | MD | 240 (23.2 g ET) | University of Chile | |||||
[21] | 2003 | Pignatelli P | ↓ | RCT | RW, WW | M + F | H | 35–50 | 24 | 14 | WW | 300 | Not declared | |||||||
[23] | 2004 | Kikura M | = | = | RCT CO | RW, WW | M + F | H | 30–45 | 24 | acute | CO | 300–350 | Not declared | ||||||
[41] | 2006 | Jensen T | ↓ | ↓ | RCT CO | RW | M + F | H | 35–70 | 92 | 21 | W | 150 (15 g ET) | Not declared | ||||||
[58] | 2008 | Tousoulis D | = | ↓ | RCT | RW, WW | M + F | H | 22–27 | 83 | 1 | Beer (633 mL), whisky (79 mL) or W (250 mL) | 264 | University of Athens | ||||||
[62] | 2010 | Kau S | = | = | RCT | RW, WW | M + F | H | 30–50 | 12/11/11/11 | 14 | WW, W, VDK | 355; 59 VDK | National Institutes of Health, Bethesda, MD, USA | ||||||
[72] | 2013 | Banach J | ↑ | RCT | RW, WW | M | H | 20–30 | 12/11/11/12/11 | 5 | WW, ET 12%, blackcurrant juice, W | 300 | Collegium Medicum of The Nicolaus Copernicus University | |||||||
[87] | 2016 | Xanthopoulou MN | ↑ | = | RCT CO | RW vs. WW vs. ET | M | H | 25–39 | 10 | 1 | W | 4 mL/kg BW | Institutional | ||||||
[89] | 2017 | Argyrou C | ↓ | RCT | RW | M | H | 25–39 | 10 | 1 (×4) | WW, ET, W | 4 mL/kg BW | Graduate Program of the Department of Nutrition and Dietetics, Harokopio University. |
Ref. | Year | Author | Vasodilation | Arterial Stiffness | MSNA | FMD | FBF | Type of Study | Type of Wine | Subjects | Patients | Age Range | Total Number of Participants | Wine Consumption Duration (Days) | Control | Dosage (mL/Day) | Funding |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[10] | 2000 | Agewall S | ↑ | RCT CO | RW | M + F | H | 27–35 | 12 | Acute | DRW | 250 | Swedish Medical Research Council, Swedish Medical Society | ||||
[25] | 2004 | Whelan AP | ↑ | RCT | RW, WW | M | CVD | 30–70 | 14 | Acute | CO | 4 | Southland Medical Foundation, Invercargill, New Zealand. | ||||
[27] | 2005 | Coimbra SR | ↑ | ↑ | RCT | RW | M + F | Hypercholesterolaemia | 40–60 | 16 | 14 (×2) | Purple grape juice | 250 | FAPESP and Fundação Zerbini. | |||
[29] | 2005 | Guarda E | = | RCT | RW | M + F | CVD | 55–62 | 20 | 60 | W | 250 | Not declared | ||||
[36] | 2005 | Zilkens RR | = | RCT CO | RW | M | H | 20–65 | 24 | 28 | DRW, beer | 375 | National Health and Medical Research Council of Australia | ||||
[40] | 2006 | Boban M | ↑ § | = | RCT CO | RW | M | H | 25–40 | 9 | Acute | DRW, PSRW, 14% vol/vol ET, W | 3 × BW | Not declared | |||
[43] | 2006 | Naissides M | ↑ * | RCT | RW | F | Hypercholesterolaemic postmenopausal | 50–70 | 45 | 42 | DRW, W | 400 (40 g ET) | National Heart Foundation of Australia | ||||
[48] | 2007 | Karatzi K | ↑ | RCT CO | RW | M | Heavy smokers | 22–24 and 66–75 | 12 | Acute | DRW, SMOKING | 250 | Korea Research Foundation and USDA/ARS Western Human Nutrition Research Center at the University of California at Davis. | ||||
[49] | 2007 | Hijmering ML | ↓ | RCT | RW | M + F | H | 25–45 | 20 | Acute | Low-polyphenolic alcoholic fruit-flavoured drink | ≃330 | Not declared | ||||
[54] | 2007 | Spaak J | ↑ ^ | ↑ ^ | RCT | RW | M + F | H | 24–47 | 13 | 14 (×3) | ET, W | 155 (12% ET) | Heart and Stroke Foundation of Ontario and the Canadian Institutes of Health Research | |||
