Correlation of Plasma 25(OH)D3 and Vitamin D Binding Protein Levels with COVID-19 Severity and Outcome in Hospitalized Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
Criteria for Determining Disease Severity
2.2. Study Outcomes
2.3. Data Collection
Laboratory Tests
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of the Sample
3.2. 25(OH)D3, DBP, and Inflammatory Markers
3.3. Clinical Outcomes of Cases
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Benetti, E.; Tita, R.; Spiga, O.; Ciolfi, A.; Birolo, G.; Bruselles, A.; Doddato, G.; Giliberti, A.; Marconi, C.; Musacchia, F.; et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur. J. Hum. Genet. 2020, 28, 1602–1614. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhong, X.; Wang, Y.; Zeng, X.; Luo, T.; Liu, Q. Clinical determinants of the severity of COVID-19: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0250602. [Google Scholar] [CrossRef] [PubMed]
- Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef]
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, S.; Rhodes, J.M.; Taylor, J.M.; Milan, A.M.; Lane, S.; Hewison, M.; Chun, R.F.; Jorgensen, A.; Richardson, P.; Nitchingham, D.; et al. Vitamin D, vitamin D—Binding protein, free vitamin D and COVID-19 mortality in hospitalized patients. Am. J. Clin. Nutr. 2022, 115, 1367–1377. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Di Lecce, V.; Quaranta, V.N.; Zito, A.; Buonamico, E.; Capozza, E.; Palumbo, A.; Di Gioia, G.; Valerio, V.N.; Resta, O. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J. Endocrinol. Investig. 2021, 44, 765–771. [Google Scholar] [CrossRef]
- Delli Muti, N.; Finocchi, F.; Tossetta, G.; Salvio, G.; Cutini, M.; Marzioni, D.; Balercia, G. Could SARS-CoV-2 infection affect male fertility and sexuality? Apmis 2022, 130, 243–252. [Google Scholar] [CrossRef]
- Liptak, P.; Nosakova, L.; Rosolanka, R.; Skladany, L.; Banovcin, P. Acute-on-chronic liver failure in patients with severe acute respiratory syndrome coronavirus 2 infection. World J. Hepatol. 2023, 15, 41–51. [Google Scholar] [CrossRef]
- Tossetta, G.; Fantone, S.; Delli Muti, N.; Balercia, G.; Ciavattini, A.; Giannubilo, S.R.; Marzioni, D. Preeclampsia and severe acute respiratory syndrome coronavirus 2 infection: A systematic review. J. Hypertens. 2022, 40, 1629–1638. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Perl, D.P.; Steiner, J.; Pasternack, N.; Li, W.; Maric, D.; Safavi, F.; Horkayne-Szakaly, I.; Jones, R.; Stram, M.N.; et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain 2022, 145, 2555–2568. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M. Clinical features of cytokine storm syndrome. In Cytokine Storm Syndrome; Cron, R.Q., Behrens, E.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 31–42. [Google Scholar]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; Benoit, S.W.; Vikse, J.; Berger, B.A.; Pulvino, C.; Hoehn, J.; Rose, J.; Santos de Oliveira, M.H.; Lippi, G.; Benoit, J.L. The anti-inflammatory cytokine response characterized by elevated interleukin-10 is a stronger predictor of severe disease and poor outcomes than the pro-inflammatory cytokine response in coronavirus disease 2019 (COVID-19). Clin. Chem. Lab. Med. 2021, 59, 599–607. [Google Scholar] [CrossRef]
