Association between Dietary Acid Load and Hyperuricemia in Chinese Adults: Analysis of the China Health and Nutrition Survey (2009)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Subjects
2.2. Dietary Data, PRAL and NEAP Scores
2.3. Definition of Hyperuricemia
2.4. Other Variables
2.5. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. Association between DAL and Hyperuricemia
3.2.1. PRAL and Hyperuricemia
3.2.2. NEAP and Hyperuricemia
3.2.3. Association between DAL and Hyperuricemia after Gender and Age Stratification
3.3. Restricted Cubic Spline (RCS) Analysis of DAL and Risk of Hyperuricemia
3.4. Association between Dietary Intakes and Hyperuricemia
3.5. Interaction Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuo, C.F.; Grainge, M.J.; Zhang, W.; Doherty, M. Global epidemiology of gout: Prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 2015, 11, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Park, S.; Yon, D.K.; Lee, S.W.; Tizaoui, K.; Koyanagi, A.; Jacob, L.; Kostev, K.; Dragioti, E.; Radua, J.; et al. Global burden of gout in 1990–2019: A systematic analysis of the Global Burden of Disease Study 2019. Eur. J. Clin. Investig. 2022, 53, e13937. [Google Scholar] [CrossRef] [PubMed]
- Punzi, L.; Scanu, A.; Galozzi, P.; Luisetto, R.; Spinella, P.; Scirè, C.A.; Oliviero, F. One year in review 2020: Gout. Clin. Exp. Rheumatol. 2020, 38, 807–821. [Google Scholar] [PubMed]
- Cicero, A.F.; Rosticci, M.; Fogacci, F.; Grandi, E.; D’Addato, S.; Borghi, C. High serum uric acid is associated to poorly controlled blood pressure and higher arterial stiffness in hypertensive subjects. Eur. J. Intern. Med. 2017, 37, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Huang, J.; Wu, S.; Ji, Q.; Guo, X.; Huang, Y. The Association between the Serum Uric Acid Level and Hypertension in Middle-Aged and Elderly Adults. Cardiovasc. Ther. 2021, 2021, 4626062. [Google Scholar] [CrossRef]
- Maloberti, A.; Biolcati, M.; Ruzzenenti, G.; Giani, V.; Leidi, F.; Monticelli, M.; Algeri, M.; Scarpellini, S.; Nava, S.; Soriano, F.; et al. The Role of Uric Acid in Acute and Chronic Coronary Syndromes. J. Clin. Med. 2021, 10, 4750. [Google Scholar] [CrossRef]
- Muiesan, M.L.; Salvetti, M.; Virdis, A.; Masi, S.; Casiglia, E.; Tikhonoff, V.; Barbagallo, C.M.; Bombelli, M.; Cicero, A.F.G.; Cirillo, M.; et al. Serum uric acid, predicts heart failure in a large Italian cohort: Search for a cut-off value the URic acid Right for heArt Health study. J. Hypertens. 2021, 39, 62–69. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, R.; Li, H.; Guo, J. Serum uric acid and incident atrial fibrillation: A systematic review and dose-response meta-analysis. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1774–1782. [Google Scholar] [CrossRef]
- Ben-Dov, I.Z.; Kark, J.D. Serum uric acid is a GFR-independent long-term predictor of acute and chronic renal insufficiency: The Jerusalem Lipid Research Clinic cohort study. Nephrol. Dial. Transplant. 2011, 26, 2558–2566. [Google Scholar] [CrossRef] [Green Version]
- Barman, Z.; Hasan, M.; Miah, R.; Mou, A.D.; Hafsa, J.M.; Trisha, A.D.; Mahmud, F.; Ali, N. Association between hyperuricemia and chronic kidney disease: A cross-sectional study in Bangladeshi adults. BMC Endocr. Disord. 2023, 23, 45. [Google Scholar] [CrossRef]
