The Role of Gluten in Gastrointestinal Disorders: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Gluten and Inflammation
4. Gluten and Gluten-Related Diseases
5. The Impact of Gluten-Free Diet on Gut Microbiota in Gluten Related Diseases
6. Gluten and Inflammatory Bowel Diseases
7. Gluten and Functional Gastrointestinal Diseases
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Al-Toma, A.; Volta, U.; Auricchio, R.; Castillejo, G.; Sanders, D.S.; Cellier, C.; Mulder, C.J.; Lundin, K.E.A. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur. Gastroenterol. J. 2019, 7, 583–613. [Google Scholar] [CrossRef] [PubMed]
- Weaver, K.N.; Herfarth, H. Gluten-Free Diet in IBD: Time for a Recommendation? Mol. Nutr. Food Res. 2020, 65, e1901274. [Google Scholar] [CrossRef] [PubMed]
- Biesiekierski, J. What is gluten? J. Gastroenterol. Hepatol. 2017, 32, 78–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieser, H. Chemistry of gluten proteins. Food Microbiol. 2007, 24, 115–119. [Google Scholar] [CrossRef]
- Godala, M.; Gaszyńska, E.; Zatorski, H.; Małecka-Wojciesko, E. Dietary Interventions in Inflammatory Bowel Disease. Nutrients 2022, 14, 4261. [Google Scholar] [CrossRef]
- Cabanillas, B. Gluten-related disorders: Celiac disease, wheat allergy, and nonceliac gluten sensitivity. Crit. Rev. Food Sci. Nutr. 2019, 60, 2606–2621. [Google Scholar] [CrossRef]
- Sollid, L.M.; Jabri, B. Triggers and drivers of autoimmunity: Lessons from coeliac disease. Nat. Rev. Immunol. 2013, 13, 294–302. [Google Scholar] [CrossRef] [Green Version]
- De Punder, K.; Pruimboom, L. The Dietary Intake of Wheat and other Cereal Grains and Their Role in Inflammation. Nutrients 2013, 5, 771–787. [Google Scholar] [CrossRef] [Green Version]
- Lammers, K.M.; Khandelwal, S.; Chaudhry, F.; Kryszak, D.; Puppa, E.L.; Casolaro, V.; Fasano, A. Identification of a novel immunomodulatory gliadin peptide that causes interleukin-8 release in a chemokine receptor CXCR3-dependent manner only in patients with coeliac disease. Immunology 2010, 132, 432–440. [Google Scholar] [CrossRef]
- Lammers, K.M.; Lu, R.; Brownley, J.; Lu, B.; Gerard, C.; Thomas, K.; Rallabhandi, P.; Shea-Donohue, T.; Tamiz, A.; Alkan, S.; et al. Gliadin Induces an Increase in Intestinal Permeability and Zonulin Release by Binding to the Chemokine Receptor CXCR3. Gastroenterology 2008, 135, 194–204.e3. [Google Scholar] [CrossRef] [Green Version]
- Harris, K.M.; Fasano, A.; Mann, D.L. Cutting Edge: IL-1 Controls the IL-23 Response Induced by Gliadin, the Etiologic Agent in Celiac Disease. J. Immunol. 2008, 181, 4457–4460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinova, J.; Palová-Jelínková, L.; Smythies, L.E.; Černá, M.; Pecharová, B.; Dvorak, M.; Fruhauf, P.; Tlaskalová-Hogenová, H.; Smith, P.D.; Tučková, L. Gliadin Peptides Activate Blood Monocytes from Patients with Celiac Disease. J. Clin. Immunol. 2007, 27, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Sander, G.R.; Cummins, A.G.; Powell, B.C. Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Lett. 2005, 579, 4851–4855. [Google Scholar] [CrossRef] [PubMed]
