Association between Genotype and the Glycemic Response to an Oral Glucose Tolerance Test: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Reporting Strategy
2.5. Quality Assessment
3. Results
3.1. Characteristics of the Identified Studies
3.2. Study Quality Assessment
3.3. Main Findings
3.3.1. Transcription Factor 7 Like 2 (TCF7L2)
3.3.2. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ)
3.3.3. Potassium Inwardly Rectifying Channel Subfamily J Member 11 (KCNJ11)
3.3.4. Further Genes
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berry, S.E.; Valdes, A.M.; Drew, D.A.; Asnicar, F.; Mazidi, M.; Wolf, J.; Capdevila, J.; Hadjigeorgiou, G.; Davies, R.; Al Khatib, H.; et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 2020, 26, 964–973. [Google Scholar] [CrossRef]
- Krug, S.; Kastenmüller, G.; Stückler, F.; Rist, M.J.; Skurk, T.; Sailer, M.; Raffler, J.; Römisch-Margl, W.; Adamski, J.; Prehn, C.; et al. The dynamic range of the human metabolome revealed by challenges. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2012, 26, 2607–2619. [Google Scholar] [CrossRef]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef]
- Vis, D.J.; Westerhuis, J.A.; Jacobs, D.M.; van Duynhoven, J.; Wopereis, S.; van Ommen, B.; Hendriks, M.M.W.B.; Smilde, A.K. Analyzing metabolomics-based challenge tests. Metabolomics 2015, 11, 50–63. [Google Scholar] [CrossRef]
- Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Gloyn, A.L.; et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 2010, 42, 105–116. [Google Scholar] [CrossRef]
- Saxena, R.; Hivert, M.-F.; Langenberg, C.; Tanaka, T.; Pankow, J.; Vollenweider, P.; Lyssenko, V.; Bouatia-Naji, N.; Dupuis, J.; Jackson, A.U.; et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 2010, 42, 142–148. [Google Scholar] [CrossRef]
- Ellis, A.; Rozga, M.; Braakhuis, A.; Monnard, C.R.; Robinson, K.; Sinley, R.; Wanner, A.; Vargas, A.J. Effect of Incorporating Genetic Testing Results into Nutrition Counseling and Care on Health Outcomes: An Evidence Analysis Center Systematic Review-Part II. J. Acad. Nutr. Diet. 2021, 121, 582–605.e517. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Booth, A.; Brice, A. Evidence-Based Practice for Information Professionals: A Handbook; Facet Pub.: London, UK, 2004. [Google Scholar]
- Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; et al. Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [Google Scholar] [CrossRef]
- Campbell, H.; Rudan, I. Interpretation of genetic association studies in complex disease. Pharm. J. 2002, 2, 349–360. [Google Scholar] [CrossRef]
- Ruchat, S.-M.; Elks, C.E.; Loos, R.J.F.; Vohl, M.-C.; Weisnagel, S.J.; Rankinen, T.; Bouchard, C.; Perusse, L. Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies. Acta Diabetol. 2009, 46, 217–226. [Google Scholar] [CrossRef]
- Ruchat, S.-M.; Elks, C.E.; Loos, R.J.; Vohl, M.-C.; Weisnagel, S.J.; Rankinen, T.; Bouchard, C.; Pérusse, L. Evidence of Interaction between Type 2 Diabetes Susceptibility Genes and Dietary Fat Intake for Adiposity and Glucose Homeostasis-Related Phenotypes. J. Nutrigenet. Nutr. 2009, 2, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Bossé, Y.; Weisnagel, S.J.; Bouchard, C.; Després, J.-P.; Pérusse, L.; Vohl, M.-C. Combined effects of PPAR gamma(2) P12A and PPAR alpha L162V polymorphisms on glucose and insulin homeostasis: The Quebec Family Study. J. Hum. Genet. 2003, 48, 614–621. [Google Scholar] [CrossRef]
- Ruchat, S.-M.; Weisnagel, S.J.; Vohl, M.-C.; Rankinen, T.; Bouchard, C.; Pérusse, L. Evidence for Interaction between PPARG Pro12Ala and PPARGC1A Gly482Ser Polymorphisms in Determining Type 2 Diabetes Intermediate Phenotypes in Overweight Subjects. Exp. Clin. Endocrinol. Diabetes 2009, 117, 455–459. [Google Scholar] [CrossRef]
- Ruchat, S.-M.; Loos, R.J.F.; Rankinen, T.; Vohl, M.-C.; Weisnagel, S.J.; Despres, J.-P.; Bouchard, C.; Perusse, L. Associations between glucose tolerance, insulin sensitivity and insulin secretion phenotypes and polymorphisms in adiponectin and adiponectin receptor genes in the Quebec Family Study. Diabet. Med. 2008, 25, 400–406. [Google Scholar] [CrossRef]
- Stephanie-May, R.; John, W.S.; Tuomo, R.; Claude, B.; Marie-Claude, V.; Louis, P. Interaction between HNF4A polymorphisms and physical activity in relation to type 2 diabetes-related traits: Results from the Quebec Family Study. Diabetes Res. Clin. Pract. 2009, 84, 211–218. [Google Scholar] [CrossRef]
- Damcott, C.M.; Pollin, T.I.; Reinhart, L.J.; Ott, S.H.; Shen, H.; Silver, K.D.; Mitchell, B.D.; Shuldiner, A.R. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish—Replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes 2006, 55, 2654–2659. [Google Scholar] [CrossRef]
- Damcott, C.M.; Hoppman, N.; Ott, S.H.; Reinhart, L.J.; Wang, J.; Pollin, T.I.; O’Connell, J.R.; Mitchell, B.D.; Shuldiner, A.R. Polymorphisms in both promoters of hepatocyte nuclear factor 4-alpha are associated with type 2 diabetes in the Amish. Diabetes 2004, 53, 3337–3341. [Google Scholar] [CrossRef]
- Loos, R.J.; Franks, P.W.; Francis, R.W.; Barroso, I.; Gribble, F.M.; Savage, D.B.; Ong, K.K.; O’Rahilly, S.; Wareham, N.J. TCF7L2 polymorphisms modulate proinsulin levels and beta-cell function in a British europid population. Diabetes 2007, 56, 1943–1947. [Google Scholar] [CrossRef]
- Kirchhoff, K.; Machicao, F.; Haupt, A.; Schäfer, S.A.; Tschritter, O.; Staiger, H.; Stefan, N.; Häring, H.-U.; Fritsche, A. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 2008, 51, 597–601. [Google Scholar] [CrossRef]
- Poirier, O.; Nicaud, V.; Cambien, F.; Tiret, L. The Pro12Ala polymorphism in the peroxisome proliferator-activated receptor gamma2 gene is not associated with postprandial responses to glucose or fat tolerance tests in young healthy subjects: The European Atherosclerosis Research Study II. J. Mol. Med. 2000, 78, 346–351. [Google Scholar] [CrossRef]
- Nicaud, V.; Raoux, S.; Poirier, O.; Cambien, F.; O’Reilly, D.; Tiret, L. The TNF alpha/G-308A polymorphism influences insulin sensitivity in offspring of patients with coronary heart disease: The European Atherosclerosis Research Study II. Atherosclerosis 2002, 161, 317–325. [Google Scholar] [CrossRef]
- Yang, W.-S.; Hsiung, C.A.; Ho, L.-T.; Chen, Y.-T.; He, C.-T.; Curb, J.D.; Grove, J.; Quertermous, T.; Kuo, S.-S.; Chuang, L.-M.; et al. Genetic epistasis of adiponectin and PPAR gamma 2 genotypes in modulation of insulin sensitivity: A family-based association study. Diabetologia 2003, 46, 977–983. [Google Scholar] [CrossRef]
- Helwig, U.; Rubin, D.; Kiosz, J.; Schreiber, S.; Fölsch, U.R.; Nothnagel, M.; Döring, F.; Schrezenmeir, J. The minor allele of the PPAR gamma 2 Pro12Ala polymorphism is associated with lower postprandial TAG and insulin levels in non-obese healthy men. Br. J. Nutr. 2007, 97, 847–854. [Google Scholar] [CrossRef]
- RRubin, D.; Helwig, U.; Nothnagel, M.; Lemke, N.; Schreiber, S.; Fölsch, U.R.; Döring, F.; Schrezenmeir, J. Postprandial plasma adiponectin decreases after glucose and high fat meal and is independently associated with postprandial triacylglycerols but not with-11388 promoter polymorphism. Br. J. Nutr. 2008, 99, 76–82. [Google Scholar] [CrossRef]
- Staiger, H.; Stančáková, A.; Zilinskaite, J.; Vänttinen, M.; Hansen, T.; Marini, M.A.; Hammarstedt, A.; Jansson, P.-A.; Sesti, G.; Smith, U.; et al. A candidate type 2 diabetes polymorphism near the HHEX locus affects acute glucose-stimulated insulin release in European populations—Results from the EUGENE2 study. Diabetes 2008, 57, 514–517. [Google Scholar] [CrossRef]
- Stančáková, A.; Pihlajamäki, J.; Kuusisto, J.; Stefan, N.; Fritsche, A.; Häring, H.; Andreozzi, F.; Succurro, E.; Sesti, G.; Boesgaard, T.W.; et al. Single-nucleotide polymorphism rs7754840 of CDKAL1 is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance. J. Clin. Endocrinol. Metab. 2008, 93, 1924–1930. [Google Scholar] [CrossRef]
- Pivovarova, O.; Nikiforova, V.J.; Pfeiffer, A.F.H.; Rudovich, N. The influence of genetic variations in HHEX gene on insulin metabolism in the German MESYBEPO cohort. Diabetes Metab. Res. Rev. 2009, 25, 156–162. [Google Scholar] [CrossRef]
- Hamid, Y.H.; Rose, C.S.; Urhammer, S.A.; Kristiansen, O.P.; Mandrup-Poulsen, T.; Borch-Johnsen, K.; Jørgensen, T.; Hansen, T.; Pedersen, O.; Glümer, C.; et al. Variations of the interleukin-6 promoter are associated with features of the metabolic syndrome in Caucasian Danes. Diabetologia 2005, 48, 251–260. [Google Scholar] [CrossRef]
- Hansen, S.K.; Rose, C.S.; Drivsholm, T.; Borch-Johnsen, K.; Pedersen, O.; Hansen, T. Variation near the hepatocyte nuclear factor (HNF)-4 alpha gene associates with type 2 diabetes in the Danish population. Diabetologia 2005, 48, 452–458. [Google Scholar] [CrossRef]
- Brand, E.; Schorr, U.; Kunz, I.; Kertmen, E.; Ringel, J.; Distler, A.; Sharma, A. Tumor necrosis factor-alpha-308 G/A polymorphism in obese Caucasians. Int. J. Obes. 2001, 25, 581–585. [Google Scholar] [CrossRef]
- Tschritter, O.; Stumvoll, M.; Machicao, F.; Holzwarth, M.; Weisser, M.; Maerker, E.; Teigeler, A.; Häring, H.; Fritsche, A. The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6.2 (KIR6.2) gene is associated with impaired glucagon suppression in response to hyperglycemia. Diabetes 2002, 51, 2854–2860. [Google Scholar] [CrossRef]