- Katsiki, N.; Dimitriadis, G.D.; Mikhailidis, D.P. Serum Uric Acid and Diabetes: From Pathophysiology to Cardiovascular Disease. Curr. Pharm. Des. 2021, 27, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Nejatinamini, S.; Ataie-Jafari, A.; Qorbani, M.; Nikoohemat, S.; Kelishadi, R.; Asayesh, H.; Hosseini, S. Association between serum uric acid level and metabolic syndrome components. J. Diabetes Metab. Disord. 2015, 14, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanellis, J.; Kang, D.H. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. Semin. Nephrol. 2005, 25, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Waheed, Y.; Yang, F.; Sun, D. Role of asymptomatic hyperuricemia in the progression of chronic kidney disease and cardiovascular disease. Korean J. Intern. Med. 2021, 36, 1281–1293. [Google Scholar] [CrossRef]
- Doherty, M.; Jansen, T.L.; Nuki, G.; Pascual, E.; Perez-Ruiz, F.; Punzi, L.; So, A.K.; Bardin, T. Gout: Why is this curable disease so seldom cured? Ann. Rheum. Dis. 2012, 71, 1765–1770. [Google Scholar] [CrossRef]
- Long, T.; Liu, L. Research Progress on the Relationship between Dietary Patterns and Hyperuricemia. Appl. Bionics Biomech. 2022, 2022, 5658423. [Google Scholar] [CrossRef]
- Safiri, S.; Kolahi, A.A.; Cross, M.; Carson-Chahhoud, K.; Hoy, D.; Almasi-Hashiani, A.; Sepidarkish, M.; Ashrafi-Asgarabad, A.; Moradi-Lakeh, M.; Mansournia, M.A.; et al. Prevalence, Incidence, and Years Lived with Disability due to Gout and Its Attributable Risk Factors for 195 Countries and Territories 1990–2017: A Systematic Analysis of the Global Burden of Disease Study 2017. Arthritis Rheumatol. 2020, 72, 1916–1927. [Google Scholar] [CrossRef]
- Xia, Y.; Wu, Q.; Wang, H.; Zhang, S.; Jiang, Y.; Gong, T.; Xu, X.; Chang, Q.; Niu, K.; Zhao, Y. Global, regional and national burden of gout, 1990–2017: A systematic analysis of the Global Burden of Disease Study. Rheumatology 2020, 59, 1529–1538. [Google Scholar] [CrossRef]
- Ishikawa, T.; Aw, W.; Kaneko, K. Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk. Pharmaceuticals 2013, 6, 1347–1360. [Google Scholar] [CrossRef]
- Ragab, G.; Elshahaly, M.; Bardin, T. Gout: An old disease in new perspective—A review. J. Adv. Res. 2017, 8, 495–511. [Google Scholar] [CrossRef]
- Quade, B.N.; Parker, M.D.; Occhipinti, R. The therapeutic importance of acid-base balance. Biochem. Pharmacol. 2021, 183, 114278. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, L.A.; Todd, K.M.; Morris, R.C., Jr.; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 1998, 68, 576–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, J.M.; Sergi, D.; Colombari, S.; Capatti, E.; Situlin, R.; Biolo, G.; Di Girolamo, F.G.; Lazzer, S.; Šimunič, B.; Pišot, R.; et al. Dietary Acid Load but Not Mediterranean Diet Adherence Score Is Associated with Metabolic and Cardiovascular Health State: A Population Observational Study From Northern Italy. Front. Nutr. 2022, 9, 828587. [Google Scholar] [CrossRef] [PubMed]
- Saito, J.; Matsuzawa, Y.; Ito, H.; Omura, M.; Ito, Y.; Yoshimura, K.; Yajima, Y.; Kino, T.; Nishikawa, T. The alkalizer citrate reduces serum uric Acid levels and improves renal function in hyperuricemic patients treated with the xanthine oxidase inhibitor allopurinol. Endocr. Res. 2010, 35, 145–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanbara, A.; Miura, Y.; Hyogo, H.; Chayama, K.; Seyama, I. Effect of urine pH changed by dietary intervention on uric acid clearance mechanism of pH-dependent excretion of urinary uric acid. Nutr. J. 2012, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.; Lee, K.W. Dietary Acid Load Is Positively Associated with the Incidence of Hyperuricemia in Middle-Aged and Older Korean Adults: Findings from the Korean Genome and Epidemiology Study. Int. J. Environ. Res. Public Health 2021, 18, 260. [Google Scholar] [CrossRef]
