Assessment of Cardiovascular Risk Factors in Patients with Juvenile Idiopathic Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Statistical Analysis
3. Results
4. Discussion
4.1. Modifiable CVD Risk Factors
4.1.1. Sedentary Screen Time
4.1.2. Disorders of Body Weight
4.1.3. Physical Activity
4.1.4. Passive Smoking
4.1.5. Dietary Habits
4.2. Assessment of IMT in Patients with JIA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thatayatikom, A.; Modica, R.; De Leucio, A. Juvenile Idiopathic Arthritis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554605/ (accessed on 23 June 2022).
- Kavey, R.-E.W.; Allada, V.; Daniels, S.R.; Hayman, L.L.; McCrindle, B.W.; Newburger, J.W.; Parekh, R.S.; Steinberger, J. American Heart Association Expert Panel on Population and Prevention Science; American Heart Association Council on Cardiovascular Disease in the Young; American Heart Association Council on Epidemiology and Prevention; American Heart Association Council on Nutrition, Physi-cal Activity and Metabolism; American Heart Association Council on High Blood Pressure Research; American Heart Association Council on Cardiovascular Nursing; American Heart Association Council on the Kidney in Heart Disease; Interdisciplinary Working Group on Quality of Care and Outcomes Research. Cardiovascular risk reduction in high-risk pediatric patients: A scientific state-ment from the American Heart Association Expert Panel on Popu-lation and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: Endorsed by the American Academy of Pediatrics. Circulation 2006, 114, 2710–2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranda-Valera, I.C.; De La Rosa, I.A.; Roldán-Molina, R.; Ábalos-Aguilera, M.D.C.; Torres-Granados, C.; Patiño-Trives, A.; Luque-Tevar, M.; Ibáñez-Costa, A.; Guzmán-Ruiz, R.; Malagón, M.D.M.; et al. Subclinical cardiovascular risk signs in adults with juvenile idiopathic arthritis in sustained remission. Pediatr. Rheumatol. 2020, 18, 59. [Google Scholar] [CrossRef] [PubMed]
- Boman, A.; Kokkonen, H.; Berglin, E.; Alenius, G.-M.; Rantapää-Dahlqvist, S. Hormonal and Reproductive Factors in Relation to Cardiovascular Events in Women with Early Rheumatoid Arthritis. J. Clin. Med. 2022, 12, 208. [Google Scholar] [CrossRef]
- Sparks, J.A.; Chang, S.; Liao, K.P.; Lu, B.; Fine, A.R.; Solomon, D.H.; Costenbader, K.H.; Karlson, E.W. Rheumatoid Arthritis and Mortality Among Women During 36 Years of Prospective Follow-up: Results From the Nurses’ Health Study. Arthritis Care Res. 2016, 68, 753–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattar, N.; McCarey, D.W.; Capell, H.; McInnes, I.B. Explaining How “High-Grade” Systemic Inflammation Accelerates Vascular Risk in Rheumatoid Arthritis. Circulation 2003, 108, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Selvaag, A.M.; Aulie, H.A.; Lilleby, V.; Flatø, B. Disease progression into adulthood and predictors of long-term active disease in juvenile idiopathic arthritis. Ann. Rheum. Dis. 2016, 75, 190–195. [Google Scholar] [CrossRef]
- Coulson, E.J.; Ng, W.-F.; Goff, I.; Foster, H.E. Cardiovascular risk in juvenile idiopathic arthritis. Rheumatology 2013, 52, 1163–1171. [Google Scholar] [CrossRef] [Green Version]
- Steinberger, J.; Daniels, S.R.; Hagberg, N.; Isasi, C.R.; Kelly, A.S.; Lloyd-Jones, D.; Pate, R.R.; Pratt, C.; Shay, C.M.; Towbin, J.A.; et al. Cardiovascular Health Promotion in Children: Challenges and Opportunities for 2020 and Beyond: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e236–e255. [Google Scholar] [CrossRef] [Green Version]
- Bouhanick, B.; Sosner, P.; Brochard, K.; Mounier-Véhier, C.; Plu-Bureau, G.; Hascoet, S.; Ranchin, B.; Pietrement, C.; Martinerie, L.; Boivin, J.M.; et al. Hypertension in Children and Adolescents: A Position Statement From a Panel of Multidisciplinary Experts Coordinated by the French Society of Hypertension. Front. Pediatr. 2021, 9, 680803. [Google Scholar] [CrossRef]
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011, 128 (Suppl. 5), S213–S256. [Google Scholar] [CrossRef] [Green Version]
- Heale, L.D.; Houghton, K.M.; Rezaei, E.; Baxter-Jones, A.D.G.; Tupper, S.M.; Muhajarine, N.; Benseler, S.M.; Boire, G.; Cabral, D.A.; Campillo, S.; et al. Clinical and psychosocial stress factors are associated with decline in physical activity over time in children with juvenile idiopathic arthritis. Pediatr. Rheumatol. 2021, 19, 97. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, M.; Herlin, T. Specific Sports Habits, Leisure-Time Physical Activity, and School-Educational Physical Activity in Children With Juvenile Idiopathic Arthritis: Patterns and Barriers. Arthritis Care Res. 2019, 71, 271–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capra, M.; Pederiva, C.; Viggiano, C.; De Santis, R.; Banderali, G.; Biasucci, G. Nutritional Approach to Prevention and Treatment of Cardiovascular Disease in Childhood. Nutrients 2021, 13, 2359. [Google Scholar] [CrossRef] [PubMed]
- Kremers, H.M.; Crowson, C.S.; Therneau, T.M.; Roger, V.L.; Gabriel, S.E. High ten-year risk of cardiovascular disease in newly diagnosed rheumatoid arthritis patients: A population-based cohort study. Arthritis Rheum. 2008, 58, 2268–2274. [Google Scholar] [CrossRef] [Green Version]
- Cleary, A.G.; Lancaster, G.A.; Annan, F.; Sills, J.A.; Davidson, J.E. Nutritional impairment in juvenile idiopathic arthritis. Rheumatology 2004, 43, 1569–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huan, Y.; Deloach, S.; Keith, S.W.; Pequignot, E.C.; Falkner, B. High Blood Pressure and Obesity Increase the Risk of Abnormal Glucose Tolerance in Young Adult African Americans. J. Clin. Hypertens. 2011, 13, 397–403. [Google Scholar] [CrossRef]
- Rehman, K.; Akash, M.S.H. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J. Biomed. Sci. 2016, 23, 87. [Google Scholar] [CrossRef] [Green Version]
- Suppasit, P.; Vilaiyuk, S.; Poomthavorn, P.; Pongratanakul, S.; Khlairit, P.; Mahachoklertwattana, P. Glucose metabolism in systemic juvenile idiopathic arthritis. Pediatr. Rheumatol. 2022, 20, 55. [Google Scholar] [CrossRef]
- Gicchino, M.F.; Di Sessa, A.; Guarino, S.; del Giudice, E.M.; Olivieri, A.N.; Marzuillo, P. Prevalence of and factors associated to chronic kidney disease and hypertension in a cohort of children with juvenile idiopathic arthritis. Eur. J. Pediatr. 2021, 180, 655–661. [Google Scholar] [CrossRef]
- Raghuveer, G.; White, D.; Hayman, L.L.; Woo, J.; Villafane, J.; Celermajer, D.; Ward, K.D.; De Ferranti, S.D.; Zachariah, J. Cardiovascular Consequences of Childhood Secondhand Tobacco Smoke Exposure: Prevailing Evidence, Burden, and Racial and Socioeconomic Disparities: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e336–e359. [Google Scholar] [CrossRef] [Green Version]
- Surís, J.-C.; Michaud, P.-A.; Akre, C.; Sawyer, S.M. Health Risk Behaviors in Adolescents With Chronic Conditions. Pediatrics 2008, 122, e1113–e1118. [Google Scholar] [CrossRef]
- França, C.M.P.; Sallum, A.M.E.; Braga, A.L.F.; Strufaldi, F.L.; Silva, C.A.A.; Farhat, S.C.L. Risk Factors Associated with Juvenile Idiopathic Arthritis: Exposure to Cigarette Smoke and Air Pollution from Pregnancy to Disease Diagnosis. J. Rheumatol. 2018, 45, 248–256. [Google Scholar] [CrossRef]