- Villareal, D.T.; Koster, J.C.; Robertson, H.; Akrouh, A.; Miyake, K.; Bell, G.I.; Patterson, B.W.; Nichols, C.G.; Polonsky, K.S. Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes 2009, 58, 1869–1878. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Zhang, Y.; Gao, P.; Zhu, D. Association of KCNJ11 with impaired glucose regulation in essential hypertension. Genet. Mol. Res. 2011, 10, 1111–1119. [Google Scholar] [CrossRef]
- Yi, Y.; Dongmei, L.; Phares, D.A.; Weiss, E.P.; Brandauer, J.; Hagberg, J.M. Association between KCNJ11 E23K genotype and cardiovascular and glucose metabolism phenotypes in older men and women. Exp. Physiol. 2008, 93, 95–103. [Google Scholar] [CrossRef]
- Baratta, R.; Di Paola, R.; Spampinato, D.; Fini, G.; Marucci, A.; Coco, A.; Vigneri, R.; Frittitta, L.; Trischitta, V. Evidence for genetic epistasis in human insulin resistance: The combined effect of PC-1 (K121Q) and PPARgamma2 (P12A) polymorphisms. J. Mol. Med. 2003, 81, 718–723. [Google Scholar] [CrossRef]
- Yamamoto, J.; Kageyama, S.; Nemoto, M.; Sasaki, T.; Sakurai, T.; Ishibashi, K.-I.; Mimura, A.; Yokota, K.; Tajima, N. PPARgamma2 pro12Ala polymorphism and insulin resistance in Japanese hypertensive patients. Hypertens. Res. 2002, 25, 25–29. [Google Scholar] [CrossRef]
- Poulsen, P.; Andersen, G.; Fenger, M.; Hansen, T.; Echwald, S.M.; Vølund, A.; Beck-Nielsen, H.; Pedersen, O.; Vaag, A. Impact of two common polymorphisms in the PPAR gamma gene on glucose tolerance and plasma insulin profiles in monozygotic and dizygotic twins—Thrifty genotype, thrifty phenotype, or both? Diabetes 2003, 52, 194–198. [Google Scholar] [CrossRef]
- Weiss, E.P.; Kulaputana, O.; Ghiu, I.A.; Brandauer, J.; Wohn, C.R.; Phares, D.A.; Shuldiner, A.R.; Hagberg, J.M. Endurance training-induced changes in the insulin response to oral glucose are associated with the peroxisome proliferator-activated receptor-gamma2 Pro12Ala genotype in men but not in women. Metabolism 2005, 54, 97–102. [Google Scholar] [CrossRef]
- Lu, J.; Varghese, R.T.; Zhou, L.; Vella, A.; Jensen, M.D. Glucose tolerance and free fatty acid metabolism in adults with variations in TCF7L2 rs7903146. Metab. Clin. Exp. 2017, 68, 55–63. [Google Scholar] [CrossRef]
- Mathiesen, D.S.; Bagger, J.I.; Hansen, K.B.; Junker, A.E.; Plamboeck, A.; Harring, S.; Idorn, T.; Hornum, M.; Holst, J.J.; Jonsson, A.E.; et al. No detectable effect of a type 2 diabetes-associated TCF7L2 genotype on the incretin effect. Endocr. Connect. 2020, 9, 1221–1232. [Google Scholar] [CrossRef]
- Pilgaard, K.A.; Jensen, C.B.; Schou, J.H.; Lyssenko, V.; Wegner, L.; Brøns, C.; Vilsbøll, T.; Hansen, T.; Madsbad, S.; Holst, J.J.; et al. The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. Diabetologia 2009, 52, 1298–1307. [Google Scholar] [CrossRef]
- Saxena, R.; Gianniny, L.; Burtt, N.P.; Lyssenko, V.; Giuducci, C.; Sjögren, M.; Florez, J.C.; Almgren, P.; Isomaa, B.; Orho-Melander, M.; et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 2006, 55, 2890–2895. [Google Scholar] [CrossRef]
- Shah, M.; Varghese, R.T.; Miles, J.M.; Piccinini, F.; Man, C.D.; Cobelli, C.; Bailey, K.R.; Rizza, R.A.; Vella, A. TCF7L2 Genotype and alpha-Cell Function in Humans Without Diabetes. Diabetes 2016, 65, 371–380. [Google Scholar] [CrossRef]
- Villareal, D.T.; Robertson, H.; Bell, G.I.; Patterson, B.W.; Tran, H.; Wice, B.; Polonsky, K.S. TCF7L2 variant rs7903146 affects the risk of type 2 diabetes by modulating incretin action. Diabetes 2010, 59, 479–485. [Google Scholar] [CrossRef]
- Wang, J.; Kuusisto, J.; Vänttinen, M.; Kuulasmaa, T.; Lindström, J.; Tuomilehto, J.; Uusitupa, M.; Laakso, M. Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion. Diabetologia 2007, 50, 1192–1200. [Google Scholar] [CrossRef]
- Wegner, L.; Hussain, M.S.; Pilgaard, K.; Hansen, T.; Pedersen, O.; Vaag, A.; Poulsen, P. Impact of TCF7L2 rs7903146 on insulin secretion and action in young and elderly Danish twins. J. Clin. Endocrinol. Metab. 2008, 93, 4013–4019. [Google Scholar] [CrossRef]
- Abate, N.; Carulli, L.; Cabo-Chan, A.; Chandalia, M.; Snell, P.G.; Grundy, S.M. Genetic Polymorphism PC-1 K121Q and Ethnic Susceptibility to Insulin Resistance. J. Clin. Endocrinol. Metab. 2003, 88, 5927–5934. [Google Scholar] [CrossRef]
- Baratta, R.; Rossetti, P.; Prudente, S.; Barbetti, F.; Sudano, D.; Nigro, A.; Farina, M.G.; Pellegrini, F.; Trischitta, V.; Frittitta, L. Role of the ENPP1 K121Q polymorphism in glucose homeostasis. Diabetes 2008, 57, 3360–3364. [Google Scholar] [CrossRef]
- Berthier, M.T.; Paradis, A.M.; Tchernof, A.; Bergeron, J.; Prud’homme, D.; Després, J.P.; Vohl, M.C. The interleukin 6-174G/C polymorphism is associated with indices of obesity in men. J. Hum. Genet. 2003, 48, 14–19. [Google Scholar] [CrossRef]
- Fernández-Real, J.M.; Broch, M.; Vendrell, J.; Gutiérrez, C.; Casamitjana, R.; Pugeat, M.; Richart, C.; Ricart, W. Interleukin-6 gene polymorphism and insulin sensitivity. Diabetes 2000, 49, 517–520. [Google Scholar] [CrossRef]
- Frittitta, L.; Baratta, R.; Spampinato, D.; Di Paola, R.; Pizzuti, A.; Vigneri, R.; Trischitta, V. The Q121 PC-1 variant and obesity have additive and independent effects in causing insulin resistance. J. Clin. Endocrinol. Metab. 2001, 86, 5888–5891. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, K.; Terao, H.; Kusuda, Y.; Yamashita, T.; Bahles, J.A.H.; Cruz, M.; Brugal, L.I.; Jongchong, B.; Yoshimatsu, H.; Sakata, T. The PC-1 Q121 allele is exceptionally prevalent in the Dominican Republic and is associated with type 2 diabetes. J. Clin. Endocrinol. Metab. 2004, 89, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, J.A.; Weiss, E.P.; Ghiu, I.A.; Kulaputana, O.; Phares, D.A.; Ferrell, R.E.; Hagberg, J.M. Influence of the interleukin-6 -174 G/C gene polymorphism on exercise training-induced changes in glucose tolerance indexes. J. Appl. Physiol. 2004, 97, 1338–1342. [Google Scholar] [CrossRef] [PubMed]
- Sheu, W.H.-H.; Lee, W.-J.; Lin, L.-Y.; Chang, R.-L.; Chen, Y.-T. Tumor necrosis factor alpha-238 and-308 polymorphisms do not associate with insulin resistance in hypertensive subjects. Metab. Clin. Exp. 2001, 50, 1447–1451. [Google Scholar] [CrossRef]
- Wybrańska, I.; Malczewska-Malec, M.; Niedbal, S.; Naskalski, J.W.; Dembińska-Kieć, A. The TNF-alpha gene NcoI polymorphism at position-308 of the promoter influences insulin resistance, and increases serum triglycerides after postprandial lipaemia in familiar obesity. Clin. Chem. Lab. Med. 2003, 41, 501–510. [Google Scholar] [CrossRef]
- Elbein, S.C.; Chu, W.S.; Das, S.K.; Yao-Borengasser, A.; Hasstedt, S.J.; Wang, H.; Rasouli, N.; Kern, P.A. Transcription factor 7-like 2 polymorphisms and type 2 diabetes, glucose homeostasis traits and gene expression in US participants of European and African descent. Diabetologia 2007, 50, 1621–1630. [Google Scholar] [CrossRef]
- Hasstedt, S.J.; Ren, Q.-F.; Teng, K.; Elbein, S.C. Effect of the peroxisome proliferator-activated receptor-gamma 2 pro(12)ala variant on obesity, glucose homeostasis, and blood pressure in members of familial type 2 diabetic kindreds. J. Clin. Endocrinol. Metab. 2001, 86, 536–541. [Google Scholar] [CrossRef]
- Liu, P.-H.; Chang, Y.-C.; Jiang, Y.-D.; Chen, W.J.; Chang, T.-J.; Kuo, S.-S.; Lee, K.-C.; Hsiao, P.-C.; Chiu, K.C.; Chuang, L.-M. Genetic variants of TCF7L2 are associated with insulin resistance and related metabolic phenotypes in Taiwanese adolescents and Caucasian young adults. J. Clin. Endocrinol. Metab. 2009, 94, 3575–3582. [Google Scholar] [CrossRef]
- Manning, A.K.; Hivert, M.-F.; Scott, R.A.; Grimsby, J.L.; Bouatia-Naji, N.; Chen, H.; Rybin, D.; Liu, C.-T.; Bielak, L.F.; Prokopenko, I.; et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 2012, 44, 659–669. [Google Scholar] [CrossRef]
- Tönjes, A.; Scholz, M.; Loeffler, M.; Stumvoll, M. Association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma with Pre-diabetic phenotypes: Meta-analysis of 57 studies on nondiabetic individuals. Diabetes Care 2006, 29, 2489–2497. [Google Scholar] [CrossRef] [PubMed]
- Fesinmeyer, M.; Meigs, J.B.; North, K.E.; Schumacher, F.R.; Bůžková, P.; Franceschini, N.; Haessler, J.; Goodloe, R.; Spencer, K.L.; Voruganti, V.S.; et al. Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: Results from the Population Architecture using Genomics and Epidemiology (PAGE) study. BMC Med. Genet. 2013, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.A.; Chu, A.Y.; Grarup, N.; Manning, A.K.; Hivert, M.-F.; Shungin, D.; Tönjes, A.; Yesupriya, A.; Barnes, D.; Bouatia-Naji, N.; et al. No interactions between previously associated 2-hour glucose gene variants and physical activity or BMI on 2-hour glucose levels. Diabetes 2012, 61, 1291–1296. [Google Scholar] [CrossRef]
- Chen, J.; Spracklen, C.N.; Marenne, G.; Varshney, A.; Corbin, L.J.; Luan, J.; Willems, S.M.; Wu, Y.; Zhang, X.; Horikoshi, M.; et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 2021, 53, 840–860. [Google Scholar] [CrossRef]
- Cauchi, S.; El Achhab, Y.; Choquet, H.; Dina, C.; Krempler, F.; Weitgasser, R.; Nejjari, C.; Patsch, W.; Chikri, M.; Meyre, D.; et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: A global meta-analysis. J. Mol. Med. 2007, 85, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.F.A.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz, J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A.; et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 2006, 38, 320–323. [Google Scholar] [CrossRef]
- Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Altshuler, D.; Hirschhorn, J.N.; Klannemark, M.; Lindgren, C.M.; Vohl, M.-C.; Nemesh, J.; Lane, C.R.; Schaffner, S.F.; Bolk, S.; Brewer, C.; et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 2000, 26, 76–80. [Google Scholar] [CrossRef]
- Deeb, S.S.; Fajas, L.; Nemoto, M.; Pihlajamäki, J.; Mykkänen, L.; Kuusisto, J.; Laakso, M.; Fujimoto, W.; Auwerx, J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 1998, 20, 284–287. [Google Scholar] [CrossRef]
- Hani, E.H.; Boutin, P.; Durand, E.; Inoue, H.; Permutt, M.A.; Velho, G.; Froguel, P. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): A meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia 1998, 41, 1511–1515. [Google Scholar] [CrossRef]
- Nielsen, E.-M.D.; Hansen, L.; Carstensen, B.; Echwald, S.M.; Drivsholm, T.; Glümer, C.; Thorsteinsson, B.; Borch-Johnsen, K.; Hansen, T.; Pedersen, O. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 2003, 52, 573–577. [Google Scholar] [CrossRef]
- Haupt, A.; Staiger, H.; Schäfer, S.A.; Kirchhoff, K.; Guthoff, M.; Machicao, F.; Gallwitz, B.; Stefan, N.; Häring, H.-U.; Fritsche, A. The risk allele load accelerates the age-dependent decline in beta cell function. Diabetologia 2009, 52, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Jansen, H.; Waterworth, D.M.; Nicaud, V.; Ehnholm, C.; Talmud, P. Interaction of the common apolipoprotein C-III (APOC3 -482C > T) and hepatic lipase (LIPC -514C > T) promoter variants affects glucose tolerance in young adults. European Atherosclerosis Research Study II (EARS-II). Ann. Hum. Genet. 2001, 65 Pt 3, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Kempe-Teufel, D.; Machicao, F.; Machann, J.; Böhm, A.; Schick, F.; Fritsche, A.; Stefan, N.; De Angelis, M.H.; Häring, H.-U.; Staiger, H. A Polygenic Risk Score of Lipolysis-Increasing Alleles Determines Visceral Fat Mass and Proinsulin Conversion. J. Clin. Endocrinol. Metab. 2019, 104, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Randrianarisoa, E.; Lehn-Stefan, A.; Krier, J.; Böhm, A.; Heni, M.; De Angelis, M.H.; Fritsche, A.; Häring, H.-U.; Stefan, N.; Staiger, H. AMPK Subunits Harbor Largely Nonoverlapping Genetic Determinants for Body Fat Mass, Glucose Metabolism, and Cholesterol Metabolism. J. Clin. Endocrinol. Metab. 2020, 105, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Stančáková, A.; Kuulasmaa, T.; Kuusisto, J.; Mohlke, K.L.; Collins, F.S.; Boehnke, M.; Laakso, M. Genetic risk scores in the prediction of plasma glucose, impaired insulin secretion, insulin resistance and incident type 2 diabetes in the METSIM study. Diabetologia 2017, 60, 1722–1730. [Google Scholar] [CrossRef] [PubMed]
- Ukkola, O.; Rankinen, T.; Weisnagel, S.; Sun, G.; Perusse, L.; Chagnon, Y.C.; Després, J.-P.; Bouchard, C. Interactions among the alpha2-, beta2-, and beta3-adrenergic receptor genes and obesity-related phenotypes in the Quebec Family Study. Metabolism 2000, 49, 1063–1070. [Google Scholar] [CrossRef]
- Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.; et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 2018, 50, 1219–1224. [Google Scholar] [CrossRef]
- Hornbak, M.; Banasik, K.; Justesen, J.M.; Krarup, N.T.; Sandholt, C.H.; Andersson, A.; Sandbaek, A.; Lauritzen, T.; Pisinger, C.; Witte, D.R.; et al. The minor C-allele of rs2014355 in ACADS is associated with reduced insulin release following an oral glucose load. BMC Med. Genet. 2011, 12, 8. [Google Scholar] [CrossRef]
- Ohishi, M.; Rakugi, H.; Miki, T.; Katsuya, T.; Okamura, A.; Kamide, K.; Nakata, Y.; Takami, S.; Ikegami, H.; Yanagitani, Y.; et al. Deletion polymorphism of angiotensin-converting enzyme gene is associated with postprandial hyperglycaemia in individuals undergoing general check-up. Clin. Exp. Pharmacol. Physiol. 2000, 27, 483–487. [Google Scholar] [CrossRef]
- Vasan, S.K.; Neville, M.J.; Antonisamy, B.; Samuel, P.; Fall, C.H.; Geethanjali, F.S.; Thomas, N.; Raghupathy, P.; Brismar, K.; Karpe, F. Absence of Birth-Weight Lowering Effect of ADCY5 and Near CCNL, but Association of Impaired Glucose-Insulin Homeostasis with ADCY5 in Asian Indians. PLoS ONE 2011, 6, 6. [Google Scholar] [CrossRef]
- Andersen, G.; Burgdorf, K.S.; Sparso, T.; Borch-Johnsen, K.; Jorgensen, T.; Hansen, T.; Pedersen, O. AHSG tag single nucleotide Polymorphisms associate with type 2 diabetes and dyslipidemia: Studies of metabolic traits in 7683 white danish subjects. Diabetes 2008, 57, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, J.A.; Witkowski, S.; Ludlow, A.T.; Roth, S.M.; Hagberg, J.M. AKT1 G205T genotype influences obesity-related metabolic phenotypes and their responses to aerobic exercise training in older Caucasians. Exp. Physiol. 2011, 96, 338–347. [Google Scholar] [CrossRef]
- Xu, M.; Li, X.Y.; Wang, J.G.; Du, P.F.; Hong, J.; Gu, W.Q.; Zhang, Y.F.; Ning, G. Glucose and lipid metabolism in relation to novel polymorphisms in the 5’-AMP-activated protein kinase gamma 2 gene in Chinese. Mol. Genet. Metab. 2005, 86, 372–378. [Google Scholar] [CrossRef]
- Staiger, H.; Machicao, F.; Werner, R.; Guirguis, A.; Weisser, M.; Stefan, N.; Fritsche, A.; Haring, H.U. Genetic variation within the ANGPTL4 gene is not associated with metabolic traits in white subjects at an increased risk for type 2 diabetes mellitus. Metab.-Clin. Exp. 2008, 57, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Nicaud, V.; Humphries, S.E.; Talmud, P.J.; Group, E. Contribution of APOA5 gene variants to plasma triglyceride determination and to the response to both fat and glucose tolerance challenges. Biochim. Biophys. Acta-Mol. Basis Dis. 2003, 1637, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Ragogna, F.; Lattuada, G.; Ruotolo, G.; Luzi, L.; Perseghin, G. Lack of association of apoE epsilon 4 allele with insulin resistance. Acta Diabetol. 2012, 49, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Sabra, M.M.; Damcott, C.; Pollin, T.I.; Ma, L.J.; Ott, S.; Shelton, J.C.; Shi, X.L.; Reinhart, L.; O’Connell, J.; et al. Evidence that Rho guanine nucleotide exchange factor 11 (ARHGEF11) on 1q21 is a type 2 diabetes susceptibility gene in the old order Amish. Diabetes 2007, 56, 1363–1368. [Google Scholar] [CrossRef] [PubMed]
- Johansen, A.; Nielsen, E.M.D.; Andersen, G.; Hamid, Y.H.; Jensen, D.P.; Glumer, C.; Drivsholm, T.; Borch-Johnsen, K.; Jorgensen, T.; Hansen, T.; et al. Large-scale studies of the functional K variant of the butyrylcholinesterase gene in relation to Type 2 diabetes and insulin secretion. Diabetologia 2004, 47, 1437–1441. [Google Scholar] [CrossRef]
- Silver, K.D.; Shi, X.; Mitchell, B.D. Betacellulin variants and type 2 diabetes in the Old Order Amish. Exp. Clin. Endocrinol. Diabetes 2007, 115, 229–231. [Google Scholar] [CrossRef]
- Fu, M.; Damcott, C.M.; Sabra, M.; Pollin, T.I.; Ott, S.H.; Wang, J.; Garant, M.J.; O’Connell, J.R.; Mitchell, B.D.; Shuldiner, A.R. Polymorphism in the calsequestrin 1 (CASQ1) gene on chromosome 1q21 is associated with type 2 diabetes in the old order Amish. Diabetes 2004, 53, 3292–3299. [Google Scholar] [CrossRef] [PubMed]
- Jayewardene, A.F.; Mavros, Y.; Gwinn, T.; Hancock, D.P.; Rooney, K.B. Associations between CD36 gene polymorphisms and metabolic response to a short-term endurance-training program in a young-adult population. Appl. Physiol. Nutr. Metab. 2016, 41, 157–167. [Google Scholar] [CrossRef]
- Auinger, A.; Rubin, D.; Sabandal, M.; Helwig, U.; Ruther, A.; Schreiber, S.; Foelsch, U.R.; Doring, F.; Schrezenmeir, J. A common haplotype of carnitine palmitoyltransferase 1b is associated with the metabolic syndrome. Br. J. Nutr. 2013, 109, 810–815. [Google Scholar] [CrossRef]
- Lutz, S.Z.; Franck, O.; Bohm, A.; Machann, J.; Schick, F.; Machicao, F.; Fritsche, A.; Haring, H.U.; Staiger, H. Common Genetic Variation in the Human CTF1 Locus, Encoding Cardiotrophin-1, Determines Insulin Sensitivity. PLoS ONE 2014, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Pivovarova, O.; Fisher, E.; Dudziak, K.; Ilkavets, I.; Dooley, S.; Slominsky, P.; Limborska, S.; Weickert, M.O.; Spranger, J.; Fritsche, A.; et al. A polymorphism within the connective tissue growth factor (CTGF) gene has no effect on non-invasive markers of beta-cell area and risk of type 2 diabetes. Dis. Markers 2011, 31, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Auinger, A.; Helwig, U.; Pfeuffer, M.; Rubin, D.; Luedde, M.; Rausche, T.; El Mokhtari, N.E.; Folsch, U.R.; Schreiber, S.; Frey, N.; et al. A variant in the heart-specific fatty acid transport protein 6 is associated with lower fasting and postprandial TAG, blood pressure and left ventricular hypertrophy. Br. J. Nutr. 2012, 107, 1422–1428. [Google Scholar] [CrossRef]
- Banasik, K.; Hollensted, M.; Andersson, E.; Sparso, T.; Sandbaek, A.; Lauritzen, T.; Jorgensen, T.; Witte, D.R.; Pedersen, O.; Hansen, T. The effect of FOXA2 rs1209523 on glucose-related phenotypes and risk of type 2 diabetes in Danish individuals. BMC Med. Genet. 2012, 13, 7. [Google Scholar] [CrossRef]