- Drago, S.; El Asmar, R.; Di Pierro, M.; Grazia Clemente, M.; Tripathi, A.; Sapone, A.; Thakar, M.; Iacono, G.; Carroccio, A.; D’Agate, C.; et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand. J. Gastroenterol. 2006, 41, 408–419. [Google Scholar] [CrossRef]
- Ziegler, K.; Neumann, J.; Liu, F.; Fröhlich-Nowoisky, J.; Cremer, C.; Saloga, J.; Reinmuth-Selzle, K.; Pöschl, U.; Schuppan, D.; Bellinghausen, I.; et al. Nitration of Wheat Amylase Trypsin Inhibitors Increases Their Innate and Adaptive Immunostimulatory Potential in vitro. Front. Immunol. 2019, 9, 3174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junker, Y.; Zeissig, S.; Kim, S.-J.; Barisani, D.; Wieser, H.; Leffler, D.A.; Zevallos, V.; Libermann, T.A.; Dillon, S.; Freitag, T.L.; et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J. Exp. Med. 2012, 209, 2395–2408. [Google Scholar] [CrossRef]
- Elli, L.; Branchi, F.; Tomba, C.; Villalta, D.; Norsa, L.; Ferretti, F.; Roncoroni, L.; Bardella, M.T. Diagnosis of gluten related disorders: Celiac disease, wheat allergy and non-celiac gluten sensitivity. World J. Gastroenterol. 2015, 21, 7110–7119. [Google Scholar] [CrossRef]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.; Kurppa, K.; Mearin, M.L.; Ribes-Koninckx, C.; Shamir, R.; Troncone, R.; Auricchio, R.; Castillejo, G.; et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Craniofacial Surg. 2020, 70, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Torres, F.; Cabrera-Chávez, F.; Figueroa-Salcido, O.; Ontiveros, N. Non-Celiac Gluten Sensitivity: An Update. Medicina 2021, 57, 526. [Google Scholar] [CrossRef]
- Francavilla, R.; Cristofori, F.; Verzillo, L.; Gentile, A.; Castellaneta, S.; Polloni, C.; Giorgio, V.; Verduci, E.; D’Angelo, E.; Dellatte, S.; et al. Randomized Double-Blind Placebo-Controlled Crossover Trial for the Diagnosis of Non-Celiac Gluten Sensitivity in Children. Am. J. Gastroenterol. 2018, 113, 421–430. [Google Scholar] [CrossRef]
- Biesiekierski, J.R.; Newnham, E.D.; Irving, P.M.; Barrett, J.S.; Haines, M.; Doecke, J.D.; Shepherd, S.J.; Muir, J.G.; Gibson, P.R. Gluten Causes Gastrointestinal Symptoms in Subjects without Celiac Disease: A Double-Blind Randomized Placebo-Controlled Trial. Am. J. Gastroenterol. 2011, 106, 508–514. [Google Scholar] [CrossRef]
- Gibson, P.R.; Skodje, G.I.; Lundin, K.E. Non-coeliac gluten sensitivity. J. Gastroenterol. Hepatol. 2017, 32, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, C.; Valenzuela, R.; Lucero, A.Y. Enfermedad celíaca, sensibilidad no celíaca al gluten y alergia al trigo: Comparación de patologías diferentes gatilladas por un mismo alimento. Rev. Chil. Pediatr. 2017, 88, 417–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caio, G.; Lungaro, L.; Segata, N.; Guarino, M.; Zoli, G.; Volta, U.; de Giorgio, R. Effect of Gluten-Free Diet on Gut Microbiota Composition in Patients with Celiac Disease and Non-Celiac Gluten/Wheat Sensitivity. Nutrients 2020, 12, 1832. [Google Scholar] [CrossRef]
- Kaliciak, I.; Drogowski, K.; Garczyk, A.; Kopeć, S.; Horwat, P.; Bogdański, P.; Stelmach-Mardas, M.; Mardas, M. Influence of Gluten-Free Diet on Gut Microbiota Composition in Patients with Coeliac Disease: A Systematic Review. Nutrients 2022, 14, 2083. [Google Scholar] [CrossRef] [PubMed]
- Chibbar, R.; Dieleman, L.A. The Gut Microbiota in Celiac Disease and Probiotics. Nutrients 2019, 11, 2375. [Google Scholar] [CrossRef] [Green Version]