- Orione, M.A.M.; Silva, C.A.; Sallum, A.M.E.; Campos, L.M.A.; Omori, C.H.; Braga, A.L.F.; Farhat, S.C.L. Risk Factors for Juvenile Dermatomyositis: Exposure to Tobacco and Air Pollutants During Pregnancy. Arthritis Care Res. 2014, 66, 1571–1575. [Google Scholar] [CrossRef]
- Hajji, H.; Ben Nessib, D.; Maatallah, K.; Ferjani, H.; Triki, W.; Kaffel, D.; Hamdi, W. P040 Effect of parental smoking on Juvenile Idiopathic Arthritis activity. Rheumatology 2021, 60, 9. [Google Scholar] [CrossRef]
- Lorenz, M.W.; Markus, H.S.; Bots, M.L.; Rosvall, M.; Sitzer, M. Prediction of Clinical Cardiovascular Events With Carotid Intima-Media Thickness. Circulation 2007, 115, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Mardanshahi, Z.; Mardanshahi, A.; Amiri, A.H.; Khademloo, M.; Tayebi, M.; Nattaj, A.G.; Jamshidi, H. Investigating the relationship between carotid intima-media thickness, flow-mediated dilatation in brachial artery and nuclear heart scan in patients with rheumatoid arthritis for evaluation of asymptomatic cardiac ischemia and atherosclerotic changes. Nucl. Med. Rev. Cent. East Eur. 2020, 23, 25–31. [Google Scholar] [CrossRef]
- Mazarío, R.G.; Gil, J.J.F.; Calabuig, P.M.; García, E.G.; Martínez, A.J.C.; Ivorra, J.A.R. Cardiovascular risk assessment with carotid ultrasound in rheumatoid arthritis. Med. Clin. 2022, 159, 470–474. [Google Scholar] [CrossRef]
- Kaur, H.; Tiwari, P.; Sharma, S.; Verma, M. An Analytical Cross-Sectional Study to Assess the Effects of Smoking on Common Carotid Intima-Media Thickness and Resistivity Index Among Current Smokers. J. Diagn. Med. Sonogr. 2022, 38, 26–34. [Google Scholar] [CrossRef]
- Del Giudice, E.; Dilillo, A.; Tromba, L.; La Torre, G.; Blasi, S.; Conti, F.; Viola, F.; Cucchiara, S.; Duse, M. Aortic, carotid intima-media thickness and flow-mediated dilation as markers of early atherosclerosis in a cohort of pediatric patients with rheumatic diseases. Clin. Rheumatol. 2018, 37, 1675–1682. [Google Scholar] [CrossRef]
- Breda, L.; Di Marzio, D.; Giannini, C.; Gaspari, S.; Nozzi, M.; Scarinci, A.; Chiarelli, F.; Mohn, A. Relationship between inflammatory markers, oxidant–antioxidant status and intima-media thickness in prepubertal children with juvenile idiopathic arthritis. Clin. Res. Cardiol. 2013, 102, 63–71. [Google Scholar] [CrossRef]
- Satija, M.; Yadav, T.P.; Sachdev, N.; Chhabra, A.; Jahan, A.; Dewan, V. Endothelial function, arterial wall mechanics and intima media thickness in juvenile idiopathic arthritis. Ann. Rheum. Dis. 2014, 32, 432–439. [Google Scholar]
- Pietrewicz, E.; Urban, M. Early atherosclerosis changes in children with juvenile idiopathic arthritis. Polski Merkur. Lek. Organ Polskiego Towar. Lek. 2007, 22, 211–214. [Google Scholar]
- Pignoli, P.; Tremoli, E.; Poli, A.; Oreste, P.; Paoletti, R. Intimal plus medial thickness of the arterial wall: A direct measurement with ultrasound imaging. Circulation 1986, 74, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Urban, M.; Pietrewicz, E.; Górska, A.; Szczepański, W.; Baran, M. Ocena zalezności pomiedzy grubościa warstwy wewnetrznej i śródbłonka u dzieci z młodzienczym idiopatycznym zapaleniem stawów (MIZS) [Correlation between intima-media thickness in carotid artery and markers of epithelial cell dysfunction in patients with juvenile idiopathic arthritis]. Med. Wieku Rozwoj. 2009, 13, 277–282. [Google Scholar]
- McGill, H.C., Jr.; McMahan, C.A.; Zieske, A.W.; Sloop, G.D.; Walcott, J.V.; Troxclair, D.A.; Malcom, G.T.; Tracy, R.E.; Oalmann, M.C.; Strong, J.P.; et al. Associations of Coronary Heart Disease Risk Factors With the Intermediate Lesion of Atherosclerosis in Youth. Arter. Thromb. Vasc. Biol. 2000, 20, 1998–2004. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Daviglus, M.L.; Loria, C.M.; Colangelo, L.A.; Spring, B.; Moller, A.C.; Lloyd-Jones, D.M. Healthy Lifestyle through Young Adulthood and the Presence of Low Cardiovascular Disease Risk Profile in Middle Age. Circulation 2012, 125, 996–1004. [Google Scholar] [CrossRef] [Green Version]
- Gruca, M.; Zamojska, J.; Niewiadomska-Jarosik, K.; Wosiak, A.; Smolewska, E. Evaluation of Health-Promoting Behaviors in the Prevention of Cardiovascular Diseases in the Preschool Children of Polish Health Care Professionals. Int. J. Environ. Res. Public Health 2021, 19, 308. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Aggarwal, P.; Bera, O.P.; Saleem, S.M.; Shikha, D.; Vallabh, V.; Juyal, R.; Singh, A. COVID-19 and Childhood Obesity (Co-Besity) in the Era of New Normal Life: A Need for a Policy Research. J. Public Health Res. 2021, 10, 2673. [Google Scholar] [CrossRef]
- Gwag, S.-H.; Oh, Y.R.; Ha, J.W.; Kang, E.; Nam, H.-K.; Lee, Y.; Rhie, Y.-J.; Lee, K.-H. Weight changes of children in 1 year during COVID-19 pandemic. J. Pediatr. Endocrinol. Metab. 2021, 35, 297–302. [Google Scholar] [CrossRef]
- Valenzise, M.; D’Amico, F.; Cucinotta, U.; Lugarà, C.; Zirilli, G.; Zema, A.; Wasniewska, M.; Pajno, G.B. The lockdown effects on a pediatric obese population in the COVID-19 era. Ital. J. Pediatr. 2021, 47, 209. [Google Scholar] [CrossRef]
- Henschel, B.; Gorczyca, A.M.; Chomistek, A.K. Time Spent Sitting as an Independent Risk Factor for Cardiovascular Disease. Am. J. Lifestyle Med. 2017, 14, 204–215. [Google Scholar] [CrossRef]
- Bahkir, F.A.; Grandee, S.S. Impact of the COVID-19 lockdown on digital device-related ocular health. Indian J. Ophthalmol. 2020, 68, 2378–2383. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Yen, J.-Y. Impact of COVID-19 on gaming disorder: Monitoring and prevention. J. Behav. Addict. 2020, 9, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Small, G.W.; Lee, J.; Kaufman, A.; Jalil, J.; Siddarth, P.; Gaddipati, H.; Moody, T.D.; Bookheimer, S.Y. Brain health consequences of digital technology use. Dialog-Clin. Neurosci. 2020, 22, 179–187. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Carin, L.; Dzau, V.; Wong, T.Y. Digital technology and COVID-19. Nat. Med. 2020, 26, 459–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woreta, F.; Thorne, J.E.; Jabs, D.A.; Kedhar, S.R.; Dunn, J.P. Risk Factors for Ocular Complications and Poor Visual Acuity at Presentation Among Patients With Uveitis Associated With Juvenile Idiopathic Arthritis. Am. J. Ophthalmol. 2007, 143, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Clarke, S.L.; Sen, E.S.; Ramanan, A.V. Juvenile idiopathic arthritis-associated uveitis. Pediatr. Rheumatol. Online J. 2016, 14, 27. [Google Scholar] [CrossRef] [Green Version]
- Myszkowska-Ryciak, J.; Harton, A.; Lange, E.; Laskowski, W.; Wawrzyniak, A.; Hamulka, J.; Gajewska, D. Reduced Screen Time is Associated with Healthy Dietary Behaviors but Not Body Weight Status among Polish Adolescents. Report from the Wise Nutrition—Healthy Generation Project. Nutrients 2020, 12, 1323. [Google Scholar] [CrossRef]
- Bowman, S.A. Television-viewing characteristics of adults: Correlations to eating practices and overweight and health status. Prev. Chronic Dis. 2006, 3, A38. [Google Scholar]
- Jednacz, E.; Rutkowska-Sak, L. Assessment of the Body Composition and Parameters of the Cardiovascular Risk in Juvenile Idiopathic Arthritis. BioMed Res. Int. 2015, 2015, 619023. [Google Scholar] [CrossRef] [Green Version]
- Istituto Superiore di Satità. NCD Risk Factor Collaboration. Available online: http://www.cuore.iss.it/eng/collaboration/ncd (accessed on 16 May 2021).