- Mussig, K.; Staiger, H.; Machicao, F.; Stancakova, A.; Kuusisto, J.; Laakso, M.; Thamer, C.; Machann, J.; Schick, F.; Claussen, C.D.; et al. Association of Common Genetic Variation in the FOXO1 Gene with beta-Cell Dysfunction, Impaired Glucose Tolerance, and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2009, 94, 1353–1360. [Google Scholar] [CrossRef]
- Banasik, K.; Ribel-Madsen, R.; Gjesing, A.P.; Wegner, L.; Andersson, A.; Poulsen, P.; Borglykke, A.; Witte, D.R.; Pedersen, O.; Hansen, T.; et al. The FOXO3A rs2802292 G-allele associates with improved peripheral and hepatic insulin sensitivity and increased skeletal muscle-FOXO3A mRNA expression in twins. J. Clin. Endocrinol. Metab. 2011, 96, E119–E124. [Google Scholar] [CrossRef]
- Rose, C.S.; Grarup, N.; Krarup, N.T.; Poulsen, P.; Wegner, L.; Nielsen, T.; Banasik, K.; Faerch, K.; Andersen, G.; Albrechtsen, A.; et al. A variant in the G6PC2/ABCB11 locus is associated with increased fasting plasma glucose, increased basal hepatic glucose production and increased insulin release after oral and intravenous glucose loads. Diabetologia 2009, 52, 2122–2129. [Google Scholar] [CrossRef]
- Sparso, T.; Andersen, G.; Nielsen, T.; Burgdorf, K.S.; Gjesing, A.P.; Nielsen, A.L.; Albrechtsen, A.; Rasmussen, S.S.; Jorgensen, T.; Borch-Johnsen, K.; et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia 2008, 51, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Nurnberger, J.; Dammer, S.; Philipp, T.; Wenzel, R.R.; Schafers, R.F. Metabolic and haemodynamic effects of oral glucose loading in young healthy men carrying the 825T-allele of the G protein beta 3 subunit. Cardiovasc. Diabetol. 2003, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Mussig, K.; Staiger, H.; Machicao, F.; Machann, J.; Schick, F.; Schafer, S.A.; Claussen, C.D.; Holst, J.J.; Gallwitz, B.; Stefan, N.; et al. Preliminary report: Genetic variation within the GPBAR1 gene is not associated with metabolic traits in white subjects at an increased risk for type 2 diabetes mellitus. Metab.-Clin. Exp. 2009, 58, 1809–1811. [Google Scholar] [CrossRef] [PubMed]
- Hamid, Y.H.; Vissing, H.; Holst, B.; Urhammer, S.A.; Pyke, C.; Hansen, S.K.; Glumer, C.; Borch-Johnsen, K.; Jorgensen, T.; Schwartz, T.W.; et al. Studies of relationships between variation of the human G protein-coupled receptor 40 Gene and Type 2 diabetes and insulin release. Diabet. Med. 2005, 22, 74–80. [Google Scholar] [CrossRef]
- Poykko, S.; Ukkola, O.; Kauma, H.; Savolainen, M.J.; Kesaniemi, Y.A. Ghrelin Arg51Gln mutation is a risk factor for Type 2 diabetes and hypertension in a random sample of middle-aged subjects. Diabetologia 2003, 46, 455–458. [Google Scholar] [CrossRef]
- Gjesing, A.P.; Nielsen, A.A.; Brandslund, I.; Christensen, C.; Sandbaek, A.; Jorgensen, T.; Witte, D.; Bonnefond, A.; Froguel, P.; Hansen, T.; et al. Studies of a genetic variant in HK1 in relation to quantitative metabolic traits and to the prevalence of type 2 diabetes. BMC Med. Genet. 2011, 12, 8. [Google Scholar] [CrossRef]
- Luotola, K.; Paakkonen, R.; Alanne, M.; Lanki, T.; Moilanen, L.; Surakka, I.; Pietila, A.; Kahonen, M.; Nieminen, M.S.; Kesaniemi, Y.A.; et al. Association of Variation in the Interleukin-1 Gene Family with Diabetes and Glucose Homeostasis. J. Clin. Endocrinol. Metab. 2009, 94, 4575–4583. [Google Scholar] [CrossRef]
- Hamid, Y.H.; Urhammer, S.A.; Jensen, D.P.; Glumer, C.; Borch-Johnsen, K.; Jorgensen, T.; Hansen, T.; Pedersen, O. Variation in the interleukin-6 receptor gene associates with type 2 diabetes in Danish whites. Diabetes 2004, 53, 3342–3345. [Google Scholar] [CrossRef]
- Engelbrechtsen, L.; Mahendran, Y.; Jonsson, A.; Gjesing, A.P.; Weeke, P.E.; Jorgensen, M.E.; Faerch, K.; Witte, D.R.; Holst, J.J.; Jorgensen, T.; et al. Common variants in the hERG (KCNH2) voltage-gated potassium channel are associated with altered fasting and glucose-stimulated plasma incretin and glucagon responses. BMC Genet. 2018, 19, 9. [Google Scholar] [CrossRef]
- Holmkvist, J.; Banasik, K.; Andersen, G.; Unoki, H.; Jensen, T.S.; Pisinger, C.; Borch-Johnsen, K.; Sandbaek, A.; Lauritzen, T.; Brunak, S.; et al. The type 2 diabetes associated minor allele of rs2237895 KCNQ1 associates with reduced insulin release following an oral glucose load. PLoS ONE 2009, 4, e5872. [Google Scholar] [CrossRef]
- Neve, B.; Fernandez-Zapico, M.E.; Ashkenazi-Katalan, V.; Dina, C.; Hamid, Y.H.; Joly, E.; Vaillant, E.; Benmezroua, Y.; Durand, E.; Bakaher, N.; et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc. Natl. Acad. Sci. USA 2005, 102, 4807–4812. [Google Scholar] [CrossRef]
- Wauters, M.; Mertens, I.; Rankinen, T.; Chagnon, M.; Bouchard, C.; Van Gaal, L. Leptin receptor gene polymorphisms are associated with insulin in obese women with impaired glucose tolerance. J. Clin. Endocrinol. Metab. 2001, 86, 3227–3232. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.Y.; Ning, T.L.; Shi, J.; Chen, M.P.; Ding, L.; Huang, Y.; Kauderer, S.; Xu, M.; Cui, B.; Bi, Y.F.; et al. Association of a Gain-of-Function Variant in LGR4 with Central Obesity. Obesity 2017, 25, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Burgdorf, K.S.; Sandholt, C.H.; Sparso, T.; Andersen, G.; Witte, D.R.; Jorgensen, T.; Sandbaek, A.; Lauritzen, T.; Sorensen, T.I.A.; Madsbad, S.; et al. Studies of association between LPIN1 variants and common metabolic phenotypes among 17538 Danes. Eur. J. Endocrinol. 2010, 163, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Aulchenko, Y.S.; Pullen, J.; Kloosterman, W.P.; Yazdanpanah, M.; Hofman, A.; Vaessen, N.; Snijders, P.; Zubakov, D.; Mackay, I.; Olavesen, M.; et al. LPIN2 is associated with type 2 diabetes, glucose metabolism, and body composition. Diabetes 2007, 56, 3020–3026. [Google Scholar] [CrossRef]
- Ukkola, O.; Garenc, C.; Perusse, L.; Bergeron, J.; Despres, J.P.; Rao, D.C.; Bouchard, C. Genetic variation at the lipoprotein lipase locus and plasma lipoprotein and insulin levels in the Quebec Family Study. Atherosclerosis 2001, 158, 199–206. [Google Scholar] [CrossRef]
- Gu, Y.Y.; Luo, T.H.; Yang, J.; Zhang, D.; Dai, M.; Jian, W.X.; Zheng, S. The-822G/A polymorphism in the promoter region of the MAP4K5 gene is associated with reduced risk of type 2 diabetes in Chinese Hans from Shanghai. J. Hum. Genet. 2006, 51, 605–610. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, H.L.; Xu, K.F.; Qian, Y.; Wu, M.; Yang, T.; Chen, Y.C.; Zhao, X.H.; Chen, J.F.; Wen, J.B.; et al. Evaluation of common variants in MG53 and the risk of type 2 diabetes and insulin resistance in Han Chinese. SpringerPlus 2016, 5, 11. [Google Scholar] [CrossRef]
- Tang, L.; Tong, Y.; Cao, H.; Xie, S.; Yang, Q.; Zhang, F.; Zhu, Q.; Huang, L.; Lu, Q.; Yang, Y.; et al. The MTMR9 rs2293855 polymorphism is associated with glucose tolerance, insulin secretion, insulin sensitivity and increased risk of prediabetes. Gene 2014, 546, 150–155. [Google Scholar] [CrossRef]
- Ruchat, S.M.; Girard, M.; Weisnagel, S.J.; Bouchard, C.; Vohl, M.C.; Perusse, L. Association between mu-opioid receptor-1 102T > C polymorphism and intermediate type 2 diabetes phenotypes: Results from the Quebec Family Study (QFS). Clin. Exp. Pharmacol. Physiol. 2008, 35, 1018–1022. [Google Scholar] [CrossRef]
- Heni, M.; Haupt, A.; Schafer, S.A.; Ketterer, C.; Thamer, C.; Machicao, F.; Stefan, N.; Staiger, H.; Haring, H.U.; Fritsche, A. Association of obesity risk SNPs in PCSK1 with insulin sensitivity and proinsulin conversion. BMC Med. Genet. 2010, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.J.; Chiu, Y.F.; Sheu, W.H.H.; Shih, K.C.; Hwu, C.M.; Quertermous, T.; Jou, Y.S.; Kuo, S.S.; Chang, Y.C.; Chuang, L.M. Genetic polymorphisms of PCSK2 are associated with glucose homeostasis and progression to type 2 diabetes in a Chinese population. Sci. Rep. 2015, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Oberkofler, H.; Linnemayr, V.; Weitgasser, R.; Klein, K.; Xie, M.Q.; Iglseder, B.; Krempler, F.; Paulweber, B.; Patsch, W. Complex haplotypes of the PGC-1 alpha gene are associated with carbohydrate metabolism and type 2 diabetes. Diabetes 2004, 53, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Kachele, M.; Hennige, A.M.; Machann, J.; Hieronimus, A.; Lamprinou, A.; Machicao, F.; Schick, F.; Fritsche, A.; Stefan, N.; Nurnberg, B.; et al. Variation in the Phosphoinositide 3-Kinase Gamma Gene Affects Plasma HDL-Cholesterol without Modification of Metabolic or Inflammatory Markers. PLoS ONE 2015, 10, 17. [Google Scholar] [CrossRef]
- Yan, J.; Hu, C.; Jiang, F.; Zhang, R.; Wang, J.; Tang, S.; Peng, D.; Chen, M.; Bao, Y.; Jia, W. Genetic variants of PLA2G6 are associated with Type 2 diabetes mellitus and triglyceride levels in a Chinese population. Diabet. Med. 2015, 32, 280–286. [Google Scholar] [CrossRef]
- Hansen, T.H.; Vestergaard, H.; Jorgensen, T.; Jorgensen, M.E.; Lauritzen, T.; Brandslund, I.; Christensen, C.; Pedersen, O.; Hansen, T.; Gjesing, A.P. Impact of PTBP1 rs11085226 on glucose-stimulated insulin release in adult Danes. BMC Med. Genet. 2015, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Lindner, I.; Helwig, U.; Rubin, D.; Fischer, A.; Marten, B.; Schreiber, S.; Doring, F.; Schrezenmeir, J. Prostaglandin E synthase 2 (PTGES2) Arg298His polymorphism and parameters of the metabolic syndrome. Mol. Nutr. Food Res. 2007, 51, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Torekov, S.S.; Larsen, L.H.; Glumer, C.; Borch-Johnsen, Y.; Jorgensen, T.; Holst, J.J.; Madsen, O.D.; Hansen, T.; Pedersen, O. Evidence of an association between the Arg72 allele of the peptide YY and increased risk of type 2 diabetes. Diabetes 2005, 54, 2261–2265. [Google Scholar] [CrossRef]