- Valitutti, F.; Cucchiara, S.; Fasano, A. Celiac Disease and the Microbiome. Nutrients 2019, 11, 2403. [Google Scholar] [CrossRef] [Green Version]
- Heintz-Buschart, A.; Wilmes, P. Human Gut Microbiome: Function Matters. Trends Microbiol. 2018, 26, 563–574. [Google Scholar] [CrossRef]
- Sun, M.; Wu, W.; Liu, Z.; Cong, Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 2016, 52, 1–8. [Google Scholar] [CrossRef]
- Canova, C.; Zabeo, V.; Pitter, G.; Romor, P.; Baldovin, T.; Zanotti, R.; Simonato, L. Association of Maternal Education, Early Infections, and Antibiotic Use With Celiac Disease: A Population-Based Birth Cohort Study in Northeastern Italy. Am. J. Epidemiol. 2014, 180, 76–85. [Google Scholar] [CrossRef] [Green Version]
- de Palma, G.; Nadal, I.; Medina, M.; Donat, E.; Ribes-Koninckx, C.; Calabuig, M.; Sanz, Y. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 2010, 10, 63. [Google Scholar] [CrossRef] [Green Version]
- di Cagno, R.; Rizzello, C.G.; Gagliardi, F.; Ricciuti, P.; Ndagijimana, M.; Francavilla, R.; De Angelis, M. Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Appl. Environ. Microbiol. 2009, 75, 3963–3971. [Google Scholar] [CrossRef] [Green Version]
- Serena, G.; Davies, C.; Cetinbas, M.; Sadreyev, R.I.; Fasano, A. Analysis of blood and fecal microbiome profile in patients with celiac disease. Hum. Microbiome J. 2019, 11, 100049. [Google Scholar] [CrossRef]
- D’Argenio, V.; Casaburi, G.; Precone, V.; Pagliuca, C.; Colicchio, R.; Sarnataro, D.; Discepolo, V.; Kim, S.M.; Russo, I.; Blanco, G.D.V.; et al. Metagenomics Reveals Dysbiosis and a Potentially Pathogenic N. flavescens Strain in Duodenum of Adult Celiac Patients. Am. J. Gastroenterol. 2016, 111, 879–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, E.; Donat, E.; Ribes-Koninckx, C.; Fernández-Murga, M.L.; Sanz, Y. Duodenal-Mucosal Bacteria Associated with Celiac Disease in Children. Appl. Environ. Microbiol. 2013, 79, 5472–5479. [Google Scholar] [CrossRef] [Green Version]
- Di Gioia, D.; Aloisio, I.; Mazzola, G.; Biavati, B. Bifidobacteria: Their impact on gut microbiota composition and their applications as probiotics in infants. Appl. Microbiol. Biotechnol. 2013, 98, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Lupan, I.; Sur, G.; Deleanu, D.; Cristea, V.; Samasca, G.; Makovicky, P. Celiac disease microbiota and its applications. Ann. Microbiol. 2013, 64, 899–903. [Google Scholar] [CrossRef]
- Collado, M.C.; Donat, E.; Ribes-Koninckx, C.; Calabuig, M.; Sanz, Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J. Clin. Pathol. 2008, 62, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Losurdo, G.; Principi, M.; Iannone, A.; Ierardi, E.; Di Leo, A. The Interaction between Celiac Disease and Intestinal Microbiota. J. Clin. Gastroenterol. 2016, 50, S145–S147. [Google Scholar] [CrossRef]
- Capurso Gasbarrini, A.; Guarino, L.; Morelli, L.A. Probiotics, Prebiotics New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health. Available online: https://www.academia.edu/67767988/PROBIOTICS_PREBIOTICS_and_NEW_FOODS_NUTRACEUTICALS_AND_BOTANICALS_for_NUTRITION_and_HUMAN_and_MICROBIOTA_HEALTH (accessed on 1 March 2023).