[58] | 2008 | Tousoulis D | ↑ ç | RCT | RW, WW | M + F | H | 22–27 | 83 | Acute | Beer (633 mL), whisky (79 mL) or W (250 mL) | 264 | University of Athens. | ||||
[61] | 2010 | Huang PH | ↑ | RCT | RW | M + F | H | 30–40 | 80 | 21 | W, beer, VDK | 100 | Institutional | ||||
[71] | 2013 | Barden AE | ↓ | RCT | RW | M | T2DM | 20–65 | 25 | Acute | DRW or W | 375 (41 g ET) | Not declared | ||||
[72] | 2013 | Banach J | ↓ £ | RCT | RW, WW | M | H | 20–30 | 12/11/11/12/11 | 5 | WW, ET 12%, blackcurrant juice, W | 300 | Collegium Medicum of The Nicolaus Copernicus University | ||||
[90] | 2017 | Barden AE | ↓ £ | RCT CO | RW, DRW | M | H | 20–65 | 22 | 28 | W | 375 | Institutional |
Ref. | Year | Author | SBP | DBP | SBP and DBP | Type of Study | Type of Wine | Subjects | Patients | Age Range | Total Number of Participants | Wine Consumption Duration (Days) | Control | Dosage (mL/Day) | Funding |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[18] | 2002 | Foppa M | ↓ | RCT CO | RW | M + F | HPN, obese | 35–65 | 13 | Acute | W | 250 (23 g ET) | Not declared | ||
[31] | 2005 | Karatzi KN | ↓ | RCT CO | RW | M + F | CVD | 40–60 | 15 | Acute | DRW | 250 | Not declared | ||
[36] | 2005 | Zilkens RR | ↑ | RCT CO | RW | M | H | 20–65 | 24 | 29 | DRW, beer | 375 | National Health and Medical Research Council of Australia | ||
[44] | 2006 | Papamichael C | ↓ | RCT CO | RW | M + F | H, smokers | 25–35 | 20 | Acute | DRW | 250 | Not declared | ||
[54] | 2007 | Spaak J | = | RCT | RW | M + F | H | 24–47 | 13 | Three occasions in 2 weeks | ET, W | 155 (18.6 g ET); 310 for the second dose | Heart and Stroke Foundation of Ontario (T4938, T4050) and the Canadian Institutes of Health Research | ||
[67] | 2012 | Chiva-Blanch G | ↓ | ↓ | ↓ | RCT CO | RW, DRW | M | high CVD risk | 55–75 | 67 | 28 | DRW, gin | 30 g ET/d | Not declared |
[69] | 2012 | Queipo-Ortuño MI | ↓ | RCT CO | RW | M | H | 45–50 | 10 | 20 | DRW, gin | 272 | Institutional | ||
[71] | 2013 | Barden AE | ↑ | RCT | RW | M | T2DM | 20–65 | 25 | Acute | DRW or W | 375 (41 g ET) | Not declared | ||
[78] | 2015 | Fantin F | ↑ | = | RCT | RW | M + F | H | 25–53 | 18 | 1 | / | 300 (12% ET) | Not declared | |
[79] | 2015 | Gepner Y | = | RCT | RW vs. W | M + F | T2DM | 50–65 | 27/27 | 6 months | W | 150 (16.9 g ET) | European Association for the Study of Diabetes | ||
[82] | 2015 | Mori TA | ↑ § | RCT CO | RW vs. DRW | F | H | 25–49 | 24 | 28 × 3 | High RW vs. low RW vs. DRW | 200–300 (146–218 g ET/wk) | National Heart Foundation of Australia. | ||
[86] | 2016 | Mori TA | = ° | RCT CO | RW vs. DRW vs. W | M + F | T2DM | 49–66 | 24 | 28 (per period) | RW vs. DRW vs. W | F: 230 (~24 g ET); M: 300 (~31 g ET) | Australian Health Management Group Medical Research Fund | ||
[90] | 2017 | Barden AE | ↑ | RCT CO | RW/DRW | M | H | 20–65 | 22 | 28 | W | 375 | Institutional |
Ref. | Author | IL-6 | TNF-α | IFN-γ | hsCRP | Fibrinogen | Other Immune Parameters | Type of Study | Type of Wine | Subjects | Patients | Age Range | Total Number of Participants | Wine Consumption Duration (Days) | Control | Dosage (mL/Day) | Funding |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[19] | Watzl B | = | = & | RCT | RW/ DRW | M | H | 28–32 | 6 | 1 | Red grape juice | 500 mL of red wine (12% ET), a 12% ET dilution, DRW, and red grape juice | Federal Ministry of Consumer Protection, Food, and Agriculture, Germany. | ||||