- Burgdorf, K.S.; Gjesing, A.P.; Grarup, N.; Justesen, J.M.; Sandholt, C.H.; Witte, D.R.; Jorgensen, T.; Madsbad, S.; Hansen, T.; Pedersen, O. Association studies of novel obesity-related gene variants with quantitative metabolic phenotypes in a population-based sample of 6039 Danish individuals. Diabetologia 2012, 55, 105–113. [Google Scholar] [CrossRef]
- Bouchard, L.; Weisnagel, S.J.; Engert, J.C.; Hudson, T.J.; Bouchard, C.; Vohl, M.C.; Perusse, L. Human resistin gene polymorphism is associated with visceral obesity and fasting and oral glucose stimulated C-peptide in the Quebec Family Study. J. Endocrinol. Investig. 2004, 27, 1003–1009. [Google Scholar] [CrossRef]
- Enigk, U.; Breitfeld, J.; Schleinitz, D.; Dietrich, K.; Halbritter, J.; Fischer-Rosinsky, A.; Enigk, B.; Muller, I.; Spranger, J.; Pfeiffer, A.; et al. Role of genetic variation in the human sodium-glucose cotransporter 2 gene (SGLT2) in glucose homeostasis. Pharmacogenomics 2011, 12, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Bouatia-Naji, N.; Vatin, V.; Lecoeur, C.; Heude, B.; Proenca, C.; Veslot, J.; Jouret, B.; Tichet, J.; Charpentier, G.; Marre, M.; et al. Secretory granule neuroendocrine protein 1 (SGNE1) genetic variation and glucose intolerance in severe childhood and adult obesity. BMC Med. Genet. 2007, 8, 9. [Google Scholar] [CrossRef]
- Capuano, M.M.; Sorkin, J.D.; Chang, Y.P.; Ling, H.; O’Connell, J.R.; Rothman, P.B.; Mitchell, B.D.; Silver, K.D. Polymorphisms in the SOCS7 gene and glucose homeostasis traits. BMC Res. Notes 2013, 6, 235. [Google Scholar] [CrossRef] [PubMed]
- Weisnagel, S.J.; Rankinen, T.; Nadeau, A.; Rao, D.C.; Chagnon, Y.C.; Perusse, L.; Bouchard, C. Decreased fasting and oral glucose stimulated C-peptide in nondiabetic subjects with sequence variants in the sulfonylurea receptor 1 gene. Diabetes 2001, 50, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Ketterer, C.; Mussig, K.; Heni, M.; Dudziak, K.; Randrianarisoa, E.; Wagner, R.; Machicao, F.; Stefan, N.; Holst, J.J.; Fritsche, A.; et al. Genetic variation within the TRPM5 locus associates with prediabetic phenotypes in subjects at increased risk for type 2 diabetes. Metab.-Clin. Exp. 2011, 60, 1325–1333. [Google Scholar] [CrossRef]
- Halsall, D.J.; Luan, J.; Saker, P.; Huxtable, S.; Farooqi, I.S.; Keogh, J.; Wareham, N.J.; O’Rahilly, S. Uncoupling protein 3 genetic variants in human obesity: The c-55t promoter polymorphism is negatively correlated with body mass index in a UK Caucasian population. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 472–477. [Google Scholar] [CrossRef]
- Putt, W.; Palmen, J.; Tahri-Daizadeh, N.; Flavell, D.M.; Humphries, S.E.; Talmud, P.J.; Grp, E. Variation in USF1 shows haplotype effects, gene: Gene and gene: Environment associations with glucose and lipid parameters in the European Atherosclerosis Research Study II. Hum. Mol. Genet. 2004, 13, 1587–1597. [Google Scholar] [CrossRef]
- Jian, W.X.; Luo, T.H.; Gu, Y.Y.; Zhang, H.L.; Zheng, S.; Dai, M.; Han, J.F.; Zhao, Y.; Li, G.; Luo, M. The visfatin gene is associated with glucose and lipid metabolism in a Chinese population. Diabet Med. 2006, 23, 967–973. [Google Scholar] [CrossRef]
- Chiu, K.C.; Chuang, L.M.; Yoon, C. The vitamin D receptor polymorphism in the translation initiation codon is a risk factor for insulin resistance in glucose tolerant Caucasians. BMC Med. Genet. 2001, 2, 1. [Google Scholar] [CrossRef]
- Prior, S.J.; Goldberg, A.P.; Ryan, A.S. ADRB2 haplotype is associated with glucose tolerance and insulin sensitivity in obese postmenopausal women. Obesity 2011, 19, 396–401. [Google Scholar] [CrossRef]
- Malczewska-Malec, M.; Wybranska, I.; Leszczynska-Golabek, I.; Niedbal, S.; Kwasniak, M.; Hartwich, J.; Kiec-Wilk, B.; Motyka, M.; Szopa, M.; Dembinska-Kiec, A. An analysis of the link between polymorphisms of the beta2 and beta3 adrenergic receptor gene and metabolic parameters among Polish Caucasians with familial obesity. Med. Sci. Monitor. 2003, 9, CR225–CR234. [Google Scholar]
- Hojlund, K.; Christiansen, C.; Bjornsbo, K.S.; Poulsen, P.; Bathum, L.; Henriksen, J.E.; Lammert, O.; Beck-Nielsen, H. Energy expenditure, body composition and insulin response to glucose in male twins discordant for the Trp64Arg polymorphism of the beta(3)-adrenergic receptor gene. Diabetes Obes. Metab. 2006, 8, 322–330. [Google Scholar] [CrossRef]
- Bentzen, J.; Poulsen, P.; Vaag, A.; Beck-Nielsen, H.; Fenger, M. The influence of the polymorphism in apolipoprotein B codon 2488 on insulin and lipid levels in a Danish twin population. Diabet. Med. 2002, 19, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, J.; Poulsen, P.; Vaag, A.; Fenger, M. Further studies of the influence of apolipoprotein B alleles on glucose and lipid metabolism. Hum. Biol. 2003, 75, 687–703. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.O.; Wang, Y.; Zhang, Y.; Gao, P.J.; Zhu, D.L. Association of CAPN10 gene with insulin sensitivity, glucose tolerance and renal function in essential hypertensive patients. Clin. Chim. Acta 2010, 411, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Pihlajamaki, J.; Salmenniemi, U.; Vanttinen, M.; Ruotsalainen, E.; Kuusisto, J.; Vauhkonen, I.; Kainulainen, S.; Ng, M.C.; Cox, N.J.; Bell, G.I.; et al. Common polymorphisms of calpain-10 are associated with abdominal obesity in subjects at high risk of type 2 diabetes. Diabetologia 2006, 49, 1560–1566. [Google Scholar] [CrossRef]
- Mentuccia, D.; Thomas, M.J.; Coppotelli, G.; Reinhart, L.J.; Mitchell, B.D.; Shuldiner, A.R.; Celi, F.S. The Thr92Ala deiodinase type 2 (DIO2) variant is not associated with type 2 diabetes or indices of insulin resistance in the old order of Amish. Thyroid 2005, 15, 1223–1227. [Google Scholar] [CrossRef]
- Grarup, N.; Andersen, M.K.; Andreasen, C.H.; Albrechtsen, A.; Borch-Johnsen, K.; Jorgensen, T.; Auwerx, J.; Schmitz, O.; Hansen, T.; Pedersen, O. Studies of the common DIO2 Thr92Ala polymorphism and metabolic phenotypes in 7342 Danish white subjects. J. Clin. Endocrinol. Metab. 2007, 92, 363–366. [Google Scholar] [CrossRef]
- Tahvanainen, E.; Molin, M.; Vainio, S.; Tiret, L.; Nicaud, V.; Farinaro, E.; Masana, L.; Enholm, C. Intestinal fatty acid binding protein polymorphism at codon 54 is not associated with postprandial responses to fat and glucose tolerance tests in healthy young Europeans. Results from EARS II participants. Atherosclerosis 2000, 152, 317–325. [Google Scholar] [CrossRef]
- Weiss, E.P.; Brandauer, J.; Kulaputana, O.; Ghiu, I.A.; Wohn, C.R.; Phares, D.A.; Shuldiner, A.R.; Hagberg, J.M. FABP2 Ala54Thr genotype is associated with glucoregulatory function and lipid oxidation after a high-fat meal in sedentary nondiabetic men and women. Am. J. Clin. Nutr. 2007, 85, 102–108. [Google Scholar] [CrossRef]
- Do, R.; Bailey, S.D.; Desbiens, K.; Belisle, A.; Montpetit, A.; Bouchard, C.; Perusse, L.; Vohl, M.C.; Engert, J.C. Genetic variants of FTO influence adiposity, insulin sensitivity, leptin levels, and resting metabolic rate in the Quebec Family Study. Diabetes 2008, 57, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
- Armamento-Villareal, R.; Wingkun, N.; Aguirre, L.E.; Kulkarny, V.; Napoli, N.; Colleluori, G.; Qualls, C.; Villareal, D.T. The FTO gene is associated with a paradoxically favorable cardiometabolic risk profile in frail, obese older adults. Pharm. Genomics 2016, 26, 154–160. [Google Scholar] [CrossRef]
- Bergmann, A.; Li, J.; Selisko, T.; Reimann, M.; Fischer, S.; Grassler, J.; Schulze, J.; Bornstein, S.R.; Schwarz, P.E.H. The A98V Single Nucleotide Polymorphism (SNP) in Hepatic Nuclear Factor 1 alpha (HNF-1 alpha) is Associated with Insulin Sensitivity and beta-Cell Function. Exp. Clin. Endocrinol. Diabet. 2008, 116, S50–S55. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.K.; Gjesing, A.P.; Rasmussen, S.K.; Glumer, C.; Urhammer, S.A.; Andersen, G.; Rose, C.S.; Drivsholm, T.; Torekov, S.K.; Jensen, D.P.; et al. Large-scale studies of the HphI insulin gene variable-number-of-tandem-repeats polymorphism in relation to Type 2 diabetes mellitus and insulin release. Diabetologia 2004, 47, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Waterworth, D.M.; Jansen, H.; Nicaud, V.; Humphries, S.E.; Talmud, P.J. Interaction between insulin (VNTR) and hepatic lipase (LIPC-514C > T) variants on the response to an oral glucose tolerance test in the EARSII group of young healthy men. Biochim. Biophys. Acta-Mol. Basis Dis. 2005, 1740, 375–381. [Google Scholar] [CrossRef]
- Yiannakouris, N.; Cooper, J.A.; Shah, S.; Drenos, F.; Ireland, H.A.; Stephens, J.W.; Li, K.W.; Elkeles, R.; Godsland, I.F.; Kivimaki, M.; et al. IRS1 gene variants, dysglycaemic metabolic changes and type-2 diabetes risk. Nutr. Metab. Carbiovasc. Dis. 2012, 22, 1024–1030. [Google Scholar] [CrossRef]
- Haljas, K.; Lahti, J.; Tuomi, T.; Isomaa, B.; Eriksson, J.G.; Groop, L.; Raikkonen, K. Melatonin receptor 1B gene rs10830963 polymorphism, depressive symptoms and glycaemic traits. Ann. Med. 2018, 50, 704–712. [Google Scholar] [CrossRef]