- Caminero, A.; Galipeau, H.J.; McCarville, J.L.; Johnston, C.W.; Bernier, S.P.; Russell, A.K.; Jury, J.; Herran, A.R.; Casqueiro, J.; Tye-Din, J.A.; et al. Duodenal Bacteria from Patients with Celiac Disease and Healthy Subjects Distinctly Affect Gluten Breakdown and Immunogenicity. Gastroenterology 2016, 151, 670–683. [Google Scholar] [CrossRef] [Green Version]
- Herrán, A.R.; Pérez-Andrés, J.; Caminero, A.; Nistal, E.; Vivas, S.; de Morales, J.M.R.; Casqueiro, J. Gluten-degrading bacteria are present in the human small intestine of healthy volunteers and celiac patients. Res. Microbiol. 2017, 168, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Transeth, E.L.; Dale, H.F.; Lied, G.A. Comparison of gut microbiota profile in celiac disease, non-celiac gluten sensitivity and irritable bowel syndrome: A systematic review. Turk. J. Gastroenterol. 2020, 31, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Kleinjans, M.; Schneider, C.V.; Bruns, T.; Strnad, P. Phenome of coeliac disease vs. inflammatory bowel disease. Sci. Rep. 2022, 12, 14572. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mazcorro, J.F.; Rivera-Gutierrez, X.; Cobos-Quevedo, O.D.J.; Grube-Pagola, P.; Meixueiro-Daza, A.; Hernandez-Flores, K.; Cabrera-Jorge, F.J.; Vivanco-Cid, H.; Dowd, S.E.; Remes-Troche, J.M. First Insights into the Gut Microbiota of Mexican Patients with Celiac Disease and Non-Celiac Gluten Sensitivity. Nutrients 2018, 10, 1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobel, Y.R.; Rozenberg, F.; Park, H.; Freedberg, D.E.; Blaser, M.J.; Green, P.H.; Uhlemann, A.-C.; Lebwohl, B. Lack of Effect of Gluten Challenge on Fecal Microbiome in Patients with Celiac Disease and Non-Celiac Gluten Sensitivity. Clin. Transl. Gastroenterol. 2021, 12, e00441. [Google Scholar] [CrossRef]
- Naseri, K.; Dabiri, H.; Rostami-Nejad, M.; Yadegar, A.; Houri, H.; Olfatifar, M.; Zali, M.R. Influence of low FODMAP-gluten free diet on gut microbiota alterations and symptom severity in Iranian patients with irritable bowel syndrome. BMC Gastroenterol. 2021, 21, 292. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, W.; Schuppan, D.; Schink, M.; Schwappacher, R.; Wirtz, S.; Agaimy, A.; Neurath, M.F.; Zopf, Y. Influence of low FODMAP and gluten-free diets on disease activity and intestinal microbiota in patients with non-celiac gluten sensitivity. Clin. Nutr. 2018, 38, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Bunyavanich, S.; Berin, M.C. Food allergy and the microbiome: Current understandings and future directions. J. Allergy Clin. Immunol. 2019, 144, 1468–1477. [Google Scholar] [CrossRef]
- Zhao, W.; Ho, H.-E.; Bunyavanich, S. The gut microbiome in food allergy. Ann. Allergy Asthma Immunol. 2018, 122, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Morton, H.; Pedley, K.C.; Stewart, R.J.C.; Coad, J. Inflammatory bowel disease: Are symptoms and diet linked? Nutrients 2020, 12, 2975. [Google Scholar] [CrossRef]
- Limketkai, B.N.; Wolf, A.; Parian, A.M. Nutritional Interventions in the Patient with Inflammatory Bowel Disease. Gastroenterol. Clin. N. Am. 2018, 47, 155–177. [Google Scholar] [CrossRef] [PubMed]
- Mentella, M.C.; Scaldaferri, F.; Pizzoferrato, M.; Gasbarrini, A.; Miggiano, G.A.D. Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020, 12, 944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghamohamadi, E.; Asri, N.; Odak, A.; Rostami-Nejad, M.; Chaleshi, V.; Hajinabi, Y.; Eslami, M.; Haftcheshmeh, S.M.; Gholam-Mostafaei, F.S.; Asadzadeh-Aghdaei, H.; et al. Gene expression analysis of intestinal IL-8, IL-17 A and IL-10 in patients with celiac and inflammatory bowel diseases. Mol. Biol. Rep. 2022, 49, 6085–6091. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Walker, M.; Burger, D.; Martin, N.; Von Wulffen, M.; Koloski, N.; Jones, M.; Talley, N.J.; Holtmann, G.J. Link between Celiac Disease and Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2019, 53, 514–522. [Google Scholar] [CrossRef]