[22] | Watzl B | = | = & | RCT | RW | M | H | 25–35 | 24 | 14 | ET 12% | 500 (12% ET), 12% ET, DRW, and red grape juice, | Not declared | ||||
[26] | Williams MJ | ↑ | = £ | RCT CO | RW and WW | M | CVD | 48–70 | 13 | Acute | CO | 4 mL/kg | Not declared | ||||
[28] | Avellone G | ↓ | = ) | RCT CO | RW | M + F | H | 35–65 | 48 | 28 (×2) | Usual wine intake | 250 | Sicilian Agricultural Development Bureau, Palermo | ||||
[33] | Retterstol L | ↓ ° | RCT CO | RW | M + F | H | 40–60 | 87 | 21 | W | 150 (15 g ET) | Sigurd K. Thoresen Foundation | |||||
[52] | Sacanella E | ↓ ^ | RCT CO | RW, WW | F | H | 20–50 | 35 | 28 (×2) | W | 200 (20 g ET) | Not declared | |||||
[55] | Vázquez-Agell M | ↓ | ↓ | ↓ § | RCT CO | Cava (sparkling wine) | M | H | 25–43 | 20 | 28 | Gin | 300 (30 g ET) | Spanish Ministries of Education and Science and Health | |||
[58] | Tousoulis D | = | = | = | = | RCT | RW, WW | M + F | H | 22–27 | 83 | Acute | Beer (633 mL), whisky (79 mL) or W (250 mL) | 264 | University of Athens. | ||
[66] | Chiva-Blanch G | = | ↓ ç, = / | RCT CO | RW, DRW | M | High CVD risk | 55–75 | 67 | 28 | DRW, gin | 30 g ET/d | Not declared | ||||
[72] | Banach J | = | ↓ ç,↓ / | RCT | RW, WW | M | H | 20–30 | 12/11/11/12/11 | 5 | WW, ET 12%, blackcurrant juice, W | 300 | Collegium Medicum of The Nicolaus Copernicus University | ||||
[77] | Muñoz-González I | ↓ * | ↓ * | ↓ * | RCT | RW | M + F | H | 20–65 | 34/8 | 28 | W | 250 1758 mg of gallic acid equivalents/L and 12% ET w | Institutional | |||
[90] | Barden AE | ↓ < | RCT CO | RW/ DRW | M | H | 20–65 | 22 | 28 | W | 375 | Institutional | |||||
[92] | Barden AE | = > | RCT CO | RW/ DRW | M + F | T2DM | 40–70 | 24 | 28 (×3) | No T2DM | W: 230 mL/day (~24 g ET/day)/M: 300 mL/day (~31 g ET/day) | Institutional | |||||
[95] | Wotherspoon A | = | = | = $ | RCT CO | RW | M | H | 21–70 | 77 | 28 | Vodka | 240 | The Partridge Foundation | |||
[97] | Fragopolou E | ↓ | RW | M + F | CAD | 50–75 | 64 | 2 months | ET, W | 200 | Graduate Program of the Department of Nutrition and Dietetics, Harokopio University and the Hellenic Atherosclerosis Society. |
Ref. | Year | Author | Cholesterol Efflux | RCTP | CM | Lipoprotein(a) | TG | TC | LDL | HDL-C | LDL/HDL | F2-Isoprostanes | Lipid Peroxidation | HCY | Type of Study | Type of Wine | Subjects | Patients | Age Range | Total Number of Participants | Wine Consumption Duration (Days) | Control | Dosage (mL/Day) | Funding |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[11] | 2000 | Caccetta RA | = | = | RCT | RW | M | H | 40–63 | 12 | Acute | PSRW, DRW or W | 5/kg BW | The National Heart Foundation of Australia and the Medical Research Foundation of Royal Perth Hospital | ||||||||||
[12] | 2000 | Senault C | ↓ * | = | ↑ * | = | ↑ / ↓ § | RCT CO | RW | M | H | 18–35 | 56 | 14 | DRW, ET | 30 g of ET | ONIVINS and INSERM, Paris, France. | |||||||
[13] | 2001 | Caccetta R | = | = | = | = | = / ↓ § | RCT | RW | M | H, smokers | 25–71 | 18 | 14 | WW, DRW | 375 | Australian Grape Wine Research and Development Corporation and the Medical Research Foundation of Royal Perth Hospital. | |||||||