- Amine, B.; Ibn Yacoub, Y.; Rostom, S.; Hajjaj-Hassouni, N. Prevalence of overweight among Moroccan children and adolescents with juvenile idiopathic arthritis. Jt. Bone Spine 2011, 78, 584–586. [Google Scholar] [CrossRef] [PubMed]
- Makay, B.; Gücenmez, A.; Ünsal, E. Inactive Disease in Enthesitis-related Arthritis: Association of Increased Body Mass Index. J. Rheumatol. 2016, 43, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Giani, T.; De Masi, S.; Maccora, I.; Tirelli, F.; Simonini, G.; Falconi, M.; Cimaz, R. The Influence of Overweight and Obesity on Treatment Response in Juvenile Idiopathic Arthritis. Front. Pharmacol. 2019, 10, 637. [Google Scholar] [CrossRef]
- Milatz, F.; Klotsche, J.; Niewerth, M.; Hörstermann, J.; Windschall, D.; Weller-Heinemann, F.; Dressler, F.; Berendes, R.; Haas, J.P.; Horneff, G.; et al. Prevlence and Correlates of Underweight, Overweight and Obesity among Patients with Juvenile Idiopathic Arthritis (JIA): Evidence form National Paediatric Reumaologic Database (NPRD). Ann. Rheum. Dis. 2021, 80, 936–937. Available online: https://ard.bmj.com/content/80/Suppl_1/936.2 (accessed on 19 May 2021). [CrossRef]
- Pelajo, C.F.; Lopez-Benitez, J.M.; Miller, L.C. Obesity and disease activity in juvenile idiopathic arthritis. Pediatr. Rheumatol. 2012, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Caetano, M.C.; Ortiz, T.T.; Terreri, M.T.S.L.R.A.; Sarni, R.O.S.; Silva, S.G.L.; Souza, F.I.S.; Hilário, M.O.E. Inadequate dietary intake of children and adolescents with juvenile idiopathic arthritis and systemic lupus erythematosus. J. Pediatr. 2009, 85, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Sattelmair, J.; Pertman, J.; Ding, E.L.; Kohl, H.W.; Haskell, W.; Lee, I.-M. Dose response between physical activity and risk of coronary heart disease: A meta-analysis. Circulation 2011, 124, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Sherman, G.; Nemet, D.; Moshe, V.; Consolaro, A.; Ravelli, A.; Ruperto, N.; Uziel, Y. Paediatric Rheumatology International Trials Organisation (PRINTO) Disease activity, overweight, physical activity and screen time in a cohort of patients with juvenile idiopathic arthritis. Ann. Rheum. Dis. 2018, 36, 1110–1116. [Google Scholar]
- Milatz, F.; Klotsche, J.; Niewerth, M.; Geisemeyer, N.; Trauzeddel, R.; Weißbarth-Riedel, E.; Kallinich, T.; Peitz, J.; Hartmann, M.; Minden, K. Participation in school sports among children and adolescents with juvenile idiopathic arthritis in the German National Paediatric Rheumatologic Database, 2000–2015: Results from a prospective observational cohort study. Pediatr. Rheumatol. 2019, 17, 6. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, J.; Zhang, R.; Chen, M.; Peng, D.; Sun, X.; Yan, J.; Luo, Y.; Tang, S.; Hu, C.; et al. Effects of active and passive smoking on the development of cardiovascular disease as assessed by a carotid intima-media thickness examination in patients with type 2 diabetes mellitus. Clin. Exp. Pharmacol. Physiol. 2015, 42, 444–450. [Google Scholar] [CrossRef]
- Mineur, Y.S.; Abizaid, A.; Rao, Y.; Salas, R.; DiLeone, R.J.; Gündisch, D.; Diano, S.; De Biasi, M.; Horvath, T.L.; Gao, X.-B.; et al. Nicotine Decreases Food Intake Through Activation of POMC Neurons. Science 2011, 332, 1330–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña, M.S.B.; Swett, K.; Kaplan, R.C.; Perreira, K.; Daviglus, M.; Kansal, M.M.; Cai, J.; Giachello, A.L.; Gellman, M.D.; Velazquez, E.J.; et al. Childhood and adult exposure to secondhand tobacco smoke and cardiac structure and function: Results from Echo-SOL. Open Heart 2018, 5, e000831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raport z Ogólnopolskiego Badania Ankietowego na Temat Postaw Wobec Palenia Tytoniu. Kantar dla Głównego Inspektoratu Sanitarnego. [Report from a Nationwide Survey on Attitudes towards Smoking. Kantar Public for the Chief Sanitary Inspectorate]. Available online: https://gis.gov.pl/wp-content/uploads/2018/04/Postawy-Polak%C3%B3w-do-palenia-tytoniu_Raport-Kantar-Public-dla-GIS_2019.pdf (accessed on 30 October 2019).
- Onel, K.B.; Horton, D.B.; Lovell, D.J.; Shenoi, S.; Cuello, C.A.; Angeles-Han, S.T.; Becker, M.L.; Cron, R.Q.; Feldman, B.M.; Ferguson, P.J.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Juvenile Idiopathic Arthritis: Recommendations for Nonpharmacologic Therapies, Medication Monitoring, Immunizations, and Imaging. Arthritis Rheumatol. 2022, 74, 570–585. [Google Scholar] [CrossRef] [PubMed]
- Perkins, A.; Sontheimer, C.; Otjen, J.P.; Shenoi, S. Scurvy Masquerading as Juvenile Idiopathic Arthritis or Vasculitis with Elevated Inflammatory Markers: A Case Series. J. Pediatr. 2020, 218, 234–237.e2. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Perdoni, F.; Peroni, G.; Caporali, R.; Gasparri, C.; Riva, A.; Petrangolini, G.; Faliva, M.A.; Infantino, V.; Naso, M.; et al. Ideal food pyramid for patients with rheumatoid arthritis: A narrative review. Clin. Nutr. 2021, 40, 661–689. [Google Scholar] [CrossRef]
- Li, Y. Advances in Immunoregulatory Effects of Dietary Nutrition on Juvenile Idiopathic Arthritis. Int. J. Pediatr. 2019, 6, 745–748. [Google Scholar] [CrossRef]
- Lewis, K.; Osier, N.; Carter, P.; Nguyen, C.; Carrasco, R.; Brooks, S.; Garcia, A.; Tiziani, S. Carbohydrate and Sugar Intake Predict Pain in Teens with Active JIA Disease but Not in Teens in Remission or Controls: A Cross-Sectional, Case-Control Metabolomics Pilot Study [abstract]. Arthritis Rheumatol. 2020, 72 (Suppl. S4). Available online: https://acrabstracts.org/abstract/carbohydrate-and-sugar-intake-predict-pain-in-teens-with-active-jia-disease-but-not-in-teens-in-remission-or-controls-a-cross-sectional-case-control-metabolomics-pilot-study/ (accessed on 26 February 2023).