- Frazier, W.J.; Hall, M.W. Immunoparalysis and adverse outcomes from critical illness. Pediatr. Clin. N. Am. 2008, 55, 647–668, xi. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Nutrition, immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3, 74–92. [Google Scholar] [CrossRef]
- Iddir, M.; Brito, A.; Dingeo, G.; Del Campo, S.S.F.; Samouda, H.; La Frano, M.R.; Bohn, T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020, 12, 1562. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef] [Green Version]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Jordan, T.; Siuka, D.; Rotovnik, N.K.; Pfeifer, M. COVID-19 and Vitamin D—A Systematic Review. Zdr. Varst. 2022, 61, 124–132. [Google Scholar] [CrossRef]
- Bouillon, R.; Schuit, F.; Antonio, L.; Rastinejad, F. Vitamin D Binding Protein: A Historic Overview. Front. Endocrinol. 2020, 10, 910. [Google Scholar] [CrossRef] [PubMed]
- Chishimba, L.; Thickett, D.R.; Stockley, R.A.; Wood, A.M. The vitamin D axis in the lung: A key role for vitamin D-binding protein. Thorax 2010, 65, 456–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speeckaert, M.; Huang, G.; Delanghe, J.R.; Taes, Y.E. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin. Chim. Acta Int. J. Clin. Chem. 2006, 372, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Delanghe, J.R.; Speeckaert, R.; Speeckaert, M.M. Behind the scenes of vitamin D binding protein: More than vitamin D binding. Best. Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Speeckaert, M.M.; Delanghe, J.R. Association between low vitamin D and COVID-19: Don’t forget the vitamin D binding protein. Aging Clin. Exp. Res. 2020, 32, 1207–1208. [Google Scholar] [CrossRef]
- Kew, R.R. The Vitamin D Binding Protein and Inflammatory Injury: A Mediator or Sentinel of Tissue Damage? Front. Endocrinol. 2019, 10, 470. [Google Scholar] [CrossRef]
- Waldron, J.L.; Ashby, H.L.; Cornes, M.P.; Bechervaise, J.; Razavi, C.; Thomas, O.L.; Chugh, S.; Deshpande, S.; Ford, C.; Gama, R. Vitamin D: A negative acute phase reactant. J. Clin. Pathol. 2013, 66, 620–622. [Google Scholar] [CrossRef]
- Bushnaq, T.; Algethami, F.; Qadhi, A.; Mustafa, R.; Ghafouri, K.; Azhar, W.; Malki, A.A. The Impact of Vitamin D Status on COVID-19 Severity among Hospitalized Patients in the Western Region of Saudi Arabia: A Retrospective Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 1901. [Google Scholar] [CrossRef]
- Alguwaihes, A.M.; Sabico, S.; Hasanato, R.; Al-Sofiani, M.E.; Megdad, M.; Albader, S.S.; Alsari, M.H.; Alelayan, A.; Alyusuf, E.Y.; Alzahrani, S.H.; et al. Severe vitamin D deficiency is not related to SARS-CoV-2 infection but may increase mortality risk in hospitalized adults: A retrospective case-control study in an Arab Gulf country. Aging Clin. Exp. Res. 2021, 33, 1415–1422. [Google Scholar] [CrossRef]