- Bramuzzo, M.; Lionetti, P.; Miele, E.; Romano, C.; Arrigo, S.; Cardile, S.; Di Nardo, G.; Illiceto, M.T.; Pastore, M.; Felici, E.; et al. Phenotype and Natural History of Children with Coexistent Inflammatory Bowel Disease and Celiac Disease. Inflamm. Bowel Dis. 2021, 27, 1881–1888. [Google Scholar] [CrossRef]
- Bar Yehuda, S.; Axlerod, R.; Toker, O.; Zigman, N.; Goren, I.; Mourad, V.; Lederman, N.; Cohen, N.; Matz, E.; Dushnitzky, D.; et al. The association of inflammatory bowel diseases with autoimmune disorders: A report from the epi-IIRN. J. Crohns Colitis 2019, 13, 324–329. [Google Scholar] [CrossRef]
- Alkhayyat, M.; Abureesh, M.; Almomani, A.; Saleh, M.A.; Zmaili, M.; El Ouali, S.; Mansoor, E.; Rubio-Tapia, A.; Regueiro, M. Patients with Inflammatory Bowel Disease on Treatment Have Lower Rates of Celiac Disease. Inflamm. Bowel Dis. 2021, 28, 385–392. [Google Scholar] [CrossRef]
- Casella, G.; D’Incà, R.; Oliva, L.; Daperno, M.; Saladino, V.; Zoli, G.; Annese, V.; Fries, W.; Cortellezzi, C.; Minutolo, R.; et al. Prevalence of celiac disease in inflammatory bowel diseases: An IG-IBD multicentre study. Dig. Liver Dis. 2010, 42, 175–178. [Google Scholar] [CrossRef]
- Triggs, C.M.; Munday, K.; Hu, R.; Fraser, A.G.; Gearry, R.; Barclay, M.; Ferguson, L.R. Dietary factors in chronic inflammation: Food tolerances and intolerances of a New Zealand Caucasian Crohn’s disease population. Mutat. Res. Mol. Mech. Mutagen. 2010, 690, 123–138. [Google Scholar] [CrossRef]
- Herfarth, H.H.; Martin, C.F.; Sandler, R.S.; Kappelman, M.D.; Long, M.D. Prevalence of a Gluten-free Diet and Improvement of Clinical Symptoms in Patients with Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2014, 20, 1194–1197. [Google Scholar] [CrossRef]
- Zallot, C.; Quilliot, D.; Chevaux, J.-B.; Peyrin-Biroulet, C.; Guéant-Rodriguez, R.M.; Freling, E.; Collet-Fenetrier, B.; Williet, N.; Ziegler, O.; Bigard, M.-A.; et al. Dietary Beliefs and Behavior among Inflammatory Bowel Disease Patients. Inflamm. Bowel Dis. 2013, 19, 66–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiner, P.; Martinho-Grueber, M.; Studerus, D.; Vavricka, S.R.; Tilg, H.; Biedermann, L. Nutrition in Inflammatory Bowel Disease. Digestion 2020, 101, 120–135. [Google Scholar] [CrossRef]
- Scarpato, E.; Auricchio, R.; Penagini, F.; Campanozzi, A.; Zuccotti, G.V.; Troncone, R. Efficacy of the gluten free diet in the management of functional gastrointestinal disorders: A systematic review on behalf of the Italian Society of Paediatrics. Ital. J. Pediatr. 2019, 45, 9. [Google Scholar] [CrossRef] [Green Version]
- Llanos-Chea, A.; Fasano, A. Gluten and Functional Abdominal Pain Disorders in Children. Nutrients 2018, 10, 1491. [Google Scholar] [CrossRef] [Green Version]
- El-Salhy, M.; Hatlebakk, J.G.; Gilja, O.H.; Hausken, T. The relation between celiac disease, nonceliac gluten sensitivity and irritable bowel syndrome. Nutr. J. 2015, 14, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Salhy, M.; Gundersen, D. Diet in irritable bowel syndrome. Nutr. J. 2015, 14, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duboc, H.; Latrache, S.; Nebunu, N.; Coffin, B. The Role of Diet in Functional Dyspepsia Management. Front. Psychiatry 2020, 11, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasa, J.; Spallone, L.; Gandara, S.; Chaar, E.; Berman, S.; Zagalsky, D. A Prevalência de doença celíaca não é aumentada em pacientes com dispepsia funcional. Arq. Gastroenterol. 2017, 54, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Santolaria, S.; Alcedo, J.; Cuartero, B.; Diez, I.; Abascal, M.; García-Prats, M.D.; Marigil, M.; Vera, J.; Ferrer, M.; Montoro, M. Spectrum of gluten-sensitive enteropathy in patients with dysmotility-like dyspepsia. Gastroenterol. Hepatol. 2013, 36, 11–20. [Google Scholar] [CrossRef]