- Gattone, M.; Giannuzzi, P. Interventional Strategies in early Atherosclerosis. Monaldi Arch. Chest Dis. 2006, 66, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Hjerkinn, E.M.; Abdelnoor, M.; Breivik, L.; Bergengen, L.; Ellingsen, I.; Seljeflot, I.; Aase, O.; Klemsdal, T.O.; Hjermann, I.; Arnesen, H. Effect of diet or very long chain omega-3 fatty acids on progression of atherosclerosis, evaluated by carotid plaques, intima-media thickness and by pulse wave propagation in elderly men with hypercholesterolaemia. Eur. J. Prev. Cardiol. 2006, 13, 325–333. [Google Scholar] [CrossRef]
- Wildman, R.P.; Schott, L.L.; Brockwell, S.; Kuller, L.H.; Sutton-Tyrrell, K. A dietary and exercise intervention slows menopause-associated progression of subclinical atherosclerosis as measured by intima-media thickness of the carotid arteries. J. Am. Coll. Cardiol. 2004, 44, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Anderssen, S.A.; Hjelstuen, A.K.; Hjermann, I.; Bjerkan, K.; Holme, I. Fluvastatin and lifestyle modification for reduction of carotid intima–media thickness and left ventricular mass progression in drug-treated hypertensives. Atherosclerosis 2005, 178, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R., Jr.; Steffen, L.M. Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am. J. Clin. Nutr. 2003, 78 (Suppl. S3), 508S–513S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Control Group (n = 37) | Study Group (n = 45) | p | ||||
---|---|---|---|---|---|---|
n | % | n | % | |||
Sex | F | 23 | 62.16% | 33 | 73.33% | 0.279 |
M | 14 | 37.84% | 12 | 26.67% | ||
RCA centile | <25 | 12 | 32.43% | 22 | 48.89% | 0.116 |
25–74 | 18 | 48.65% | 16 | 35.56% | ||
75–94 | 7 | 18.92% | 3 | 6.67% | ||
≥95 | 0 | 0.00% | 4 | 8.89% | ||
RCA centile | <75 cc | 30 | 81.08% | 38 | 84.44% | 0.687 |
≥75 cc | 7 | 18.92% | 7 | 15.56% | ||
LCA centile | <25 | 12 | 32.43% | 18 | 40.00% | 0.246 |
25–74 | 18 | 48.65% | 20 | 44.44% | ||
75–94 | 7 | 18.92% | 3 | 6.67% | ||
≥95 | 0 | 0.00% | 4 | 8.89% | ||
LCA centile | <75 cc | 30 | 81.08% | 38 | 84.44% | 0.687 |
≥75 cc | 7 | 18.92% | 7 | 15.56% | ||
cIMT | <95 | 37 | 100.00% | 41 | 91.11% | 0.145 |
≥95 | 0 | 0.00% | 4 | 8.89% | ||
Apgar score | 1 | 0 | 0.00% | 0 | 0.00% | 0.558 |
2 | 1 | 2.70% | 0 | 0.00% | ||
3 | 0 | 0.00% | 0 | 0.00% | ||
4 | 0 | 0.00% | 0 | 0.00% | ||
5 | 0 | 0.00% | 0 | 0.00% | ||
6 | 0 | 0.00% | 1 | 2.22% | ||
7 | 0 | 0.00% | 1 | 2.22% | ||
8 | 7 | 18.92% | 3 | 6.67% | ||
9 | 11 | 29.73% | 13 | 28.89% | ||
10 | 18 | 48.65% | 27 | 60.00% | ||
Type of weight after childbirth | AGA | 33 | 89.19% | 41 | 91.11% | 0.732 |
LGA | 2 | 5.41% | 3 | 6.67% | ||
SGA | 2 | 5.41% | 1 | 2.22% | ||
BMI | Underweight | 0 | 0.00% | 4 | 8.89% | 0.062 |
Appropriate body mass | 29 | 78.38% | 23 | 51.11% | ||
Overweight | 7 | 18.92% | 11 | 24.44% | ||
Obesity | 1 | 2.70% | 7 | 15.56% | ||
BMI | normal | 29 | 78.38% | 22 | 48.89% | 0.006 |
abnormal | 8 | 21.62% | 23 | 51.11% | ||
BMI < 85 | YES | 29 | 78.38% | 27 | 60.00% | 0.075 |
NO | 8 | 21.62% | 18 | 40.00% | ||
RR | <90 percentile | 36 | 97.30% | 45 | 100.00% | 0.875 |
90–95 percentile | 1 | 2.70% | 0 | 0.00% | ||
>95 percentile | 0 | 0.00% | 0 | 0.00% | ||
Ideal cardiovascular health | YES | 0 | 0.00% | 1 | 2.22% | 0.904 |
NO | 37 | 100.00% | 44 | 97.78% | ||
Passive smoking | NO | 32 | 86.49% | 36 | 80.00% | 0.437 |
YES | 5 | 13.51% | 9 | 20.00% | ||
Smoking parents | NO | 34 | 91.89% | 37 | 82.22% | 0.201 |
YES | 3 | 8.11% | 8 | 17.78% | ||
Family history of cardiovascular disease | NO | 19 | 51.35% | 25 | 55.56% | 0.704 |
YES | 18 | 48.65% | 20 | 44.44% | ||
ESR | <10 mm/1 h | ------- | ------- | 27 | 60.00% | ------ |
>10 mm/1 h | ------- | ------- | 18 | 40.00% | ||
Uric acid | <4 mg/L | 19 | 51.35% | 25 | 55.56% | 0.704 |
≥4 mg/L | 18 | 48.65% | 20 | 44.44% | ||
Fasting glucose | <100 mg/L | 36 | 97.30% | 42 | 93.33% | 0.407 |
≥100 mg/L | 1 | 2.70% | 3 | 6.67% | ||
HDL | <40 mg/dL | 2 | 5.41% | 5 | 11.11% | 0.497 |
>45 mg/dL | 31 | 83.78% | 33 | 73.33% | ||
40–45 mg/dL | 4 | 10.81% | 7 | 15.56% | ||
HDL | <40 mg/dL | 2 | 5.41% | 5 | 11.11% | 0.358 |
>45 mg/dL 40–45 mg/dL | 35 | 94.59% | 40 | 88.89% | ||
LDL | <110 mg/dL | 19 | 51.35% | 27 | 60.00% | 0.695 |
110–129 mg/dL | 9 | 24.32% | 8 | 17.78% | ||
>130 mg/dL | 9 | 24.32% | 10 | 22.22% | ||
TC | <170 mg/dL | 22 | 59.46% | 28 | 62.22% | 0.528 |
170–199 mg/dL | 13 | 35.14% | 12 | 26.67% | ||
>200 mg/dL | 2 | 5.41% | 5 | 11.11% | ||
Triglycerides | 0–9 years <75 mg/dL 10–19 years <90 mg/dL | 22 | 59.46% | 24 | 53.33% | 0.323 |
0–9 years 75–99 mg/dL 10–19 years 90–129 mg/dL | 10 | 27.03% | 9 | 20.00% | ||
0–9 years >100 mg/dL 10–19 years >130 mg/dL | 5 | 13.51% | 12 | 26.67% | ||
Lipid profile | normal | 9 | 24.32% | 10 | 22.22% | 0.822 |
abnormal | 28 | 75.68% | 35 | 77.78% | ||
CRP | <5 mg/L | ------- | ------- | 41 | 91.11% | ------ |
≥5 mg/L | -------- | -------- | 4 | 8.89% | ||
RF | minus | ------ | ------ | 42 | 93.33% | ------ |
plus | ------ | ------ | 3 | 6.67% | ||
Painful conditions | No | ------ | ------ | 36 | 80.00% | ------ |
Yes | ------- | ------- | 9 | 20.00% | ||
VAS scale | 0 | ------ | ------ | 36 | 80.00% | ------- |
1 | ------ | ------ | 5 | 11.11% | ||
2 | ------- | ------- | 4 | 8.89% | ||
Physical activity | No | 7 | 18.92% | 16 | 35.56% | 0.095 |
any kind of | 30 | 81.08% | 29 | 64.44% | ||
Physical activity | No | 22 | 59.46% | 26 | 57.78% | 0.878 |
≥3 days/week | 15 | 40.54% | 19 | 42.22% | ||
Number of days with physical activity >60 min per day | 0 | 7 | 18.92% | 16 | 35.56% | 0.051 |
1 | 7 | 18.92% | 4 | 8.89% | ||
2 | 8 | 21.62% | 6 | 13.33% | ||
3 | 3 | 8.11% | 6 | 13.33% | ||
4 | 3 | 8.11% | 4 | 8.89% | ||
5 | 3 | 8.11% | 1 | 2.22% | ||
6 | 1 | 2.70% | 0 | 0.00% | ||
7 | 5 | 13.51% | 8 | 17.78% | ||