- Haljas, K.; Hakaste, L.; Lahti, J.; Isomaa, B.; Groop, L.; Tuomi, T.; Raikkonen, K. The associations of daylight and melatonin receptor 1B gene rs10830963 variant with glycemic traits: The prospective PPP-Botnia study. Ann. Med. 2019, 51, 58–67. [Google Scholar] [CrossRef]
- Rubin, D.; Helwig, U.; Pfeuffer, M.; Schreiber, S.; Boeing, H.; Fisher, E.; Pfeiffer, A.; Freitag-Wolf, S.; Foelsch, U.R.; Doering, F.; et al. A common functional exon polymorphism in the microsomal triglyceride transfer protein gene is associated with type 2 diabetes, impaired glucose metabolism and insulin levels. J. Hum. Genet. 2006, 51, 567–574. [Google Scholar] [CrossRef]
- St-Pierre, J.; Lemieux, I.; Miller-Felix, I.; Prud’homme, D.; Bergeron, J.; Gaudet, D.; Nadeau, A.; Despres, J.P.; Vohl, M.C. Visceral obesity and hyperinsulinemia modulate the impact of the microsomal triglyceride transfer protein -493G/T polymorphism on plasma lipoprotein levels in men. Atherosclerosis 2002, 160, 317–324. [Google Scholar] [CrossRef]
- Chiu, K.C.; Chuang, L.M.; Chu, A.; Lu, J.; Hu, J.; Fernando, S. Association of paraoxonase 1 polymorphism with beta-cell function—A case of molecular heterosis. Pancreas 2004, 28, E96–E103. [Google Scholar] [CrossRef] [PubMed]
- Deakin, S.; Leviev, I.; Nicaud, V.; Meynet, M.C.B.; Tiret, L.; James, R.W.; European Atherosclerosis Risk, S. Paraoxonase-1 L55M polymorphism is associated with an abnormal oral glucose tolerance test and differentiates high risk coronary disease families. J. Clin. Endocrinol. Metab. 2002, 87, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- Rose, C.S.; Andersen, G.; Hamid, Y.H.; Glumer, C.; Drivsholm, T.; Borch-Johnsen, K.; Jorgensen, T.; Pedersen, O.; Hansen, T. Studies of relationships between the GLUT10 Ala206Thr polymorphism and impaired insulin secretion. Diabet. Med. 2005, 22, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Andersen, G.; Rose, C.S.; Hamid, Y.H.; Drivsholm, T.; Borch-Johnsen, K.; Hansen, T.; Pedersen, O. Genetic variation of the GLUT10 glucose transporter (SLC2A10) and relationships to type 2 diabetes and intermediary traits. Diabetes 2003, 52, 2445–2448. [Google Scholar] [CrossRef] [PubMed]
- Kiec-Wilk, B.; Wybranska, I.; Malczewska-Malec, M.; Leszczynska-Golabek, I.; Partyka, L.; Niedbal, S.; Jabrocka, A.; Dembinska-Kiec, A. Correlation of the-3826A > G polymorphism in the promoter of the uncoupling protein 1 gene with obesity and metabolic disorders in obese families from southern Poland. J. Physiol. Pharmacol. 2002, 53, 477–490. [Google Scholar] [PubMed]
- Maiczewska-Malec, M.; Wybranska, I.; Leszczynska-Golabek, I.; Partyka, L.; Hartwich, J.; Jabrocka, A.; Kiec-Wilk, B.; Kwasniak, M.; Motyka, M.; Dembinska-Kiec, A. Analysis of candidate genes in Polish families with obesity. Clin. Chem. Lab. Med. 2004, 42, 487–493. [Google Scholar]
Study Characteristics | SNP | Sample Size Used | Results (p-Value) + | Reference |
---|---|---|---|---|
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs10128255 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,7,13 | [13] |
rs11196203 | n. s. 1,7,13 | |||
rs11196205 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,7,13 | ||
Amish Family Diabetes Study Old Order Amish population, participants with previously diagnosed T2DM and first- and second-degree relatives, aged ≥ 18 years | 661 Participants without diabetes | 0.27 1,8 | [18] | |
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs11594610 * | 669 Participants without diabetes or treatment-naive participants | n. s. 1,7,13 | [13] |
Ely Study Ethnically homogenous Europid population without diabetes, aged 35–79 years | rs12243326 # | 1697 Participants without diabetes or treatment-naive participants | 0.02 2,9 Significantly higher gAUC in homozygous carriers of the minor allele (T) compared to heterozygous carriers and the wild-type | [20] |
rs12255372 # | 1697 Participants without diabetes or treatment-naive participants | 0.04 2,9 Significantly higher gAUC in homozygous carriers of the minor allele (T) compared to heterozygous carriers and the wild-type | ||
Amish Family Diabetes Study Old Order Amish population, participants with previously diagnosed T2DM and first- and second-degree relatives, aged ≥ 18 years | 661 Participants without diabetes | 0.92 1,8 | [18] | |
Population-based cross-sectional study with Finnish men, aged 50–70 years | 1538 Participants without diabetes | 0.039 3,10 Homozygous and heterozygous carriers of the minor allele (T) showed higher gAUC compared to the wild-type | [47] | |
Non-diabetic offspring of patients with T2DM from Finland | 238 Participants without diabetes | 0.754 3,8 | ||
Participants of European and African American descent, cases with a first-degree relative with T2DM, and normoglycemic controls with no family history of T2DM | 337 Europeans without diabetes | 0.14 1,9 | [58] | |
144 African Americans without diabetes | n. s. 1,9 | |||
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs12573128 | 653 Participants without diabetes or treatment-naive participants | 0.009 1,7,13 Significant difference between homozygous and heterozygous carriers of the minor allele (T) and the wild-type | [13] |
rs176632 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,7,13 | ||
rs17685538 | n. s. 1,7,13 | |||
rs1885510 * | n. s. 1,7,13 | |||
Healthy, normotensive Caucasians without diabetes | rs290487 | 116 Participants without diabetes | 0.62 1,9 | [60] |
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs3750804 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,7,13 | [13] |
rs3750805 | 653 Participants without diabetes or treatment-naive participants | 0.02 1,7,13 Significant difference between homozygous and heterozygous carriers of the minor allele (A) and the wild-type | ||
Ely Study Ethnically homogenous Europid population without diabetes, aged 35–79 years | rs4506565 $ | 1697 Participants without diabetes or treatment-naive participants | 0.003 2,9 Significantly higher gAUC in homozygous carriers of the minor allele (T) compared to heterozygous carriers and the wild-type | [20] |
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs4918789 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,7,13 | [13] |
rs7901695 $ | 669 Participants without diabetes or treatment-naive participants | n. s. 1,7,13 | ||
712 Participants without diabetes or treatment-naive participants | n. s. 1,7,13 | [12] | ||
Amish Family Diabetes Study Old Order Amish population, participants with previously diagnosed T2DM and first- and second-degree relatives, aged ≥ 18 years | 683 Participants without diabetes | 0.82 1,8 | [18] | |
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs7903146 #,$ | 669 Participants without diabetes or treatment-naive participants | n. s. 1,7,13 | [13] |
712 Participants without diabetes or treatment-naive participants | n. s. 1,7,13 | [12] | ||
Different family-based and case–control studies from Europe and U.S. | 721 Participants without diabetes | n. s. 1,10 | [44] | |
n. s. 2,10 | ||||
n. s. 4,10 | ||||
n. s. 5,10 | ||||
n. s. 6,10 | ||||
Participants without diabetes, aged 20–70 years, randomly selected from the area around Mayo Clinic Rochester | 120 Participants without diabetes | <0.01 4,9 Significantly higher gAUC in homozygous carriers of the minor allele (T) compared to the wild-type | [41] | |
45 Men without diabetes | n. s.4,9 | |||
Participants without diabetes, aged 20–70 years, randomly selected from the area around Mayo Clinic Rochester | rs7903146 #,$ | 75 Women without diabetes | <0.05 8,13 Significantly higher gAUC in homozygous carriers of the minor allele (T) compared to the wild-type | [41] |
120 Participants without diabetes | 0.003 4,9 Significantly higher gAUC in homozygous carriers of the minor allele (T) compared to the wild-type | [45] | ||
Ely Study Ethnically homogenous Europid population without diabetes, aged 35–79 years | 1676 Participants without diabetes or treatment-naive participants | 0.013 2,9 Significantly higher gAUC in homozygous carriers of the minor allele (T) compared to heterozygous carriers and the wild-type | [20] | |
1537 Participants without diabetes | < 0.05 2,9 Significantly higher gAUC in homozygous carriers of the minor allele (T) compared to heterozygous carriers and the wild-type | |||
Amish Family Diabetes Study Old Order Amish population, participants with previously diagnosed T2DM and first- and second-degree relatives, aged ≥18 years | 664 Participants without diabetes | 0.28 1,8 | [18] | |
TÜF German participants with an increased risk of diabetes | 1065 Participants without diabetes | 0.001 1,11 Significant higher gAUC in carriers of the minor allele (T) compared to heterozygous carriers and the wild-type | [21] | |
Population-based study, elderly same-sex Danish twins, Caucasian descent | 531 Participants without diabetes or treatment-naive participants | AUC0–120: 0.006 1,7,14 Significantly higher gAUC in carriers of the minor allele (T) compared to the wild-type | [48] | |
AUC0–30: 0.2 1,7,14 | ||||
Danish monozygotic and dizygotic twins (young and elderly) without diabetes | 190 Participants without diabetes | n. s. 1,7,14 | ||