- Cristofori, F.; Tripaldi, M.; Lorusso, G.; Indrio, F.; Rutigliano, V.; Piscitelli, D.; Castellaneta, S.; Bentivoglio, V.; Francavilla, R. Functional Abdominal Pain Disorders and Constipation in Children on Gluten-Free Diet. Clin. Gastroenterol. Hepatol. 2020, 19, 2551–2558. [Google Scholar] [CrossRef]
- Silvester, J.A.; Graff, L.A.; Rigaux, L.; Bernstein, C.N.; Leffler, D.A.; Kelly, C.P.; Walker, J.R.; Duerksen, D.R. Symptoms of Functional Intestinal Disorders Are Common in Patients with Celiac Disease Following Transition to a Gluten-Free Diet. Dig. Dis. Sci. 2017, 62, 2449–2454. [Google Scholar] [CrossRef]
- Du, L.; Shen, J.; Kim, J.J.; He, H.; Chen, B.; Dai, N. Impact of gluten consumption in patients with functional dyspepsia: A case-control study. J. Gastroenterol. Hepatol. 2017, 33, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Elli, L.; Tomba, C.; Branchi, F.; Roncoroni, L.; Lombardo, V.; Bardella, M.T.; Ferretti, F.; Conte, D.; Valiante, F.; Fini, L.; et al. Evidence for the Presence of Non-Celiac Gluten Sensitivity in Patients with Functional Gastrointestinal Symptoms: Results from a Multicenter Randomized Double-Blind Placebo-Controlled Gluten Challenge. Nutrients 2016, 8, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahbazkhani, B.; Fanaeian, M.M.; Farahvash, M.J.; Aletaha, N.; Alborzi, F.; Elli, L.; Shahbazkhani, A.; Zebardast, J.; Rostami-Nejad, M. Prevalence of Non-Celiac Gluten Sensitivity in Patients with Refractory Functional Dyspepsia: A Randomized Double-blind Placebo Controlled Trial. Sci. Rep. 2020, 10, 2401. [Google Scholar] [CrossRef] [Green Version]
- Aziz, I.; Trott, N.; Briggs, R.; North, J.R.; Hadjivassiliou, M.; Sanders, D.S. Efficacy of a Gluten-Free Diet in Subjects with Irritable Bowel Syndrome-Diarrhea Unaware of Their HLA-DQ2/8 Genotype. Clin. Gastroenterol. Hepatol. 2016, 14, 696–703.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barmeyer, C.; Schumann, M.; Meyer, T.; Zielinski, C.; Zuberbier, T.; Siegmund, B.; Schulzke, J.-D.; Daum, S.; Ullrich, R. Long-term response to gluten-free diet as evidence for non-celiac wheat sensitivity in one third of patients with diarrhea-dominant and mixed-type irritable bowel syndrome. Int. J. Color. Dis. 2016, 32, 29–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanwar, V.G.; Pawar, S.V.; Gambhire, P.A.; Jain, S.S.; Surude, R.G.; Shah, V.B.; Contractor, Q.Q.; Rathi, P.M. Symptomatic improvement with gluten restriction in irritable bowel syndrome: A prospective, randomized, double blinded placebo controlled trial. Intest. Res. 2016, 14, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Wahnschaffe, U.; Schulzke, J.D.; Zeitz, M.; Ullrich, R. {A figure is presented}Predictors of Clinical Response to Gluten-Free Diet in Patients Diagnosed with Diarrhea-Predominant Irritable Bowel Syndrome. Clin. Gastroenterol. Hepatol. 2007, 5, 844–850. [Google Scholar] [CrossRef]
- Vazquez–Roque, M.I.; Camilleri, M.; Smyrk, T.; Murray, J.A.; Marietta, E.; O’Neill, J.; Carlson, P.; Lamsam, J.; Janzow, D.; Eckert, D.; et al. A Controlled Trial of Gluten-Free Diet in Patients with Irritable Bowel Syndrome-Diarrhea: Effects on Bowel Frequency and Intestinal Function. Gastroenterology 2013, 144, 903–911.e3. [Google Scholar] [CrossRef] [Green Version]
Celiac Disease (CD) | Non Celiac Gluten Sensitivity (NCGS) | Wheat Allergy (WA) | |
---|---|---|---|
Prevalence | 1% of the general population | Unknown | 0.5–9% of the general population (>in children) |
HLA-DQ2/8 haplotypes | Positive | Positive in 50% of the patients | Negative |
Pathogenesis | Autoimmune | Activation of the innate and adaptive immune response | IgE-mediated |