Physical activity 7 days a week > 60 min | No | 32 | 86.49% | 37 | 82.22% | 0.599 |
Yes | 5 | 13.51% | 8 | 17.78% | ||
Sedentary screen time before COVID-19 pandemic | <3 h | 10 | 27.03% | 14 | 31.11% | 0.686 |
≥3 h | 27 | 72.97% | 31 | 68.89% | ||
Sedentary screen time in COVID-19 pandemic | <3 h | ------- | 0.00% | --------- | 0.00% | ------ |
≥3 h | 37 | 100.00% | 45 | 100.00% | ||
Fruit consumption | never | 0 | 0.00% | 0 | 0.00% | 0.021 |
less than once a week | 4 | 10.81% | 0 | 0.00% | ||
1 time a week | 3 | 8.11% | 3 | 6.67% | ||
2–4 days a week | 6 | 16.22% | 18 | 40.00% | ||
5–6 days a week | 8 | 21.62% | 2 | 4.44% | ||
every day 1 time | 11 | 29.73% | 14 | 31.11% | ||
more than once every day | 5 | 13.51% | 8 | 17.78% | ||
Vegetables consumption | never | 0 | 0.00% | 0 | 0.00% | 0.246 |
less than once a week | 2 | 5.41% | 0 | 0.00% | ||
1 time a week | 0 | 0.00% | 3 | 6.67% | ||
2–4 days a week | 11 | 29.73% | 15 | 33.33% | ||
5–6 days a week | 10 | 27.03% | 8 | 17.78% | ||
every day 1 time | 7 | 18.92% | 16 | 35.56% | ||
more than once every day | 7 | 18.92% | 3 | 6.67% | ||
Fish consumption | never | 3 | 8.11% | 8 | 17.78% | 0.517 |
less than once a week | 24 | 64.86% | 21 | 46.67% | ||
1 time a week | 8 | 21.62% | 13 | 28.89% | ||
2–4 days a week | 1 | 2.70% | 2 | 4.44% | ||
5–6 days a week | 1 | 2.70% | 0 | 0.00% | ||
every day 1 time | 0 | 0.00% | 1 | 2.22% | ||
more than once every day | 0 | 0.00% | 0 | 0.00% | ||
Sweets consumption | never | 0 | 0.00% | 0 | 0.00% | 0.773 |
less than once a week | 1 | 2.70% | 3 | 6.67% | ||
1 time a week | 7 | 18.92% | 9 | 20.00% | ||
2–4 days a week | 16 | 43.24% | 20 | 44.44% | ||
5–6 days a week | 4 | 10.81% | 2 | 4.44% | ||
every day 1 time | 5 | 13.51% | 7 | 15.56% | ||
more than once every day | 4 | 10.81% | 4 | 8.89% | ||
Coca-Cola and other fizzy drinks consumption | never | 2 | 5.41% | 3 | 6.67% | 0.042 |
less than once a week | 7 | 18.92% | 21 | 46.67% | ||
1 time a week | 8 | 21.62% | 9 | 20.00% | ||
2–4 days a week | 13 | 35.14% | 9 | 20.00% | ||
5–6 days a week | 2 | 5.41% | 0 | 0.00% | ||
every day 1 time | 3 | 8.11% | 0 | 0.00% | ||
more than once every day | 2 | 5.41% | 3 | 6.67% | ||
Fast-food consumption | never | 0 | 0.00% | 3 | 6.67% | 0.011 |
less than once a week | 14 | 37.84% | 31 | 68.89% | ||
1 time a week | 12 | 32.43% | 8 | 17.78% | ||
2–4 days a week | 10 | 27.03% | 2 | 4.44% | ||
5–6 days a week | 0 | 0.00% | 0 | 0.00% | ||
every day 1 time | 1 | 2.70% | 1 | 2.22% | ||
more than once every day | 0 | 0.00% | 0 | 0.00% | ||
Energy drinks consumption | never | 28 | 75.68% | 36 | 80.00% | 0.544 |
less than once a week | 5 | 13.51% | 6 | 13.33% | ||
1 time a week | 3 | 8.11% | 0 | 0.00% | ||
2–4 days a week | 1 | 2.70% | 3 | 6.67% | ||
5–6 days a week | 0 | 0.00% | 0 | 0.00% | ||
every day 1 time | 0 | 0.00% | 0 | 0.00% | ||
more than once every day | 0 | 0.00% | 0 | 0.00% |
Control Group (n = 37) | Study Group (n = 45) | p | |||||
---|---|---|---|---|---|---|---|
Median | Mean | SD | Median | Mean | SD | ||
Age | 14 | 13.57 | 3.051 | 14 | 13.31 | 3.397 | 0.723 |
RCA | 0.38 | 0.370 | 0.044 | 0.35 | 0.364 | 0.058 | 0.603 |
LCA | 0.37 | 0.371 | 0.043 | 0.36 | 0.366 | 0.057 | 0.625 |
Birth weight | 3.2 | 3.188 | 0.420 | 3.3 | 3.391 | 0.514 | 0.057 |
ESR | ------ | ------ | ------ | 9 | 12.778 | 13.075 | ------ |
IMT < 95 (n = 41) | IMT ≥ 95 (n = 4) | p | ||||
---|---|---|---|---|---|---|
Number | Percent | Number | Percent | |||
Apgar score | 1 | 0 | 0.00% | 0 | 0.00% | 0.408 |
2 | 0 | 0.00% | 0 | 0.00% | ||
3 | 0 | 0.00% | 0 | 0.00% | ||
4 | 0 | 0.00% | 0 | 0.00% | ||
5 | 0 | 0.00% | 0 | 0.00% | ||
6 | 1 | 2.44% | 0 | 0.00% | ||
7 | 1 | 2.44% | 0 | 0.00% | ||
8 | 2 | 4.88% | 1 | 25.00% | ||
9 | 11 | 26.83% | 2 | 50.00% | ||
10 | 26 | 63.41% | 1 | 25.00% | ||
Type of weight after childbirth | AGA | 37 | 90.24% | 4 | 100.00% | 0.807 |
LGA | 3 | 7.32% | 0 | 0.00% | ||
SGA | 1 | 2.44% | 0 | 0.00% | ||
BMI | Underweight | 4 | 9.76% | 0 | 0.00% | 0.945 |
Appropriate body mass | 21 | 51.22% | 2 | 50.00% | ||
Overweight | 10 | 24.39% | 1 | 25.00% | ||
Obesity | 6 | 14.63% | 1 | 25.00% | ||
BMI | Normal | 20 | 48.78% | 2 | 50.00% | 0.963 |
Abnormal | 21 | 51.22% | 2 | 50.00% | ||
BMI < 85 | YES | 25 | 60.98% | 2 | 50.00% | 0.669 |
NO | 16 | 39.02% | 2 | 50.00% | ||
RR | <90 percentile | 41 | 100.00% | 4 | 100.00% | ------- |
90–95 percentile | 0 | 0.00% | 0 | 0.00% | ||
>95 percentile | 0 | 0.00% | 0 | 0.00% | ||
Ideal cardiovascular health | YES | 1 | 2.44% | 0 | 0.00% | 0.752 |
NO | 40 | 97.56% | 4 | 100.00% | ||
Passive smoking | NO | 34 | 82.93% | 2 | 50.00% | 0.116 |
YES | 7 | 17.07% | 2 | 50.00% | ||
Smoking parents | NO | 35 | 85.37% | 2 | 50.00% | 0.077 |
YES | 6 | 14.63% | 2 | 50.00% | ||
Family history of cardiovascular disease | NO | 23 | 56.10% | 2 | 50.00% | 0.815 |
YES | 18 | 43.90% | 2 | 50.00% | ||
ESR | <10 mm/1 h | 25 | 60.98% | 2 | 50.00% | 0.669 |
>10 mm/1 h | 16 | 39.02% | 2 | 50.00% | ||
Uric acid | <4 mg/L | 22 | 53.66% | 3 | 75.00% | 0.412 |
≥4 mg/L | 19 | 46.34% | 1 | 25.00% | ||
Fasting glucose | <100 mg/L | 38 | 92.68% | 4 | 100.00% | 0.575 |
≥100 mg/L | 3 | 7.32% | 0 | 0.00% | ||
HDL | <40 mg/dL | 5 | 12.20% | 0 | 0.00% | 0.450 |
>45 mg/dL | 29 | 70.73% | 4 | 100.00% | ||
40–45 mg/dL | 7 | 17.07% | 0 | 0.00% | ||
HDL | <40 mg/dL | 5 | 12.20% | 0 | 0.00% | 0.459 |
>45 mg/dL 40–45 mg/dL | 36 | 87.80% | 4 | 100.00% | ||
LDL | <110 mg/dL | 24 | 58.54% | 3 | 75.00% | 0.530 |
110–129 mg/dL | 7 | 17.07% | 1 | 25.00% | ||
>130 mg/dL | 10 | 24.39% | 0 | 0.00% | ||
TC | <170 mg/dL | 26 | 63.41% | 2 | 50.00% | 0.475 |
170–199 mg/dL | 10 | 24.39% | 2 | 50.00% | ||
>200 mg/dL | 5 | 12.20% | 0 | 0.00% | ||
Triglycerides | 0–9 years <75 mg/dL 10–19 years <90 mg/dL | 22 | 53.66% | 2 | 50.00% | 0.410 |