- Shao, S.S.; Lin, C.Z.; Zhu, Y.F.; Chen, C.; Wu, Q.J.; Chen, R.R. Higher dietary acid load is associated with hyperuricemia in Chinese adults: A case-control study. BMC Endocr. Disord. 2022, 22, 286. [Google Scholar] [CrossRef]
- Remer, T.; Dimitriou, T.; Manz, F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am. J. Clin. Nutr. 2003, 77, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Osuna-Padilla, I.A.; Leal-Escobar, G.; Garza-García, C.A.; Rodríguez-Castellanos, F.E. Dietary acid load: Mechanisms and evidence of its health repercussions. Nefrología 2019, 39, 343–354. [Google Scholar] [CrossRef]
- Remer, T.; Manz, F. Potential renal acid load of foods and its influence on urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Passey, C. Reducing the Dietary Acid Load: How a More Alkaline Diet Benefits Patients with Chronic Kidney Disease. J. Ren. Nutr. 2017, 27, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeva, M.M.; Souto, G. Diet-induced metabolic acidosis. Clin. Nutr. 2011, 30, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Lingala, B.; Mithal, A. Gout and hyperuricaemia in the USA: Prevalence and trends. Rheumatology 2019, 58, 2177–2180. [Google Scholar] [CrossRef]
- Roman, Y.M. The Daniel K. Inouye College of Pharmacy Scripts: Perspectives on the Epidemiology of Gout and Hyperuricemia. Hawai’i J. Med. Public Health 2019, 78, 71–76. [Google Scholar]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Su, C.; Wang, H.; Wang, Z.; Wang, Y.; Zhang, B. Secular Trends in Energy and Macronutrient Intakes and Distribution among Adult Females (1991–2015): Results from the China Health and Nutrition Survey. Nutrients 2018, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Bardin, T.; Richette, P. Definition of hyperuricemia and gouty conditions. Curr. Opin. Rheumatol. 2014, 26, 186–191. [Google Scholar] [CrossRef]
- Chinese expert consensus on the treatment of hyperuricemia and gout. China Endocrinol. Metab. 2013, 29, 913–920. [CrossRef]
- Inker, L.A.; Astor, B.C.; Fox, C.H.; Isakova, T.; Lash, J.P.; Peralta, C.A.; Kurella Tamura, M.; Feldman, H.I. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. 2014, 63, 713–735. [Google Scholar] [CrossRef] [Green Version]
- Esche, J.; Krupp, D.; Mensink, G.B.M.; Remer, T. Dietary Potential Renal Acid Load Is Positively Associated with Serum Uric Acid and Odds of Hyperuricemia in the German Adult Population. J. Nutr. 2018, 148, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Esche, J.; Krupp, D.; Mensink, G.B.; Remer, T. Estimates of renal net acid excretion and their relationships with serum uric acid and hyperuricemia in a representative German population sample. Eur. J. Clin. Nutr. 2020, 74, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Kanbara, A.; Hakoda, M.; Seyama, I. Urine alkalization facilitates uric acid excretion. Nutr. J. 2010, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokose, C.; McCormick, N.; Choi, H.K. Dietary and Lifestyle-Centered Approach in Gout Care and Prevention. Curr. Rheumatol. Rep. 2021, 23, 51. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, L.A.; Kim, S.C. Gout: A review of nonmodifiable and modifiable risk factors. Rheum. Dis. Clin. N. Am. 2014, 40, 581–604. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, S.; Xu, W.; Zhou, A.; Li, H.; Zhang, R.; Liu, Y.; Yang, Y.; Jia, H. Association of dietary patterns and hyperuricemia: A cross-sectional study of the Yi ethnic group in China. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Yu, K.; Li, C. Dietary factors and risk of gout and hyperuricemia: A meta-analysis and systematic review. Asia Pac. J. Clin. Nutr. 2018, 27, 1344–1356. [Google Scholar] [CrossRef]