Serological markers Duodenal biopsy | Positive IgA-TG2, IgA-EMA and IgA/IgG-DGP antibodies Necessary * | IgA/IgG anti-gliadin positive in 50% of the patients Necessary to rule out CD | Wheat specific IgE antibodies or prick test Not necessary |
Therapy | Strict gluten free diet | Gluten-free diet | Avoid all contact with wheat |
Study | Type of Study | Population | Aim | Results |
---|---|---|---|---|
Triggs et al. [60], 2010 | Observational study | An amount of 446 subjects with Crohn’s disease | Evaluation of the impact of GFD in IBD patients | Decreased number of flares and GI symptoms’ severity following a GFD (66%) |
Zallot et al. [62], 2013 | Observational study | An amount of 244 IBD patients | Evaluation of the impact of diet in IBD patients | An amount of 57.8% of the patients felt that food could play a pivotal role in IBD flares; 9.5% of patients believed that a GFD was helpful in improving their symptoms during the disease’s flares; only 1.6% of the study population decided to adopt a GFD during disease flares; |
Herfarth et al. [61], 2014 | Cross-sectional study | An amount of 1647 IBD patients | Investigate the adherence to GFD among IBD patients and their experience with it | An amount of 19.1% of the study population tried a GFD, while 8.2% of them were already following it. After following a GFD, 65.6% of the patients reported an improvement of the symptoms, 38.3% a reduction of disease flares’ frequency and severity, and 23.6% needed less medications |
Schreiner et al. [63], 2019 | Prospective study | An amount of 1254 IBD patients | Investigate the adherence to GFD among IBD patients and their experience with it | An amount of 4.7% of the study population followed a GFD and did not find any differences in disease activity, complications, and hospitalization rate Worse psychological wellbeing in those who were following a GFD diet |
Morton et al. [51], 2020 | Observational study | An amount of 233 IBD patients | Evaluation of the effects of GFD trial on IBD symptoms and flares | An amount of 66% of the patients reported an improvement of the symptoms and 38% reported reduced flare frequency and severity |
Study | Type of Study | Population | Aim | Results |
---|---|---|---|---|
Wahnschaffe et al. [79], 2007 | Prospective interventional study | An amount of 145 IBS adult patients. 102 healthy controls | To evaluate the symptoms’ response to a GFD in IBS patients. | An amount of 41 IBS patients showed a significant decrease in stool frequency and GI symptom score, which in 49% of the patients improved within the normal range. |
Biesiekierski et al. [21], 2011 | Double-blind randomized placebo-controlled trial | An amount of 34 IBS adult patients, who ruled out CD. | Determine whether gluten ingestion could induce symptoms in non-celiac individuals affected by IBS | The majority (68%) of the patients who received gluten had higher severity scores over the entire study period and much greater changes in overall symptoms compared to the placebo group. |
Vazquez-Roque et al. [80], 2013 | Single-centre randomized controlled trial. | An amount of 45 IBS adult patients. | Evaluation of the impact of a four-week GFD randomly administered in IBS patients according to HLA haplotype. | Significant increase in stool frequency and small bowel permeability in the GCD group, especially in HLA-DQ2/8 positive subjects. No beneficial diet effect was observed on gastric emptying, colonic transit, and stool form. |
Aziz et al. [76], 2016 | Prospective interventional study. | An amount of 41 patients with IBS-D (20 HLA-DQ2/8 positive and 21 HLA-DQ2/8 negative). | Evaluation of the effects of a six-week GFD in patients with IBS-D, according toHLA haplotype. | Reduction of IBS Symptom Severity Score by 50 points in 29 patients (71%). The mean total IBS Symptom Severity Score decreased from 286 to 131 points after six weeks of diet (p < 0.001); the reduction was similar in each HLA-DQ group. |