0–9 years 75–99 mg/dL 10–19 years 90–129 mg/dL | 9 | 21.95% | 0 | 0.00% | ||
0–9 years >100 mg/dL 10–19 years >130 mg/dL | 10 | 24.39% | 2 | 50.00% | ||
Lipid profile | normal | 9 | 21.95% | 1 | 25.00% | 0.889 |
abnormal | 32 | 78.05% | 3 | 75.00% | ||
CRP | <5 mg/L | 37 | 90.24% | 4 | 100.00% | 0.513 |
≥5 mg/L | 4 | 9.76% | 0 | 0.00% | ||
RF | minus | 38 | 92.68% | 4 | 100.00% | 0.575 |
plus | 3 | 7.32% | 0 | 0.00% | ||
Painful conditions | No | 33 | 80.49% | 3 | 75.00% | 0.793 |
Yes | 8 | 19.51% | 1 | 25.00% | ||
VAS scale | 0 | 33 | 80.49% | 3 | 75.00% | 0.410 |
1 | 5 | 12.20% | 0 | 0.00% | ||
2 | 3 | 7.32% | 1 | 25.00% | ||
Physical activity | No | 15 | 36.59% | 1 | 25.00% | 0.644 |
any kind of | 26 | 63.41% | 3 | 75.00% | ||
Physical activity | No | 25 | 60.98% | 1 | 25.00% | 0.164 |
≥3 days/week | 16 | 39.02% | 3 | 75.00% | ||
Number of days with physical activity >60 min per day | 0 | 15 | 36.59% | 1 | 25.00% | 0.689 |
1 | 4 | 9.76% | 0 | 0.00% | ||
2 | 6 | 14.63% | 0 | 0.00% | ||
3 | 5 | 12.20% | 1 | 25.00% | ||
4 | 3 | 7.32% | 1 | 25.00% | ||
5 | 1 | 2.44% | 0 | 0.00% | ||
6 | 0 | 0.00% | 0 | 0.00% | ||
7 | 7 | 17.07% | 1 | 25.00% | ||
Physical activity 7 days a week > 60 min | No | 34 | 82.93% | 3 | 75.00% | 0.692 |
Yes | 7 | 17.07% | 1 | 25.00% | ||
Sedentary screen time before COVID-19 pandemic | <3 h | 12 | 29.27% | 2 | 50.00% | 0.393 |
≥3 h | 29 | 70.73% | 2 | 50.00% | ||
Sedentary screen time in COVID-19 pandemic | <3 h | 0 | 0.00% | 0 | 0.00% | ------- |
≥3 h | 41 | 100.00% | 4 | 100.00% | ||
Fruit consumption | never | 0 | 0.00% | 0 | 0.00% | 0.207 |
less than once a week | 0 | 0.00% | 0 | 0.00% | ||
1 time a week | 2 | 4.88% | 1 | 25.00% | ||
2–4 days a week | 15 | 36.59% | 3 | 75.00% | ||
5–6 days a week | 2 | 4.88% | 0 | 0.00% | ||
every day 1 time | 14 | 34.15% | 0 | 0.00% | ||
more than once every day | 8 | 19.51% | 0 | 0.00% | ||
Vegetables consumption | never | 0 | 0.00% | 0 | 0.00% | 0.435 |
less than once a week | 0 | 0.00% | 0 | 0.00% | ||
1 time a week | 3 | 7.32% | 0 | 0.00% | ||
2–4 days a week | 12 | 29.27% | 3 | 75.00% | ||
5–6 days a week | 8 | 19.51% | 0 | 0.00% | ||
every day 1 time | 15 | 36.59% | 1 | 25.00% | ||
more than once every day | 3 | 7.32% | 0 | 0.00% | ||
Fish consumption | never | 8 | 19.51% | 0 | 0.00% | 0.527 |
less than once a week | 19 | 46.34% | 2 | 50.00% | ||
1 time a week | 12 | 29.27% | 1 | 25.00% | ||
2–4 days a week | 2 | 4.88% | 1 | 25.00% | ||
5–6 days a week | 0 | 0.00% | 0 | 0.00% | ||
every day 1 time | 1 | 2.44% | 0 | 0.00% | ||
more than once every day | 0 | 0.00% | 0 | 0.00% | ||
Sweets consumption | never | 0 | 0.00% | 0 | 0.00% | 0.711 |
less than once a week | 3 | 7.32% | 0 | 0.00% | ||
1 time a week | 9 | 21.95% | 0 | 0.00% | ||
2–4 days a week | 17 | 41.46% | 3 | 75.00% | ||
5–6 days a week | 2 | 4.88% | 0 | 0.00% | ||
every day 1 time | 6 | 14.63% | 1 | 25.00% | ||
more than once every day | 4 | 9.76% | 0 | 0.00% | ||
Coca-Cola and other fizzy drinks consumption | never | 3 | 7.32% | 0 | 0.00% | 0.686 |
less than once a week | 18 | 43.90% | 3 | 75.00% | ||
1 time a week | 9 | 21.95% | 0 | 0.00% | ||
2–4 days a week | 8 | 19.51% | 1 | 25.00% | ||
5–6 days a week | 0 | 0.00% | 0 | 0.00% | ||
every day 1 time | 0 | 0.00% | 0 | 0.00% | ||
more than once every day | 3 | 7.32% | 0 | 0.00% | ||
Fast-food consumption | never | 2 | 4.88% | 1 | 25.00% | 0.507 |
less than once a week | 28 | 68.29% | 3 | 75.00% | ||
1 time a week | 8 | 19.51% | 0 | 0.00% | ||
2–4 days a week | 2 | 4.88% | 0 | 0.00% | ||
5–6 days a week | 0 | 0.00% | 0 | 0.00% | ||
every day 1 time | 1 | 2.44% | 0 | 0.00% | ||
more than once every day | 0 | 0.00% | 0 | 0.00% | ||
Energy drinks consumption | never | 33 | 80.49% | 3 | 75.00% | 0.686 |
less than once a week | 5 | 12.20% | 1 | 25.00% | ||
1 time a week | 0 | 0.00% | 0 | 0.00% | ||
2–4 days a week | 3 | 7.32% | 0 | 0.00% | ||
5–6 days a week | 0 | 0.00% | 0 | 0.00% | ||
every day 1 time | 0 | 0.00% | 0 | 0.00% | ||
more than once every day | 0 | 0.00% | 0 | 0.00% |
Cluster No. 1 (n = 7) | Cluster No. 2 (n = 3) | Cluster No. 3 (n = 19) | Cluster No. 4 (n = 16) | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Number | Percent | Number | Percent | Number | Percent | Number | Percent | |||
Sex | F | 4 | 57.14% | 2 | 66.67% | 13 | 68.42% | 14 | 87.50% | 0.410 |
M | 3 | 42.86% | 1 | 33.33% | 6 | 31.58% | 2 | 12.50% | ||
RCA centile | <25 | 6 | 85.71% | 3 | 100.00% | 6 | 31.58% | 8 | 50.00% | 0.131 |
25–74 | 1 | 14.29% | 0 | 0.00% | 8 | 42.11% | 6 | 37.50% | ||
75–94 | 0 | 0.00% | 0 | 0.00% | 1 | 5.26% | 2 | 12.50% | ||
≥95 | 0 | 0.00% | 0 | 0.00% | 4 | 21.05% | 0 | 0.00% | ||
RCA centile | <75 cc | 7 | 100.00% | 3 | 100.00% | 14 | 73.68% | 14 | 87.50% | 0.304 |
≥75 cc | 0 | 0.00% | 0 | 0.00% | 5 | 26.32% | 2 | 12.50% | ||
LCA centile | <25 | 5 | 71.43% | 2 | 66.67% | 5 | 26.32% | 6 | 37.50% | 0.288 |
25–74 | 2 | 28.57% | 1 | 33.33% | 9 | 47.37% | 8 | 50.00% | ||
75–94 | 0 | 0.00% | 0 | 0.00% | 1 | 5.26% | 2 | 12.50% | ||
≥95 | 0 | 0.00% | 0 | 0.00% | 4 | 21.05% | 0 | 0.00% | ||
LCA centile | <75 cc | 7 | 100.00% | 3 | 100.00% | 14 | 73.68% | 14 | 87.50% | 0.304 |
≥75 cc | 0 | 0.00% | 0 | 0.00% | 5 | 26.32% | 2 | 12.50% | ||
cIMT | <95 | 7 | 100.00% | 3 | 100.00% | 15 | 78.95% | 16 | 100.00% | 0.111 |
≥95 | 0 | 0.00% | 0 | 0.00% | 4 | 21.05% | 0 | 0.00% | ||
Apgar score | 1 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0.627 |
2 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
3 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
4 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
5 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
6 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 1 | 6.25% | ||
7 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 1 | 6.25% | ||