[16] | 2001 | van der Gaag MS | ↓ | = | = | = | ↑ | = | RCT CO | RW | M + F | H | 44–59 | 11 | 21 | Wine, beer, spirits, W | Four glasses (40 g ET) | Not declared | ||||||
[24] | 2004 | Naissides M | = § | ↑ / = § | RCT CO | RW | F | Dyslipidaemia postmenopausal | 50–70 | 17 | Acute (3 times in 2 weeks) | DRW, W | 400 | National Heart Foundation of Australia | ||||||||||
[27] | 2005 | Coimbra SR | = | = | = | = | RCT | RW | M + F | Hypercholesterolaemia | 40–60 | 16 | 14 (×2) | Purple grape juice | 250 | FAPESP and Fundação Zerbini. | ||||||||
[28] | 2005 | Avellone G | = | = | = | = | ↑ | ↓ | RCT CO | RW | M + F | H | 35–65 | 48 | 4 + 4 weeks | Usual wine intake | 250 | Sicilian Agricultural Development Bureau | ||||||
[30] | 2005 | Hansen AS | ↓ | RCT | RW | M + F | H | 38–74 | 69 | 28 | W + red grape extract, W + placebo | M: 300 mL/day, 38.3 g ET/day, F: 200 mL/day, 25.5 g ET/day | Not declared | |||||||||||
[34] | 2005 | Tsang C | = | = | ↓ * | ↑ * | RCT | RW | M + F | H | 23–50 | 20 | 14 | W | 375 | Not declared | ||||||||
[35] | 2005 | Ziegler S | = | RCT | RW | M + F | H | 22–32 | 60 | Acute | 2 RW, 1 WW | 300 | Jubiläumsfonds der Österreichischen National bank | |||||||||||
[37] | 2006 | Banini AE | = | = | = | = | RCT | RW | M + F | T2DM, H | 45–75 | 29 | 28 | MJ, MW, or Dz-W | 150 | North Carolina Agricultural Research Service of the College of Agriculture and Life Sciences | ||||||||
[39] | 2006 | Blackhurst DM | = | RCT | RW | M + F | H | 25–45 | 15 | Acute | W | M: 230/F: 160 | Winetech (Wine Industry Network of Expertise and Technology), Stellenbosch, South Africa | |||||||||||
[47] | 2007 | Gorelik | ↓ ° | RCT CO | RW | Not declared | H | 25–35 | 10 | Acute | # | 200 | BARD, The United States-Israel Agricultural Research and Development Fund. | |||||||||||
[56] | 2008 | Gibson A | ↑ | RCT CO | RW | M | H | 21–70 | 78 | 14 | Vodka | 240 mL RW or 80 mL vodka (24 g ET) | The Pantridge Foundation; National Institutes of Health | |||||||||||
[59] | 2009 | Estruch | ↓ | = | = | = | ↑ | ↓ | RCT CO | RW | M | H | 30–50 | 40 | 28 | Gin | 30 g ET | Institutional | ||||||
[63] | 2011 | Kechagias | = | = | ↓ | = | RCT CO | RW | M + F | H | 25–45 | 52 | 3 months | W | W: 150 (16 g ET) M: 300 ML (33 g ET) | Institutional | ||||||||
[67] | 2012 | Chiva-Blanch | ↓ / ↑ § | = | = | ↓ ^ | ↑ ^ | ↓ | RCT CO | RW, DRW | M | High CVD risk | 55–75 | 67 | 28 | DRW, gin | 30 g ET | Institutional | ||||||
[74] | 2013 | Droste | = | = | = | = | = | ↓ | RCT | RW | M + F | Carotid atherosclerosis | 55–75 | 56/52 | 20 weeks | Med diet, no alcohol | F 100; M 200 | Centre de Recherche Public-Santé | ||||||
[86] | 2016 | Mori | = | ↑ | = | = | RCT CO | RW vs. DRW vs. W | M + F | T2DM | 49–66 | 24 | 28 | RW vs. DRW vs. water | W: 230 (~24 g ET); M: RW 300 (~31 g ET) | Australian Health Management Group Medical Research Fund | ||||||||
[88] | 2016 | Chiu | = | = | ↓ ç | = | RCT | RW | M + F | H, Hypercholesterolaemic | ? | 21 | 10 weeks | RO extract | 250 | Taiwan Tobacco and Liquor Corporation (TTL) | ||||||||
[91] | 2017 | Taborsky | = | = | ↓ [ | = | RCT multi-centre | RW vs. WW | M + F | H | 30–60 | 74/72 | 1 year | WW | 200–300 | Vino e Cuore, Ltd. | ||||||||