Zanwar et al. [78], 2016 | Double-blind randomized placebo-controlled trial. | An amount of 60 IBS adult patients who ruled out CD and wheat allergy. | Evaluation of the effects of GFD in IBS patients. Subsequent gluten rechallenges after four weeks of washout in patients who positively responded. | In the first phase, overall symptom VAS score improved for 36% of patients after GFD. After four weeks of food rechallenge, patients in the gluten group presented worsening of symptoms, with higher weekly median overall symptom VAS, in contrast to those in the placebo group (p < 0.05) Patients who followed a gluten contained diet showed higher rates in terms of bloating, abdominal pain, and tiredness. |
Elli et al. [74], 2016 | Multi-centre randomized double-blind placebo-controlled study. | An amount of 140 FGIDs patients | Evaluation of the impact of GFD on FGIDs. Patients who positively responded to a strict three-week GFD underwent a placebo controlled double-blind gluten challenge with crossover | Up to 75% of the patients positively responded to the three-week GFD, showing an improvement of general wellbeing. After the placebo-controlled gluten challenge, 14% of these responder patients had an exacerbation of the symptoms, suggesting a NCGS diagnosis and a possible placebo effect of GFD |
Barmeyer et al. [77], 2016 | Prospective interventional study. | An amount of 35 IBS patients | Evaluation of the impact of a four-month GFD on IBS symptoms according to HLA haplotype. | An amount of 12 patients (34%) had significant symptoms and wellbeing improvement, showing no association with HLA-DQ2/8 expression. |
Du et al. [73], 2017 | Case-control study. | An amount of 101 newly diagnosed FD patients and 31 asymptomatic controls | Evaluation of the impact of gluten assumption on FD | The assumption of foods rich in gluten was higher in frequency (p = 0.047) and quantity (p = 0.01) in FD patients compared to controls. Early satiety (p = 0.03) and worsening of GI symptoms were associated with increased gluten consumption. |
Shahbazkhani et al. [75], 2020 | Randomized double-blind placebo controlled trial. | An amount of 77 patients with refractory FD. | Evaluating the effect of GFD in refractory dyspeptic patients. Patients who responded to the GFD underwent a double-blind placebo-controlled gluten challenge. | An amount of 35% of the patients positively responded to the GFD in terms of clinical improvement. An amount of 6.4% of the patients could be labelled as affected by NCGS, as they manifested symptoms after blind gluten ingestion. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cenni, S.; Sesenna, V.; Boiardi, G.; Casertano, M.; Russo, G.; Reginelli, A.; Esposito, S.; Strisciuglio, C. The Role of Gluten in Gastrointestinal Disorders: A Review. Nutrients 2023, 15, 1615. https://doi.org/10.3390/nu15071615
Cenni S, Sesenna V, Boiardi G, Casertano M, Russo G, Reginelli A, Esposito S, Strisciuglio C. The Role of Gluten in Gastrointestinal Disorders: A Review. Nutrients. 2023; 15(7):1615. https://doi.org/10.3390/nu15071615
Chicago/Turabian StyleCenni, Sabrina, Veronica Sesenna, Giulia Boiardi, Marianna Casertano, Giuseppina Russo, Alfonso Reginelli, Susanna Esposito, and Caterina Strisciuglio. 2023. "The Role of Gluten in Gastrointestinal Disorders: A Review" Nutrients 15, no. 7: 1615. https://doi.org/10.3390/nu15071615
APA StyleCenni, S., Sesenna, V., Boiardi, G., Casertano, M., Russo, G., Reginelli, A., Esposito, S., & Strisciuglio, C. (2023). The Role of Gluten in Gastrointestinal Disorders: A Review. Nutrients, 15(7), 1615. https://doi.org/10.3390/nu15071615