8 | 0 | 0.00% | 0 | 0.00% | 2 | 10.53% | 1 | 6.25% | ||
9 | 1 | 14.29% | 1 | 33.33% | 8 | 42.11% | 3 | 18.75% | ||
10 | 6 | 85.71% | 2 | 66.67% | 9 | 47.37% | 10 | 62.50% | ||
Type of weight after childbirth | AGA | 6 | 85.71% | 3 | 100.00% | 17 | 89.47% | 15 | 93.75% | 0.360 |
LGA | 0 | 0.00% | 0 | 0.00% | 2 | 10.53% | 1 | 6.25% | ||
SGA | 1 | 14.29% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
BMI | Underweight | 0 | 0.00% | 0 | 0.00% | 3 | 15.79% | 1 | 6.25% | 0.237 |
Appropriate body mass | 6 | 85.71% | 2 | 66.67% | 9 | 47.37% | 6 | 37.50% | ||
Overweight | 1 | 14.29% | 1 | 33.33% | 2 | 10.53% | 7 | 43.75% | ||
Obesity | 0 | 0.00% | 0 | 0.00% | 5 | 26.32% | 2 | 12.50% | ||
BMI | normal | 6 | 85.71% | 2 | 66.67% | 9 | 47.37% | 5 | 31.25% | 0.103 |
abnormal | 1 | 14.29% | 1 | 33.33% | 10 | 52.63% | 11 | 68.75% | ||
BMI < 85 | YES | 6 | 85.71% | 2 | 66.67% | 12 | 63.16% | 7 | 43.75% | 0.281 |
NO | 1 | 14.29% | 1 | 33.33% | 7 | 36.84% | 9 | 56.25% | ||
RR | <90 percentile | 7 | 100.00% | 3 | 100.00% | 19 | 100.00% | 16 | 100.00% | ------ |
90–95 percentile | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
>95 percentile | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
Ideal cardiovascular health | YES | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 1 | 6.25% | 0.603 |
NO | 7 | 100.00% | 3 | 100.00% | 19 | 100.00% | 15 | 93.75% | ||
Passive smoking | NO | 7 | 100.00% | 0 | 0.00% | 16 | 84.21% | 13 | 81.25% | 0.003 |
YES | 0 | 0.00% | 3 | 100.00% | 3 | 15.79% | 3 | 18.75% | ||
Smoking parents | NO | 7 | 100.00% | 0 | 0.00% | 15 | 78.95% | 15 | 93.75% | 0.001 |
YES | 0 | 0.00% | 3 | 100.00% | 4 | 21.05% | 1 | 6.25% | ||
Family history of cardiovascular disease | NO | 3 | 42.86% | 2 | 66.67% | 12 | 63.16% | 8 | 50.00% | 0.741 |
YES | 4 | 57.14% | 1 | 33.33% | 7 | 36.84% | 8 | 50.00% | ||
ESR | <10 mm/1 h | 5 | 71.43% | 2 | 66.67% | 11 | 57.89% | 9 | 56.25% | 0.904 |
>10 mm/1 h | 2 | 28.57% | 1 | 33.33% | 8 | 42.11% | 7 | 43.75% | ||
Uric acid | <4 mg/L | 6 | 85.71% | 2 | 66.67% | 10 | 52.63% | 7 | 43.75% | 0.296 |
≥4 mg/L | 1 | 14.29% | 1 | 33.33% | 9 | 47.37% | 9 | 56.25% | ||
Fasting glucose | <100 mg/L | 5 | 71.43% | 3 | 100.00% | 18 | 94.74% | 16 | 100.00% | 0.078 |
≥100 mg/L | 2 | 28.57% | 0 | 0.00% | 1 | 5.26% | 0 | 0.00% | ||
HDL | <40 mg/dL | 1 | 14.29% | 1 | 33.33% | 1 | 5.26% | 2 | 12.50% | 0.543 |
>45 mg/dL | 5 | 71.43% | 2 | 66.67% | 13 | 68.42% | 13 | 81.25% | ||
40–45 mg/dL | 1 | 14.29% | 0 | 0.00% | 5 | 26.32% | 1 | 6.25% | ||
HDL | <40 mg/dL | 1 | 14.29% | 1 | 33.33% | 1 | 5.26% | 2 | 12.50% | 0.520 |
>45 mg/dL 40–45 mg/dL | 6 | 85.71% | 2 | 66.67% | 18 | 94.74% | 14 | 87.50% | ||
LDL | <110 mg/dL | 2 | 28.57% | 3 | 100.00% | 11 | 57.89% | 11 | 68.75% | 0.189 |
110–129 mg/dL | 1 | 14.29% | 0 | 0.00% | 5 | 26.32% | 2 | 12.50% | ||
>130 mg/dL | 4 | 57.14% | 0 | 0.00% | 3 | 15.79% | 3 | 18.75% | ||
TC | <170 mg/dL | 2 | 28.57% | 3 | 100.00% | 12 | 63.16% | 11 | 68.75% | 0.099 |
170–199 mg/dL | 2 | 28.57% | 0 | 0.00% | 6 | 31.58% | 4 | 25.00% | ||
>200 mg/dL | 3 | 42.86% | 0 | 0.00% | 1 | 5.26% | 1 | 6.25% | ||
Triglycerides | 0–9 years <75 mg/dL 10–19 years <90 mg/dL | 3 | 42.86% | 2 | 66.67% | 12 | 63.16% | 7 | 43.75% | 0.869 |
0–9 years 75–99 mg/dL 10–19 years 90–129 mg/dL | 2 | 28.57% | 0 | 0.00% | 3 | 15.79% | 4 | 25.00% | ||
0–9 years >100 mg/dL 10–19 years >130 mg/dL | 2 | 28.57% | 1 | 33.33% | 4 | 21.05% | 5 | 31.25% | ||
Lipid profile | normal | 0 | 0.00% | 1 | 33.33% | 6 | 31.58% | 3 | 18.75% | 0.349 |
abnormal | 7 | 100.00% | 2 | 66.67% | 13 | 68.42% | 13 | 81.25% | ||
CRP | <5 mg/L | 6 | 85.71% | 3 | 100.00% | 18 | 94.74% | 14 | 87.50% | 0.775 |
≥5 mg/L | 1 | 14.29% | 0 | 0.00% | 1 | 5.26% | 2 | 12.50% | ||
RF | minus | 6 | 85.71% | 2 | 66.67% | 18 | 94.74% | 16 | 100.00% | 0.152 |
plus | 1 | 14.29% | 1 | 33.33% | 1 | 5.26% | 0 | 0.00% | ||
painful conditions | No | 5 | 71.43% | 3 | 100.00% | 16 | 84.21% | 13 | 81.25% | 0.737 |
Yes | 2 | 28.57% | 0 | 0.00% | 3 | 15.79% | 3 | 18.75% | ||
VAS scale | 0 | 5 | 71.43% | 3 | 100.00% | 16 | 84.21% | 13 | 81.25% | 0.927 |
1 | 1 | 14.29% | 0 | 0.00% | 1 | 5.26% | 2 | 12.50% | ||
2 | 1 | 14.29% | 0 | 0.00% | 2 | 10.53% | 1 | 6.25% | ||
Physical activity | No | 1 | 14.29% | 1 | 33.33% | 8 | 42.11% | 6 | 37.50% | 0.621 |
any kind of | 6 | 85.71% | 2 | 66.67% | 11 | 57.89% | 10 | 62.50% | ||
Physical activity | No | 3 | 42.86% | 2 | 66.67% | 12 | 63.16% | 9 | 56.25% | 0.807 |
≥3 days/week | 4 | 57.14% | 1 | 33.33% | 7 | 36.84% | 7 | 43.75% | ||
Number of days with physical activity >60 min per day | 0 | 1 | 14.29% | 1 | 33.33% | 8 | 42.11% | 6 | 37.50% | 0.272 |
1 | 0 | 0.00% | 0 | 0.00% | 1 | 5.26% | 3 | 18.75% | ||
2 | 2 | 28.57% | 1 | 33.33% | 3 | 15.79% | 0 | 0.00% | ||
3 | 2 | 28.57% | 0 | 0.00% | 3 | 15.79% | 1 | 6.25% | ||
4 | 1 | 14.29% | 0 | 0.00% | 1 | 5.26% | 2 | 12.50% | ||
5 | 1 | 14.29% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
6 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
7 | 0 | 0.00% | 1 | 33.33% | 3 | 15.79% | 4 | 25.00% | ||
Physical activity 7 days a week >60 min | No | 7 | 100.00% | 2 | 66.67% | 16 | 84.21% | 12 | 75.00% | 0.452 |
Yes | 0 | 0.00% | 1 | 33.33% | 3 | 15.79% | 4 | 25.00% | ||
Sedentary screen time before COVID-19 pandemic | <3 h | 2 | 28.57% | 1 | 33.33% | 4 | 21.05% | 7 | 43.75% | 0.548 |
≥3 h | 5 | 71.43% | 2 | 66.67% | 15 | 78.95% | 9 | 56.25% | ||
Sedentary screen time in COVID pandemic | <3 h | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ------ |
≥3 h | 7 | 100.00% | 3 | 100.00% | 19 | 100.00% | 16 | 100.00% | ||
Fruit consumption | never | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | <0.001 |
less than once a week | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
1 time a week | 0 | 0.00% | 0 | 0.00% | 3 | 15.79% | 0 | 0.00% | ||