[98] | 2022 | Briansó-Llort L | ↓ $ | = | = | RCT CO | RW | M + F | H | 30–50 | 26 | 28 | RW | 187 | Instituto de Salud Carlos III | |||||||||
[100] | 2002 | Choleva M | = | = | = | = | RCT | RW | M + F | CAD | 50–75 | 64 | 2 months | ET, W | 200 | Graduate Program of the Department of Nutrition and Dietetics, Harokopio University and the Hellenic Atherosclerosis Society. |
Ref. | Year | Author | BMI | WC/Visceral Fat | Leptin | Adiponectin | Type of Study | Type of Wine | Subjects | Patients | Age Range | Total Number of Participants | Wine Consumption Duration (Days) | Control | Dosage (mL/Day) | Funding |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[37] | 2006 | Banini AE | = | = | RCT | RW | M + F | T2DM, H (control) | 45–75 | 29 | 28 | MJ, MW, or Dz-W | 150 | College of Agriculture and Life Sciences | ||
[38] | 2006 | Beulens JW | = * | RCT CO | RW | M + F | H, WC > 94cm | 35–70 | 34 | 28 | DRW | 450 (40 g ETl) | Dutch Foundation for Alcohol Research | |||
[46] | 2007 | Djurovic S | ↑ § | RCT CO | RW | M + F | H | 40–60 | 87 | 21 | W | 150 (15 g ET) | Not declared | |||
[84] | 2016 | Golan R | = | = | RCT | RW | M + F | T2DM | 40–75 | 27/21 | 2 years | W | 150 | Institutional | ||
[95] | 2020 | Wotherspoon A | ↑ | = | RCT CO | RW | M | H | 21–70 | 77 | 28 | W | 240 | The Partridge Foundation | ||
[98] | 2022 | Briansó-Llort L | = | RCT CO | RW ^ | M + F | H | 30–50 | 26 | 28 | RW ^ | 187 | Instituto de Salud Carlos III |
Ref. | Year | Author | Fasting Glucose | 2 h Post-Meal Glucose | Fasting Insulin | Glycated Haemoglobin | Glucose/Insulin Ratio | HOMA-IR | ISI | Diabetic Nephropathy | SPMs | Type of Study | Type of Wine | Subjects | Patients | Age Range | Total Number of Participants | Wine Consumption Duration (Days) | Control | Dosage (mL/Day) | Funding/Conflict of Interest |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[14] | 2001 | Ceriello A | ↑ | ↑ | RCT | RW | M + F | T2DM | 50–60 | 20 | 7 | W | 300 | Not declared | |||||||
[27] | 2005 | Coimbra SR | = | RCT | RW | M + F | Hypercholesterolaemia | 40–60 | 16 | 14 (×2) | Purple grape juice | 250 | FAPESP and Fundação Zerbini. | ||||||||
[37] | 2006 | Banini AE | = | ↓ § | = | ↑ | RCT | RW | M + F | T2DM, H (control) | 45–75 | 29 | 28 | MJ, MW, or Dz-W | 150 | North Carolina Agricultural Research Service of the College of Agriculture and Life Sciences | |||||
[38] | 2006 | Beulens JW | = | RCT CO | RW | M + F | H, WC > 94 cm | 35–70 | 34 | 28 | DRW | 450 (40 g ET) | Dutch Foundation for Alcohol Research. | ||||||||
[42] | 2006 | Marfella R | = | ↓ | = | ↓ | RCT | RW | M + F | T2DM, MI | 30–40 | 131 | 1 year | W | 118 (11 g ET) | Not declared | |||||
[53] | 2007 | Shai I | ↓ ° | = | = | Multi-centre RCT | RW or WW | M + F | T2DM | 41–74 | 91 | 12 weeks | Non-alcoholic beer | 150 (13 g ET) | Not declared | ||||||
[60] | 2009 | Nakamura T | = | ↓ urinary protein ↓ urinary L-FABP | RCT | RW, WW | M + F | T2DM with nephropathy | 45–65 | 20 | 6 months | W | 118 | Not declared | |||||||
[67] | 2012 | Chiva-Blanch G | = | ↓T2DM (=H) | ↓ T2DM (=H) | RCT CO | RW, DRW | M | High CVD risk | 55–75 | 67 | 28 | DRW, gin | 30 g ET | Institutional | ||||||