- AlKhafaji, D.; Al Argan, R.; Albaker, W.; Al Elq, A.; Al-Hariri, M.; AlSaid, A.; Alwaheed, A.; Alqatari, S.; Alzaki, A.; Alwarthan, S.; et al. The Impact of Vitamin D Level on the Severity and Outcome of Hospitalized Patients with COVID-19 Disease. Int. J. Gen. Med. 2022, 15, 343–352. [Google Scholar] [CrossRef]
- AlSafar, H.; Grant, W.B.; Hijazi, R.; Uddin, M.; Alkaabi, N.; Tay, G.; Mahboub, B.; Al Anouti, F. COVID-19 Disease Severity and Death in Relation to Vitamin D Status among SARS-CoV-2-Positive UAE Residents. Nutrients 2021, 13, 1714. [Google Scholar] [CrossRef] [PubMed]
- Litchford, M.D. Clinical: Biochemical, physical, and functional assessment. In Krause’s Food and the Nutrition Care Process; Mahan, L.K., Escott-Stump, S., Raymond, J.L., Eds.; Elsevier: St. Louis, MO, USA, 2014; pp. 98–120. [Google Scholar]
- Tsiaras, W.G.; Weinstock, M.A. Factors influencing vitamin D status. Acta Derm. Venereol. 2011, 91, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Merzon, E.; Tworowski, D.; Gorohovski, A.; Vinker, S.; Cohen, A.G.; Green, I.; Frenkel-Morgenstern, M. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study. FEBS J. 2020, 287, 3693–3702. [Google Scholar] [CrossRef] [PubMed]
- Gallelli, L.; Mannino, G.; Luciani, F.; de Sire, A.; Mancuso, E.; Gangemi, P.; Cosco, L.; Monea, G.; Averta, C.; Minchella, P.; et al. Vitamin D Serum Levels in Subjects Tested for SARS-CoV-2: What Are the Differences among Acute, Healed, and Negative COVID-19 Patients? A Multicenter Real-Practice Study. Nutrients 2021, 13, 3932. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.N.; Raju, M.N.P.; da Graca, B.; Wang, D.; Mohamed, N.A.; Mutnal, M.B.; Rao, A.; Bennett, M.; Gokingco, M.; Pham, H.; et al. 25-hydroxyvitamin D is a predictor of COVID-19 severity of hospitalized patients. PLoS ONE 2022, 17, e0268038. [Google Scholar] [CrossRef]
- Orchard, L.; Baldry, M.; Nasim-Mohi, M.; Monck, C.; Saeed, K.; Grocott, M.P.W.; Ahilanandan, D. Vitamin-D levels and intensive care unit outcomes of a cohort of critically ill COVID-19 patients. Clin. Chem. Lab. Med. 2021, 59, 1155–1163. [Google Scholar] [CrossRef]
- Bychinin, M.V.; Klypa, T.V.; Mandel, I.A.; Andreichenko, S.A.; Baklaushev, V.P.; Yusubalieva, G.M.; Kolyshkina, N.A.; Troitsky, A.V. Low Circulating Vitamin D in Intensive Care Unit-Admitted COVID-19 Patients as a Predictor of Negative Outcomes. J. Nutr. 2021, 151, 2199–2205. [Google Scholar] [CrossRef]
- Bikle, D.D.; Schwartz, J. Vitamin D Binding Protein, Total and Free Vitamin D Levels in Different Physiological and Pathophysiological Conditions. Front. Endocrinol. 2019, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Christopher, K.B. Vitamin D and critical illness outcomes. Curr. Opin. Crit. Care 2016, 22, 332–338. [Google Scholar] [CrossRef]