2–4 days a week | 1 | 14.29% | 2 | 66.67% | 15 | 78.95% | 0 | 0.00% | ||
5–6 days a week | 0 | 0.00% | 1 | 33.33% | 1 | 5.26% | 0 | 0.00% | ||
every day 1 time | 5 | 71.43% | 0 | 0.00% | 0 | 0.00% | 9 | 56.25% | ||
more than once every day | 1 | 14.29% | 0 | 0.00% | 0 | 0.00% | 7 | 43.75% | ||
Vegetable consumption | never | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0.294 |
less than once a week | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
1 time a week | 0 | 0.00% | 1 | 33.33% | 2 | 10.53% | 0 | 0.00% | ||
2–4 days a week | 2 | 28.57% | 2 | 66.67% | 8 | 42.11% | 3 | 18.75% | ||
5–6 days a week | 1 | 14.29% | 0 | 0.00% | 5 | 26.32% | 2 | 12.50% | ||
every day 1 time | 3 | 42.86% | 0 | 0.00% | 4 | 21.05% | 9 | 56.25% | ||
more than once every day | 1 | 14.29% | 0 | 0.00% | 0 | 0.00% | 2 | 12.50% | ||
Fish consumption | never | 0 | 0.00% | 2 | 66.67% | 3 | 15.79% | 3 | 18.75% | 0.203 |
less than once a week | 6 | 85.71% | 1 | 33.33% | 9 | 47.37% | 5 | 31.25% | ||
1 time a week | 1 | 14.29% | 0 | 0.00% | 5 | 26.32% | 7 | 43.75% | ||
2–4 days a week | 0 | 0.00% | 0 | 0.00% | 2 | 10.53% | 0 | 0.00% | ||
5–6 days a week | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
every day 1 time | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 1 | 6.25% | ||
more than once every day | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
Sweets consumption | never | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0.019 |
less than once a week | 0 | 0.00% | 0 | 0.00% | 1 | 5.26% | 2 | 12.50% | ||
1 time a week | 0 | 0.00% | 0 | 0.00% | 4 | 21.05% | 5 | 31.25% | ||
2–4 days a week | 0 | 0.00% | 2 | 66.67% | 9 | 47.37% | 9 | 56.25% | ||
5–6 days a week | 1 | 14.29% | 0 | 0.00% | 1 | 5.26% | 0 | 0.00% | ||
every day 1 time | 4 | 57.14% | 0 | 0.00% | 3 | 15.79% | 0 | 0.00% | ||
more than once every day | 2 | 28.57% | 1 | 33.33% | 1 | 5.26% | 0 | 0.00% | ||
Coca-Cola and other fizzy drinks consumption | never | 0 | 0.00% | 0 | 0.00% | 1 | 5.26% | 2 | 12.50% | <0.001 |
less than once a week | 3 | 42.86% | 0 | 0.00% | 8 | 42.11% | 10 | 62.50% | ||
1 time a week | 1 | 14.29% | 0 | 0.00% | 6 | 31.58% | 2 | 12.50% | ||
2–4 days a week | 3 | 42.86% | 0 | 0.00% | 4 | 21.05% | 2 | 12.50% | ||
5–6 days a week | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
every day 1 time | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
more than once every day | 0 | 0.00% | 3 | 100.00% | 0 | 0.00% | 0 | 0.00% | ||
Fast-food consumption | never | 0 | 0.00% | 0 | 0.00% | 2 | 10.53% | 1 | 6.25% | 0.004 |
less than once a week | 3 | 42.86% | 1 | 33.33% | 15 | 78.95% | 12 | 75.00% | ||
1 time a week | 3 | 42.86% | 0 | 0.00% | 2 | 10.53% | 3 | 18.75% | ||
2–4 days a week | 1 | 14.29% | 1 | 33.33% | 0 | 0.00% | 0 | 0.00% | ||
5–6 days a week | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
every day 1 time | 0 | 0.00% | 1 | 33.33% | 0 | 0.00% | 0 | 0.00% | ||
more than once every day | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
Energy drinks consumption | never | 6 | 85.71% | 2 | 66.67% | 15 | 78.95% | 13 | 81.25% | 0.633 |
less than once a week | 1 | 14.29% | 0 | 0.00% | 3 | 15.79% | 2 | 12.50% | ||
1 time a week | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
2–4 days a week | 0 | 0.00% | 1 | 33.33% | 1 | 5.26% | 1 | 6.25% | ||
5–6 days a week | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
every day 1 time | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | ||
more than once every day | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% |
Cluster No. 1 (n = 7) | Cluster No. 2 (n = 3) | Cluster No. 3 (n = 19) | Cluster No. 4 (n = 16) | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | Mean | SD | Median | Mean | SD | Median | Mean | SD | Median | Mean | SD | ||
Age | 12 | 11.86 | 3.338 | 16 | 16.33 | 1.528 | 15 | 14.26 | 3.07 | 12 | 12.25 | 3.55 | 0.087 |
RCA | 0.33 | 0.337 | 0.030 | 0.33 | 0.35 | 0.044 | 0.38 | 0.390 | 0.068 | 0.35 | 0.349 | 0.048 | 0.085 |
LCA | 0.34 | 0.337 | 0.024 | 0.33 | 0.353 | 0.040 | 0.37 | 0.390 | 0.066 | 0.36 | 0.353 | 0.051 | 0.144 |
Birth weight | 3.2 | 3.049 | 0.678 | 3.76 | 3.647 | 0.402 | 3.35 | 3.504 | 0.494 | 3.225 | 3.359 | 0.437 | 0.312 |
ESR | 9 | 8.714 | 3.988 | 5 | 7.333 | 5.859 | 9 | 13.47 | 11.78 | 9.5 | 14.75 | 17.5 | 0.653 |
Sedentary screen time before COVID-19 pandemic [h] | 3.5 | 3.143 | 1.029 | 4 | 3.333 | 1.155 | 4 | 3.789 | 1.981 | 3 | 2.875 | 1.103 | 0.375 |
Sedentary screen time in COVID-19 pandemic [h] | 7 | 7.143 | 1.574 | 9 | 8.667 | 0.577 | 9 | 8.211 | 1.686 | 9 | 7.438 | 1.861 | 0.298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruca, M.; Zamojska, J.; Niewiadomska-Jarosik, K.; Wosiak, A.; Stasiak, A.; Sikorska, K.; Stańczyk, J.; Smolewska, E. Assessment of Cardiovascular Risk Factors in Patients with Juvenile Idiopathic Arthritis. Nutrients 2023, 15, 1700. https://doi.org/10.3390/nu15071700
Gruca M, Zamojska J, Niewiadomska-Jarosik K, Wosiak A, Stasiak A, Sikorska K, Stańczyk J, Smolewska E. Assessment of Cardiovascular Risk Factors in Patients with Juvenile Idiopathic Arthritis. Nutrients. 2023; 15(7):1700. https://doi.org/10.3390/nu15071700
Chicago/Turabian StyleGruca, Marta, Justyna Zamojska, Katarzyna Niewiadomska-Jarosik, Agnieszka Wosiak, Aleksandra Stasiak, Karolina Sikorska, Jerzy Stańczyk, and Elżbieta Smolewska. 2023. "Assessment of Cardiovascular Risk Factors in Patients with Juvenile Idiopathic Arthritis" Nutrients 15, no. 7: 1700. https://doi.org/10.3390/nu15071700
APA StyleGruca, M., Zamojska, J., Niewiadomska-Jarosik, K., Wosiak, A., Stasiak, A., Sikorska, K., Stańczyk, J., & Smolewska, E. (2023). Assessment of Cardiovascular Risk Factors in Patients with Juvenile Idiopathic Arthritis. Nutrients, 15(7), 1700. https://doi.org/10.3390/nu15071700