- Kaneko, K.; Aoyagi, Y.; Fukuuchi, T.; Inazawa, K.; Yamaoka, N. Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia. Biol. Pharm. Bull. 2014, 37, 709–721. [Google Scholar] [CrossRef] [Green Version]
- Cupisti, A.; D’Alessandro, C.; Gesualdo, L.; Cosola, C.; Gallieni, M.; Egidi, M.F.; Fusaro, M. Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake. Nutrients 2017, 9, 444. [Google Scholar] [CrossRef] [Green Version]
- Ryu, K.A.; Kang, H.H.; Kim, S.Y.; Yoo, M.K.; Kim, J.S.; Lee, C.H.; Wie, G.A. Comparison of nutrient intake and diet quality between hyperuricemia subjects and controls in Korea. Clin. Nutr. Res. 2014, 3, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.Z.; Flickinger, B.D.; Williamson-Hughes, P.S.; Empie, M.W. Lack of association between dietary fructose and hyperuricemia risk in adults. Nutr. Metab. 2010, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- de Jonge, E.A.L.; Koromani, F.; Hofman, A.; Uitterlinden, A.G.; Franco, O.H.; Rivadeneira, F.; Kiefte-de Jong, J.C. Dietary acid load, trabecular bone integrity, and mineral density in an ageing population: The Rotterdam study. Osteoporos. Int. 2017, 28, 2357–2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scialla, J.J.; Anderson, C.A. Dietary acid load: A novel nutritional target in chronic kidney disease? Adv. Chronic Kidney Dis. 2013, 20, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Overall (n = 7497) | Hyperuricemia (n = 1172) | Non-Hyperuricemia (n = 6775) | p-Value |
---|---|---|---|---|
Age (years) | 50.7 (15.0) | 53.4 (15.1) | 50.2 (14.9) | <0.0001 |
Gender | ||||
Male | 3732 (47%) | 708 (60.4%) | 3024 (44.6%) | <0.0001 |
Female | 4215 (53%) | 464 (39.6%) | 3751 (55.4%) | |
PRAL 1 (mEq/d) | 21.9 (20.3) | 25.3 (22) | 21.5 (19.9) | <0.0001 |
NEAP 2 (mEq/d) | 75.2 (28.9) | 78.8 (26.6) | 74.5 (29.1) | <0.0001 |
Marital status | ||||
Single | 464 (5.8%) | 58 (4.9%) | 406 (6.0%) | <0.05 |
Married | 6701 (84.3%) | 970 (82.8%) | 5731 (84.6%) | |
Other | 782 (9.8%) | 144 (12.3%) | 638 (9.4%) | |
Region | ||||
Urban | 2427 (30.5%) | 416 (35.5%) | 2011 (29.7%) | <0.0001 |
Rural | 5520 (69.5%) | 756 (64.5%) | 4764 (70.3%) | |
Education level | ||||
None | 1932 (24.3%) | 289 (24.7%) | 1643 (24.3%) | <0.05 |
Elementary school | 1584 (19.9%) | 220 (8.8%) | 1364 (20.1%) | |
Middle school | 2619 (33.0%) | 355 (30.3%) | 2264 (33.4%) | |
High school | 914 (11.5%) | 140 (11.9%) | 774 (11.4%) | |
Technical or vocational school | 538 (6.8%) | 98 (8.4%) | 440 (6.5%) | |
University or college | 360 (4.5%) | 70 (6.0%) | 290 (4.3%) | |
Smoking status | ||||
No | 5479 (68.9%) | 733 (62.5%) | 4746 (70.1%) | <0.0001 |
Yes | 2468 (31.1%) | 439 (37.5%) | 2029 (29.9%) | |
Alcohol intake | ||||
No | 6295 (79.2%) | 823 (70.2%) | 5472 (80.8%) | <0.0001 |
Yes | 1652 (20.8%) | 349 (29.8%) | 1303 (19.2%) | |
Hypertension | ||||
Yes | 1048 (13.2%) | 27(33.3%) | 775 (11.4%) | <0.0001 |
No | 6899 (86.8%) | 899 (76.7%) | 6000 (88.6%) | |
Diabetes | ||||
Yes | 227 (2.9%) | 56 (4.8%) | 171 (2.5%) | <0.0001 |