- Ingels, C.; Vanhorebeek, I.; Van Cromphaut, S.; Wouters, P.J.; Derese, I.; Dehouwer, A.; Møller, H.J.; Hansen, T.K.; Billen, J.; Mathieu, C.; et al. Effect of Intravenous 25OHD Supplementation on Bone Turnover and Inflammation in Prolonged Critically Ill Patients. Horm. Metab. Res. 2020, 52, 168–178. [Google Scholar] [CrossRef]
- Schiødt, F.V. Gc-globulin in liver disease. Dan. Med. Bull. 2008, 55, 131–146. [Google Scholar] [PubMed]
- Kim, W.R.; Flamm, S.L.; Di Bisceglie, A.M.; Bodenheimer, H.C. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 2008, 47, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Meier, U.; Gressner, O.; Lammert, F.; Gressner, A.M. Gc-globulin: Roles in response to injury. Clin. Chem. 2006, 52, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batur, L.K.; Hekim, N. The role of DBP gene polymorphisms in the prevalence of new coronavirus disease 2019 infection and mortality rate. J. Med. Virol. 2020, 93, 1409–1413. [Google Scholar] [CrossRef]
Characteristics | Total (n = 167) | Non-Critical (n = 86) | Critical (n = 81) | p Value |
---|---|---|---|---|
Age, years—Mean ± SD | 59.54 ± 14.84 | 57.58 ± 13.90 | 62.62 ± 15.9 | 0.031 |
Age ≥ 65 years | 63 (37.7) | 25 (29.1) | 38 (46.9) | 0.017 |
Females | 84 (50.3) | 46 (53.5) | 38 (46.9) | 0.396 |
Males | 83 (49.7) | 40 (46.5) | 43 (53.1) | |
Weight, kg—Mean ± SD | 82.66 ± 19.6 | 82.11 ± 18.51 | 83.36 ± 20.5 | 0.678 |
BMI, kg/m2—Mean ± SD | 30.87 ± 7.17 | 30.46 ± 0.67 | 31.31 ± 8.08 | 0.447 |
Vital signs upon admission—Mean ± SD | ||||
Systolic BP, mm Hg | 124.59 ± 16.4 | 125.14.45 | 123.65 ± 18.5 | 0.431 |
Diastolic BP, mm Hg | 68.11 ± 9.43 | 69.26 ± 9.20 | 66.75 ± 9.38 | 0.084 |
Temperature, °C | 36.99 ± 0.52 | 37.04 ± 0.57 | 36.94 ± 0.45 | 0.218 |
Respiratory rate, BPM | 25.28 ± 6.23 | 21.54 ± 2.73 | 29.44 ± 6.46 | <0.001 |
O2 saturation, % | 93.29 ± 4.35 | 95.05 ± 1.93 | 91.21 ± 2.56 | <0.001 |
Comorbidities | ||||
Any comorbidity | 150 (89.8) | 77 (89.5) | 73 (90.1) | 0.900 |
Diabetes mellitus | 91 (54.5) | 43 (50.0) | 48 (59.3) | 0.230 |
Hypertension | 86 (51.5) | 44 (51.2) | 42 (51.9) | 0.929 |
Obesity | 81 (48.5) | 46 (53.5) | 35 (43.2) | 0.184 |
Chronic kidney disease | 8 (4.8) | 4 (4.7) | 4 (4.9) | 0.931 |
Cardiovascular disease | 25 (15.0) | 6 (7.0) | 19 (23.5) | 0.003 |
Previous cardiovascular disease | 17 (10.2) | 7 (8.1) | 10 (12.3) | 0.369 |
Respiratory illnesses | 32 (19.2) | 14 (16.3) | 18 (22.2) | 0.329 |
Liver diseases | 6 (3.6) | 2 (2.3) | 4 (4.9) | 0.365 |
Nervous system diseases | 8 (4.8) | 3 (3.5) | 5 (6.2) | 0.417 |
Variable | Total (n = 167) | Non-Critical (n = 86) | Critical (n = 81) | p Value |
---|---|---|---|---|
WBC count, x 109/L | 8.11 ± 3.93 | 6.04 ± 2.50 | 9.39 ± 4.32 | <0.001 |
Hgb, g/L | 130.80 ± 20.61 | 131.83 ± 16.37 | 128.88 ± 24.93 | 0.366 |
HCT, % | 39.35 ± 4.54 | 39.04 ± 4.76 | 38.96 ± 5.93 | 0.921 |
Platelets, x 109/L | 246.73 ± 104.29 | 217.39 ± 83.55 | 265.43 ± 113.76 | 0.002 |
ALT 1, unit/L | 50.86 ± 33.6 | 49.19 ± 30.22 | 52.61 ± 36.93 | 0.720 |
AST 1, unit/L | 65.12 ± 42.12 | 57.85 ± 35.48 | 72.76 ± 47.13 | 0.011 |
Bilirubin total 1, umol/L | 8.44 ± 4.08 | 8.19 ± 3.69 | 8.71 ± 4.45 | 0.204 |