[80] | 2015 | Gepner Y | = | = | RCT | RW vs. WW vs. W | M + F | T2DM | 50–70 | 224 | 2 years | RW vs. WW vs. W | 150 | European Association for the Study of Diabetes | |||||||
[81] | 2015 | Moreno-Indias I | ↓ | RCT CO | RW and DRW | M | Obes, MeTs | 45–50 | 10/10 | 30 + 30 | H | RW or DRW: 272 | Institutional | ||||||||
[92] | 2018 | Barden A | = | RCT CO | RW/DRW | M + F | T2DM | 40–70 | 24 | 12 weeks (4 × 3) | No T2DM | W: 230 (~24 g ET/M: 300 (~31 g ET | Institutional | ||||||||
[98] | 2022 | Briansó-Llort L | = | RCT CO | RW | M + F | H | 30–50 | 26 | 28 | RW | 187 | Instituto de Salud Carlos III | ||||||||
[100] | 2002 | Choleva M | = | = | = | RCT | RW | M + F | CAD | 50–75 | 64 | 2 months | ET, W | 200 | Graduate Program of the Department of Nutrition and Dietetics, Harokopio University and the Hellenic Atherosclerosis Society. |
Ref. | Year | Author | Effects on the Composition of the Gut Microbiota | Steatosis | TMAO | Orocaecal Transit Time of Food | Meal-Induced Gallbladder Emptying | Gastric Emptying | Type of Study | Type of Wine | Subjects | Patients | Age Range | Total Number of Participants | Wine Consumption Duration (Days) | Control | Dosage (mL/Day) | Funding |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[63] | 2011 | Kechagias S | = * | RCT CO | RW | M + F | H | 25–45 | 52 | 3 months | W | W: 150 (16 g ET) M: 300 ML (33 g ET) | Institutional | |||||
[69] | 2012 | Queipo-Ortuño MI | ↑ § | RCT CO | RW | M | H | 45–50 | 10 | 20 | DRW, gin | 272 | Institutional | |||||
[73] | 2013 | Clemente-Postigo M | ↑ | RCT CO | RW | M | H | 45–50 | 10 | 20 | DRW, gin | 272 | Institutional | |||||
[75] | 2013 | Kasicka-Jonderko A | = | ↓ | ↓ | RCT | RW | M + F | H | 21–32 | 12 | 1 | Beer, whiskey, W | 200 (13.7 g ET) | Medical University of Silesia | |||
[81] | 2015 | Moreno-Indias I | ↑ | RCT CO | RW and DRW | M | Obese, MeTs | 45–50 | 10/10 | 30 + 30 | H | RW or DRW: 272 | Institutional | |||||
[83] | 2016 | Barroso E | = | RCT | RW | M + F | H | ? | 15/26 | 28 | W | 200 | Institutional | |||||
[99] | 2022 | Haas EA | ↑ | = | RCT CO | RW | M | CAD | 55–65 | 42 | 21 | W | 250 (5 d/wk) | São Paulo Research Foundation and others |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardo, M.; Feraco, A.; Camajani, E.; Caprio, M.; Armani, A. Health Effects of Red Wine Consumption: A Narrative Review of an Issue That Still Deserves Debate. Nutrients 2023, 15, 1921. https://doi.org/10.3390/nu15081921
Lombardo M, Feraco A, Camajani E, Caprio M, Armani A. Health Effects of Red Wine Consumption: A Narrative Review of an Issue That Still Deserves Debate. Nutrients. 2023; 15(8):1921. https://doi.org/10.3390/nu15081921
Chicago/Turabian StyleLombardo, Mauro, Alessandra Feraco, Elisabetta Camajani, Massimiliano Caprio, and Andrea Armani. 2023. "Health Effects of Red Wine Consumption: A Narrative Review of an Issue That Still Deserves Debate" Nutrients 15, no. 8: 1921. https://doi.org/10.3390/nu15081921
APA StyleLombardo, M., Feraco, A., Camajani, E., Caprio, M., & Armani, A. (2023). Health Effects of Red Wine Consumption: A Narrative Review of an Issue That Still Deserves Debate. Nutrients, 15(8), 1921. https://doi.org/10.3390/nu15081921