No | 7720 (97.1%) | 1116 (95.2%) | 6604 (97.5%) | |
BMI 3 (kg/m2) | ||||
<18.5 | 490 (6.2%) | 33 (2.8%) | 457 (6.7%) | <0.0001 |
18.5–23.9 | 4260 (53.6%) | 456 (38.9%) | 3804 (56.1%) | |
24–27.9 | 2323 (30.5%) | 474 (40.4%) | 1949 (28.8%) | |
≥28 | 774 (9.7%) | 209 (17.8%) | 565 (8.3%) | |
eGFR 4 (mL/min/1.73 m2) | 79.2 (16.6) | 71.1 (18.6) | 80.6 (16.0) | <0.0001 |
Nutrients | Hyperuricemia | Non-Hyperuricemia | p |
---|---|---|---|
Energy (Kcal) | 1982.93 (1518.35–2395.97) | 1863.96 (1492.45–2308.99) | <0.0001 |
Carbohydrate (g/1000 kal) | 158.50 (136.12–181.42) | 167.13 (146.36–188.99) | <0.0001 |
Protein (g/1000 kal) | 41.01 (35.01–50.05) | 38.22 (32.96–45.92) | <0.0001 |
Animal protein (g/1000 kal) | 18.17 (9.34–27.78) | 13.44 (6.30–23.30) | <0.0001 |
Plant protein (g/1000 kal) | 21.27 (17.44–26.16) | 22.62 (18.63–27.43) | <0.0001 |
Fat (g/1000 kal) | 24.39 (16.06–31.86) | 21.84 (13.82–29.41) | <0.0001 |
Cholesterol (mg/1000 kal) | 186.25 (101.74–284.38) | 165.24 (82.39–266.81) | <0.0001 |
Dietary fiber (g/1000 kal) | 5.31 (4.11–6.98) | 5.78 (4.36–7.68) | <0.0001 |
Calcium (mg/1000 kal) | 216.29 (164.78–298.15) | 206.77 (156.40–277.69) | <0.0001 |
Phosphorous (mg/1000 kal) | 568.92 (499.88–657.39) | 559.92 (493.77–636.72) | 0.002 |
Potassium (mg/1000 kal) | 996.04 (833.09–1224.47) | 993.06 (829.27–1208.59) | 0.321 |
Magnesium (mg/1000 kal) | 159.41 (136.44–186.82) | 161.59 (139.77–187.17) | 0.112 |
Water intake | 960.00 (720.00–1440.00) | 960.00 (720.00–1334.40) | <0.0001 |
PRAL | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Q1 | 1 (ref) | 1 (ref) | 1 (ref) | |||
Q2 | 1.28 (1.06–1.55) | 0.011 | 1.18 (0.96–1.44) | 0.114 | 1.12 (0.92–1.38) | 0.259 |
Q3 | 1.44 (1.20–1.74) | <0.01 | 1.27 (1.04–1.56) | 0.017 | 1.20 (0.97–1.47) | 0.089 |
Q4 | 1.88 (1.57–2.24) | <0.01 | 1.53 (1.26–1.86) | <0.01 | 1.42 (1.16–1.75) | <0.01 |
NEAP | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Q1 | 1 (ref) | 0.001 | 1 (ref) | 1 (ref) | ||
Q2 | 1.39 (1.15–1.67) | <0.001 | 1.25 (1.03–1.53) | <0.05 | 1.19 (0.97–1.45) | 0.104 |
Q3 | 1.54 (1.28–1.86) | <0.001 | 1.30 (1.07–1.58) | <0.01 | 1.19 (0.97–1.47) | 0.100 |
Q4 | 1.69 (1.40–2.02) | <0.001 | 1.40 (1.15–1.70) | <0.01 | 1.25 (1.00–1.56) | 0.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Ye, C.; Wang, R.; Zhang, Z.; Huang, X.; Halimulati, M.; Sun, M.; Ma, Y.; Zhang, Z. Association between Dietary Acid Load and Hyperuricemia in Chinese Adults: Analysis of the China Health and Nutrition Survey (2009). Nutrients 2023, 15, 1806. https://doi.org/10.3390/nu15081806
Zhang M, Ye C, Wang R, Zhang Z, Huang X, Halimulati M, Sun M, Ma Y, Zhang Z. Association between Dietary Acid Load and Hyperuricemia in Chinese Adults: Analysis of the China Health and Nutrition Survey (2009). Nutrients. 2023; 15(8):1806. https://doi.org/10.3390/nu15081806
Chicago/Turabian StyleZhang, Min, Chen Ye, Ruoyu Wang, Zongfeng Zhang, Xiaojie Huang, Mairepaiti Halimulati, Meng Sun, Yuxin Ma, and Zhaofeng Zhang. 2023. "Association between Dietary Acid Load and Hyperuricemia in Chinese Adults: Analysis of the China Health and Nutrition Survey (2009)" Nutrients 15, no. 8: 1806. https://doi.org/10.3390/nu15081806
APA StyleZhang, M., Ye, C., Wang, R., Zhang, Z., Huang, X., Halimulati, M., Sun, M., Ma, Y., & Zhang, Z. (2023). Association between Dietary Acid Load and Hyperuricemia in Chinese Adults: Analysis of the China Health and Nutrition Survey (2009). Nutrients, 15(8), 1806. https://doi.org/10.3390/nu15081806