Unrelated Caucasians (13%) and African American (5%) without diabetes and no family history of T2DM | 18 Participants without diabetes | 0.08 3,11 | [46] | |
White, healthy Danish men, aged 18–23 years, with no family history of diabetes | 34 Participants without diabetes | 0.57 3,12 | [43] | |
Participants with and without diabetes from 8 different studies | 61 Participants without diabetes | Total gAUC: 0.34 1,11 | [42] | |
Incremental gAUC: 0.40 1,11 | ||||
Participants of European and African American descent, cases with a first-degree relative with T2DM, and normoglycemic controls with no family history of T2DM | 336 Participants without diabetes and of Europid descent | 0.16 1,9 | [58] | |
157 Participants without diabetes and of African American decent | n. s. 1,9 |
Study Characteristics | Sample Size Used | Results (p-Value) * | Reference |
---|---|---|---|
EARS II European men, aged 18–28 years, cases with a family history of premature acute myocardial infarction before the age of 55 years, and controls with a close birth date to the case | 656 Participants without diabetes | 0.99 1,5 | [22] |
Japanese men with untreated essential hypertension | 81 Participants without diabetes | n. s. 4,6 | [38] |
Unrelated, healthy white residents without diabetes, BMI < 40 kg/m2, living in Sicily | 338 Participants without diabetes | n. s. 2,7 | [37] |
Sapphire study Family study with at least one sibling with hypertension, aged 35–60 years, Chinese or Japanese descent | 1713 Participants without diabetes and hypertension | 0.0210 2,8,13 Significant differences between carriers of the minor allele (G) and the wild-type | [24] |
Population-based study, elderly same-sex Danish twins, Caucasian descent | 549 Participants without diabetes or treatment-naive participants | 0.016 2,6,14 Significantly lower gAUC in carriers of the minor allele (G) compared to the wild-type | [39] |
54 Dizygotic twin pairs without diabetes or treatment-naive participants | 0.19 2,6,14 | ||
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | 663 Participants without diabetes | AUC0–30: 0.56 2,9 | [14] |
AUC0–180: 0.722 2,9 | |||
680 Participants without diabetes or treatment-naive participants | 0.52 3,10,13 | [15] | |
Healthy adults, aged 50–75 years, sedentary lifestyle, non-smoking, BMI < 37 kg/m2 | 32 Men without diabetes | n. s. 4,11 | [40] |
41 Women without diabetes | n. s. 4,11 | ||
MICK European men, aged 45–65 years, residency near Kiel | 708 Participants without diabetes | 0.48 1,11 | [25] |
0.386 3,6 | |||
555 Participants with BMI < 30 kg/m2 and without diabetes | 0.43 1,6 | ||
0.382 3,6 | |||
Family study with at least 2 siblings with diagnosed T2DM before age 65 years, from Europe | 144 Participants without diabetes | 0.051 4,12 | [59] |
Study Characteristics | SNP | Sample Size Used | Results (p-Value) + | Reference |
---|---|---|---|---|
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs1002227 * | 669 Participants without diabetes or treatment-naive participants | n. s. 1,5,11 | [13] |
712 Participants without diabetes or treatment-naive participants | n. s. 1,5,11 | [12] | ||
rs11024273 * | 669 Participants without diabetes or treatment-naive participants | n. s. 1,5,11 | [13] | |
712 Participants without diabetes or treatment-naive participants | n. s. 1,5,11 | [12] | ||
rs2285676 * | 669 Participants without diabetes or treatment-naive participants | n. s. 1,5,11 | [13] | |
712 Participants without diabetes or treatment-naive participants | n. s. 1,5,11 | [12] | ||
rs5215 # | 669 Participants without diabetes or treatment-naive participants | n. s. 1,5,11 | [13] | |
712 Participants without diabetes or treatment-naive participants | n. s. 1,5,11 | [12] | ||
Han-Chinese participants with hypertension >140/90 mmHg or taking antihypertensive medication | 667 Normoglycemic participants | n. s. 1,6,12 | [35] | |
n. s. 2,6,12 | ||||
n. s. 3,6 | ||||
458 Participants with impaired fasting glucose or impaired glucose tolerance | n. s. 1,6 | |||
n. s. 2,6 | ||||
n. s. 3,6 | ||||
Unrelated participants without diabetes tested negative for GAD | rs5219 # | 298 Participants without diabetes | 0.04 2,7 Significantly higher gAUC in carriers of the minor allele (T) compared to the wild-type | [33] |
0.05 1,7 | ||||
Unrelated participants without diabetes tested negative for GAD | rs5219 # | 298 Participants without diabetes | 0.02 4,7 Significantly higher gAUC in homozygous carriers of the minor allele (T) compared to the wild-type | [33] |
75 Participants without diabetes that underwent a hyperglycemic clamp | 0.06 1,8 | |||
0.17 4,8 | ||||
75 Participants without diabetes that underwent a hyperglycemic clamp | 0.02 2,8 Significantly higher gAUC in carriers of the minor allele (T) compared to the wild-type | |||
Healthy adults, aged 50–75 years, sedentary lifestyle, non-smoking, BMI < 37 kg/m2 | 214 Participants without diabetes | n. s. 1,9 | [36] | |
Participants without diabetes, aged <65 years, in good health | 461 Participants without diabetes | 0.34 1,10 | [34] | |
Unrelated participants without diabetes, aged < 65 years, with no family history of diabetes | 18 Participants without diabetes | n. s. 4,10 | ||
Han-Chinese participants with hypertension >140/90 mmHg or taking antihypertensive medication | 667 Normoglycemic participants | n. s. 1,6 | [35] | |
n. s. 2,6 | ||||
n. s. 3,6 | ||||
458 Participants with impaired fasting glucose or impaired glucose tolerance | n. s. 1,6 | |||
n. s. 2,6 | ||||
n. s. 3,6 |
Study Characteristics | SNP | Sample Size Used | Results (p-Value) + | Reference |
---|---|---|---|---|
ADIPOQ | ||||
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs1501299 | 622 Participants without diabetes or treatment-naive participants | n.s 1,6,23 | [16] |
Sapphire study Family study with at least one sibling with hypertension, aged 35–60 years, Chinese or Japanese decent | rs2241766 | 1713 Participants without diabetes | n. s. 2,7,23 | [24] |
n. s. 1,7,23 | ||||
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | 620 Participants without diabetes or treatment-naive participants | 0.2 1,6,23 | [16] | |
MICK European men, aged 45–65 years, residency near Kiel | G11388A | 110 Participants without diabetes or treatment-naive participants | n. s. 2,8,24 | [26] |
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs822396 | 595 Participants without diabetes or treatment-naive participants | 0.2 1,6,23 | [16] |
CDKAL1 | ||||
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs10946403 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] |
712 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [12] | ||
rs523069 | n. s. 1,10,23 | |||
EUGENE2 European, non-diabetic offspring of one parent with T2DM and one parent without T2DM | rs7754840 * | 846 Participants without diabetes | 0.016 1,11 Significant difference between homozygous and heterozygous carriers of the minor allele (C) and the wild-type | [28] |
698 Normoglycemic participants | 0.005 1,11 Significant difference between homozygous and heterozygous carriers of the minor allele (C) and the wild-type | |||
148 Participants with impaired glucose tolerance and/or impaired fasting glucose | n. s. 1,11 | |||
100 Participants from Gothenburg without diabetes | 0.233 1,11 | |||
EUGENE2 European, non-diabetic offspring of one parent with T2DM and one parent without T2DM | rs7754840 * | 100 Participants from Gothenburg without diabetes | 0.233 1,11 | [28] |
110 Participants from Catanzaro without diabetes | 0.242 1,11 | |||
270 Participants from Copenhagen without diabetes | 0.007 1,11 Significant difference between homozygous and heterozygous carriers of the minor allele (C) and the wild-type | |||
217 Participants from Kuopio without diabetes | 0.346 1,11 | |||
149 Participants from Tuebingen without diabetes | 0.521 1,11 | |||
METSIM Finnish men, aged 45–73 years, randomly selected from the population register of Kuopio | 2405 Normoglycemic participants | 0.694 1,11 | ||
3367 Participants without diabetes | n. s. 1,8 | |||
TÜF German participants with an increased risk of diabetes | 1065 Participants without diabetes | 0.02 1,8 Significant difference between homozygous and heterozygous carriers of the minor allele (C) and the wild-type | [21] | |
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs7756992 * | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] |
CDKN2A/B | ||||
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs10811661 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] |
712 Participants without diabetes or treatment-naive participants | <0.05 1,10,23 Significant difference between homozygous and heterozygous carriers of the minor allele (C) and the wild-type | [12] | ||
TÜF German participants with an increased risk of diabetes | 1065 Participants without diabetes | 0.09 1,8 | [21] | |
rs3217992 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] | |
rs3731201 | n. s. 1,9,23 | |||
712 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [12] | ||
rs3731211 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] | |
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs3731211 | 712 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [12] |
rs495490 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] | |