Albumin, g/L | 27.94 ± 4.33 | 30.07 ± 4.31 | 26.60 ± 3.86 | <0.001 |
Creatinine 1, mcmol/L | 90 ± 46.94 | 84.38 ± 40.57 | 97.53 ± 52.34 | 0.033 |
Sodium, mmol/L | 136.91 ± 4.04 | 135.86 ±4.16 | 137.32 ± 4.69 | 0.035 |
Potassium, mmol/L | 4.38 ± 0.68 | 4.22 ± 0.62 | 4.66 ± 0.88 | <0.001 |
RBG, mmol/L | 9.57 ± 5.18 | 8.74 ± 4.77 | 10.18 ± 5.32 | 0.067 |
D-dimer, mcg/mL—Median (IQR) | 1.11 (1) | 0.95 (1) | 1.29 (1) | <0.001 |
APTT, seconds | 39.54 ± 9 12.09 | 39.09 ± 9.94 | 40.89 ± 11.83 | 0.309 |
INR, seconds | 1.08 ± 9 0.74 | 0.97 ± 0.18 | 1.12 ± 0.71 | 0.073 |
PT, seconds | 15.02 ± 9.35 | 13.61 ± 2.44 | 15.56 ± 9.1 | 0.077 |
Variable | Total (n = 167) | Non-Critical (n = 86) | Critical (n = 81) | p Value |
---|---|---|---|---|
25(OH)D3, nmol/L | 9.08 (2.72) | 9.83 (3.03) | 8.38 (2.33) | <0.001 |
DBP, ng/mL | 1204.84 (427.52) | 1153.35 (418.46) | 1262.18 (463.66) | 0.001 |
IL-6, pg/mL | 24.63 (4.3) | 23.93 (2.75) | 26.80 (7.57) | <0.001 |
IL-8, pg/mL | 71.01 (153.59) | 32.47 (92.15) | 124.55 (245.89) | <0.001 |
IL-10, pg/mL | 266.23 (456.53) | 206.76 (458.82) | 248.76 (479.08) | 0.674 |
TNF-α, pg/mL | 131.17 (227.25) | 124.92 (171.26) | 151.88 (418.06) | 0.125 |
IL-10/TNF-α | 1.73 (2.96) | 1.85 (2.85) | 1.53 (3.05) | 0.315 |
IL-6/IL-10 | 0.1334 (0.23) | 0.12 (0.21) | 0.134 (0.24) | 0.353 |
TNF-α/IL-10 | 0.61 (1.16) | 0.78 (1.37) | 0.76 (2.06) | 0.220 |
CRP, mg/L | 103.5 (110.6) | 88.95 (112.5) | 113.0 (120.13) | 0.057 |
Outcome | Total (n = 167) | Non-Critical (n = 86) | Critical (n = 81) | p Value |
---|---|---|---|---|
Hospital LoS, days | 12.57 ± 12.8 | 5.95 ± 2.76 | 24.29 ± 15.1 | <0.001 |
ICU LoS, days | - | - | 11.85 ± 7.89 | |
Mortality—N (%) | 34 (20.4%) | 1 (1.2%) | 33 (40.7%) | <0.001 |
Length of hospital stay until mortality, days | - | - | 28.03 ± 22.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabdullatif, W.; Almnaizel, A.; Alhijji, A.; Alshathri, A.; Albarrag, A.; Bindayel, I. Correlation of Plasma 25(OH)D3 and Vitamin D Binding Protein Levels with COVID-19 Severity and Outcome in Hospitalized Patients. Nutrients 2023, 15, 1818. https://doi.org/10.3390/nu15081818
Alabdullatif W, Almnaizel A, Alhijji A, Alshathri A, Albarrag A, Bindayel I. Correlation of Plasma 25(OH)D3 and Vitamin D Binding Protein Levels with COVID-19 Severity and Outcome in Hospitalized Patients. Nutrients. 2023; 15(8):1818. https://doi.org/10.3390/nu15081818
Chicago/Turabian StyleAlabdullatif, Wajude, Ahmad Almnaizel, Ali Alhijji, Aldanah Alshathri, Ahmed Albarrag, and Iman Bindayel. 2023. "Correlation of Plasma 25(OH)D3 and Vitamin D Binding Protein Levels with COVID-19 Severity and Outcome in Hospitalized Patients" Nutrients 15, no. 8: 1818. https://doi.org/10.3390/nu15081818
APA StyleAlabdullatif, W., Almnaizel, A., Alhijji, A., Alshathri, A., Albarrag, A., & Bindayel, I. (2023). Correlation of Plasma 25(OH)D3 and Vitamin D Binding Protein Levels with COVID-19 Severity and Outcome in Hospitalized Patients. Nutrients, 15(8), 1818. https://doi.org/10.3390/nu15081818