712 Participants without diabetes or treatment-naive participants | n. s. 2,9,23 | [12] | ||
rs523096 * | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] | |
721 Participants without diabetes or treatment-naive participants | n. s. 1,10,23 | [12] | ||
rs564398 * | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] | |
712 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [12] | ||
HHEX | ||||
MESYBEPO German case–control study, participants with or without metabolic syndrome and healthy or disturbed glucose metabolism, living in Berlin or Potsdam area | rs1111875 * | 681 Participants without diabetes | 0.45 1,12 | [29] |
411 Normoglycemic participants | 0.18 1,12 | |||
EUGENE2 European, non-diabetic offspring of one parent with T2DM and one parent without T2DM | 844 Participants without diabetes | 0.9 1,13 | [27] | |
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] | |
712 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [12] | ||
TÜF German participants with an increased risk of diabetes | 1065 Participants without diabetes | 0.04 1,8 Significantly higher gAUC in homozygous carriers of the minor allele (T) compared to the wild-type | [21] | |
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs7911264 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] |
MESYBEPO German case–control study, participants with or without metabolic syndrome and healthy or disturbed glucose metabolism, living in Berlin or Potsdam area | rs7923837 * | 680 Participants without diabetes | 0.29 1,12 | [29] |
410 Normoglycemic participants | 0.58 1,12 | |||
EUGENE2 European, non-diabetic offspring of one parent with T2DM and one parent without T2DM | 842 Participants without diabetes | 0.9 1,13 | [27] | |
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] | |
712 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [12] | ||
TÜF German participants with an increased risk of diabetes | 1065 Participants without diabetes | 0.05 1,8 | [21] | |
HNF4α | ||||
Amish Family Diabetes Study Old Order Amish population, participants with previously diagnosed T2DM and first- and second-degree relatives, aged ≥18 years | rs1884614 | 698 Participants without diabetes or treatment-naive participants | 0.022 1,9,23 Significant difference between homozygous and heterozygous carriers of the minor allele (T) and the wild-type | [19] |
0.01 2,9,23 Significantly higher gAUC in carriers of the minor allele (T) compared to the wild-type | ||||
Inter99 Population-based study, participants aged 30–60 years, Caucasian descent | 4430 Normoglycemic participants | 0.05 1,10 | [31] | |
0.21 3,10 | ||||
0.02 2,10 Significant difference between carriers of the minor allele (A) and the wild-type | ||||
rs1885088 | 4336 Normoglycemic participants | n. s. 1,10 | ||
n. s. 3,10 | ||||
n. s. 2,10 | ||||
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | 524 Participants without diabetes | 0.06 1,14 | [17] | |
n. a. Participants without diabetes and a high physical activity level | 0.01 4,14 Significant difference between homozygous and heterozygous carriers of the minor allele (A) | |||
0.01 5,14 Significant difference between homozygous carriers of the minor allele (A) and the wild-type | ||||
n. a. Participants without diabetes and a low physical activity level | n. s. 4,14 | [17] | ||
n. s. 5,14 | ||||
Inter99 Population-based study, participants aged 30–60 years, Caucasian decent | rs2425637 | 4394 Normoglycemic participants | n. s. 1,10 | [31] |
n. s. 3,10 | ||||
n. s. 2,10 | ||||
Amish Family Diabetes Study Old Order Amish population, participants with previously diagnosed T2DM and first- and second-degree relatives, aged ≥ 18 years | rs2425640 | 698 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [19] |
n. s. 2,9,23 | ||||
Inter99 Population-based study, participants aged 30–60 years, Caucasian decent | rs3818247 | 4413 Normoglycemic participants | n. s. 1,10 | [31] |
n. s. 3,10 | ||||
n. s. 2,10 | ||||
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs745975 | 505 Participants without diabetes | 0.17 1,14 | [17] |
IGF2BP2 | ||||
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area | rs4402960 | 669 Participants without diabetes or treatment-naive participants | n. s. 1,9,23 | [13] |
712 Participants without diabetes or treatment-naive participants | <0.05 1,10,23 Significant difference between carriers of the minor allele (T) and the wild-type | [12] | ||
TÜF German participants with an increased risk of diabetes | 1065 Participants without diabetes | 0.34 1,8 | [21] | |
IL-6 | ||||
Healthy, non-smoking French-Canadian men, living in the Quebec area | rs1800795 * | 270 Participants without diabetes | 0.43 2,15 | [51] |
0.42 2,16 | ||||
Healthy Caucasians with BMI < 40 kg/m2 | 32 Participants without diabetes | 0.001 3,8 Significantly lower gAUC in carriers of the minor allele (C) compared to the wild allele | [52] | |
Inter99 Population-based study, participants aged 30–60 years, Caucasian descent | 4401 Normoglycemic participants | 0.51 1,17 | [30] | |
0.25 3,17 | ||||
0.58 2,17 | ||||
Healthy participants, aged 50–75 years, sedentary lifestyle, non-smoking, BMI < 37 kg/m2 | 87 Participants without diabetes | n. s. 2,18 | [55] | |
Inter99 Population-based study, participants aged 30–60 years, Caucasian descent | rs1800797 * | 4401 Normoglycemic participants | 0.48 1,17 | [30] |
0.7 3,17 | ||||
0.3 2,17 | ||||
PC-1 | ||||
Asian Indians and Caucasians without diabetes | rs1044498 | 158 Asian Indian participants without diabetes or treatment-naive participants | n. s. 2,8 | [49] |
152 Caucasian participants without diabetes or treatment-naive participants | n. s. 2,8 | |||
Unrelated, healthy, volunteers without diabetes, aged 20–59 years, BMI < 30.0 kg/m2 | 118 Normoglycemic participants | n. s. 1,17,24 | [54] | |
Unrelated Caucasians without diabetes living in Sicily | 211 Participants without diabetes, but with obesity | n. s. 2,20,24 | [53] | |
220 Participants without diabetes and obesity | >0.05 2,20,24 | |||
431 Participants without diabetes | n. s. 2,20,24 | |||
Unrelated, healthy white residents without diabetes, BMI < 40 kg/m2, living in Sicily | 338 Participants without diabetes | n. s. 2,19 | [37] | |
764 Participants without diabetes | 0.05 5,10 | [50] | ||
764 Participants without diabetes | 0.02 1,10 Significant difference between homozygous and heterozygous carriers of the minor allele (C) and the wild-type | |||
475 Participants without diabetes but with obesity | 0.048 1,10 Significant difference between homozygous and heterozygous carriers of the minor allele (C) and the wild-type | |||
289 Participants without diabetes and obesity | n. s. 1,10 | |||
SLC30A8 | ||||
Quebec Family Study French-Canadian families (phase 1: randomly selected; phase 2/3: at least one person with obesity per family) living in and around the Quebec city area. | rs13266634 | 669 Participants without diabetes | n. s. 1,9,23 | [13] |
712 Participants without diabetes | n. s. 1,9,23 | [12] | ||
TÜF German participants with an increased risk of diabetes | 1065 Participants without diabetes or treatment-naive participants | 0.27 1,8 | [21] | |
TNF-α | ||||
40 families with obesity but without diabetes, genetic trait of obesity, Caucasian origin | rs1800629 | 122 Participants without diabetes | 0.077 2,8 | [57] |
38 Men without diabetes | 0.105 2,8 | |||
83 Women without diabetes | 0.298 2,8 | |||
EARS II European men, aged 18–28 years, cases with a family history of premature acute myocardial infarction before the age of 55 years, and controls with a close birth date to the case | 335 Cases without diabetes | 0.57 2,21 | [23] | |
323 Controls without diabetes | 0.85 2,21 | |||
Hypertensive participants without diabetes and unrelated, healthy, non-diabetic, normotensive participants with first-degree relatives free of diabetes, Asian descent | 177 Participants without diabetes, but with hypertension | 0.750 2,22 | [56] | |
202 Normotensive participants without diabetes | 0.132 2,22 | |||
BErG-Study Unrelated German Caucasian population without diabetes, wide range of BMI, with and without hypertension or impaired glucose tolerance | 176 Participants without diabetes | n. s. 2,10 | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayer, S.; Reik, A.; von Hesler, L.; Hauner, H.; Holzapfel, C. Association between Genotype and the Glycemic Response to an Oral Glucose Tolerance Test: A Systematic Review. Nutrients 2023, 15, 1695. https://doi.org/10.3390/nu15071695
Bayer S, Reik A, von Hesler L, Hauner H, Holzapfel C. Association between Genotype and the Glycemic Response to an Oral Glucose Tolerance Test: A Systematic Review. Nutrients. 2023; 15(7):1695. https://doi.org/10.3390/nu15071695
Chicago/Turabian StyleBayer, Sandra, Anna Reik, Lena von Hesler, Hans Hauner, and Christina Holzapfel. 2023. "Association between Genotype and the Glycemic Response to an Oral Glucose Tolerance Test: A Systematic Review" Nutrients 15, no. 7: 1695. https://doi.org/10.3390/nu15071695
APA StyleBayer, S., Reik, A., von Hesler, L., Hauner, H., & Holzapfel, C. (2023). Association between Genotype and the Glycemic Response to an Oral Glucose Tolerance Test: A Systematic Review. Nutrients, 15(7), 1695. https://doi.org/10.3390/nu15071695