Associations between Body Mass Index and Probable Sarcopenia in Community-Dwelling Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determining Probable Sarcopenia
2.2. BMI and Waist Circumference
2.3. Covariates
3. Statistical Analysis
4. Results
4.1. Characteristics of the Study Population Overall and by Probable Sarcopenia
4.2. Associations between Probable Sarcopenia and BMI Based on Regression Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Decade of Healthy Ageing: Baseline Report; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Van Leeuwen, K.M.; Van Loon, M.S.; Van Nes, F.A.; Bosmans, J.E.; de Vet, H.C.; Ket, J.C.; Widdershoven, G.A.; Ostelo, R.W. What does quality of life mean to older adults? A thematic synthesis. PLoS ONE 2019, 14, e0213263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, G.; Iliffe, S.; Jivraj, S.; Walters, K. Association between frailty and quality of life among community-dwelling older people: A systematic review and meta-analysis. J. Epidemiol. Community Health 2016, 70, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Marincolo, J.C.S.; Aprahamian, I.; Corona, L.P.; Neri, A.L.; Yassuda, M.S.; Borim, F.S.A. Three definitions of probable sarcopenia and associations with falls and functional disability among community-dwelling older adults. Osteoporos. Sarcopenia 2021, 7, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Dodds, R.; Murray, J.; Robinson, S.; Sayer, A. The identification of probable sarcopenia in early old age based on the SARC-F tool and clinical suspicion: Findings from the 1946 British birth cohort. Eur. Geriatr. Med. 2020, 11, 433. [Google Scholar] [CrossRef] [Green Version]
- Wearing, J.; Konings, P.; de Bie, R.A.; Stokes, M.; de Bruin, E.D. Prevalence of probable sarcopenia in community-dwelling older Swiss people—A cross-sectional study. BMC Geriatr. 2020, 20, 307. [Google Scholar] [CrossRef] [PubMed]
- Swan, L.; Warters, A.; O’Sullivan, M. Socioeconomic Inequality and Risk of Sarcopenia in Community-Dwelling Older Adults. Clin. Interv. Aging 2021, 16, 1119–1129. [Google Scholar] [CrossRef]
- Kim, M.; Won, C.W. Prevalence of sarcopenia in community-dwelling older adults using the definition of the European Working Group on Sarcopenia in Older People 2: Findings from the Korean Frailty and Aging Cohort Study. Age Ageing 2019, 48, 910–916. [Google Scholar] [CrossRef]
- Swan, L.; Warters, A.; O’Sullivan, M. Socioeconomic Disadvantage is Associated with Probable Sarcopenia in Community-Dwelling Older Adults: Findings from the English Longitudinal Study of Ageing. J. Frailty Aging 2022, 11, 398–406. [Google Scholar] [CrossRef]
- Nasimi, N.; Dabbaghmanesh, M.H.; Sohrabi, Z. Nutritional status and body fat mass: Determinants of sarcopenia in community-dwelling older adults. Exp. Gerontol. 2019, 122, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Sanchez-Rodriguez, D.; Locquet, M.; Reginster, J.Y.; Lengelé, L.; Bruyère, O. Malnutrition as a Strong Predictor of the Onset of Sarcopenia. Nutrients 2019, 11, 2883. [Google Scholar] [CrossRef] [Green Version]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, S.M.; Correia, M. Epidemiology of weight loss, malnutrition and sarcopenia: A transatlantic view. Nutrition 2020, 69, 110581. [Google Scholar] [CrossRef]
- Boirie, Y.; Morio, B.; Caumon, E.; Cano, N.J. Nutrition and protein energy homeostasis in elderly. Mech. Ageing Dev. 2014, 136, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Tramontano, A.; Veronese, N.; Sergi, G.; Manzato, E.; Rodriguez-Hurtado, D.; Maggi, S.; Trevisan, C.; de Zaiacomo, F.; Giantin, V. Prevalence of sarcopenia and associated factors in the healthy older adults of the Peruvian Andes. Arch. Gerontol. Geriatr. 2017, 68, 49–54. [Google Scholar] [CrossRef]
- Dodds, R.M.; Granic, A.; Davies, K.; Kirkwood, T.B.; Jagger, C.; Sayer, A.A. Prevalence and incidence of sarcopenia in the very old: Findings from the Newcastle 85+ Study. J. Cachexia Sarcopenia Muscle 2017, 8, 229–237. [Google Scholar] [CrossRef]
- de Souza Moreira, B.; de Souza Andrade, A.C.; Lustosa Torres, J.; de Souza Braga, L.; de Carvalho Bastone, A.; de Melo Mambrini, J.V.; Lima-Costa, M.F. Nationwide handgrip strength values and factors associated with muscle weakness in older adults: Findings from the Brazilian Longitudinal Study of Aging (ELSI-Brazil). BMC Geriatr. 2022, 22, 1005. [Google Scholar] [CrossRef]
- Crovetto Mattassi, M.; Henríquez Mella, C.; Pérez Bocaz, L. Association between Sarcopenia and Nutritional Status in Chilean Older People Aged 65 Years and Older. Nutrients 2022, 14, 5228. [Google Scholar] [CrossRef]
- Ponti, F.; Santoro, A.; Mercatelli, D.; Gasperini, C.; Conte, M.; Martucci, M.; Sangiorgi, L.; Franceschi, C.; Bazzocchi, A. Aging and Imaging Assessment of Body Composition: From Fat to Facts. Front. Endocrinol. 2019, 10, 861. [Google Scholar] [CrossRef] [Green Version]
- de Carvalho, D.H.T.; Scholes, S.; Santos, J.L.F.; de Oliveira, C.; Alexandre, T.D.S. Does Abdominal Obesity Accelerate Muscle Strength Decline in Older Adults? Evidence from the English Longitudinal Study of Ageing. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 74, 1105–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donini, L.M.; Busetto, L.; Bauer, J.M.; Bischoff, S.; Boirie, Y.; Cederholm, T.; Cruz-Jentoft, A.J.; Dicker, D.; Frühbeck, G.; Giustina, A.; et al. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin. Nutr. 2020, 39, 2368–2388. [Google Scholar] [CrossRef]
- Steptoe, A.; Breeze, E.; Banks, J.; Nazroo, J. Cohort profile: The English longitudinal study of ageing. Int. J. Epidemiol. 2013, 42, 1640–1648. [Google Scholar] [CrossRef] [Green Version]
- Batty, D.; Blake, M.; Bridges, S.; Crawford, R.; Demakakos, P.; de Oliveira, C.; Hussey, D.; Jackowska, M.; Jackson, S.; Marmot, M.; et al. The Dynamics of Ageing: Evidence from the English Longitudinal Study of Ageing 2002–2012 (Wave 6); The Institute for Fiscal Studies: London, UK, 2014. [Google Scholar]
- World Health Organisation. Obesity: Preventing and Managing the Global Epidemic; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic criteria for malnutrition–an ESPEN consensus statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef]
- Bardon, L.A.; Streicher, M.; Corish, C.A.; Clarke, M.; Power, L.C.; Kenny, R.A.; O’Connor, D.M.; Laird, E.; O’Connor, E.M.; Visser, M.; et al. Predictors of Incident Malnutrition in Older Irish Adults from the Irish Longitudinal Study on Ageing Cohort-A MaNuEL study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 249–256. [Google Scholar] [CrossRef]
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of ‘early health risk’: Simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. BMJ Open 2016, 6, e010159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Grundy, E.; Holt, G. The socioeconomic status of older adults: How should we measure it in studies of health inequalities? J. Epidemiol. Community Health 2001, 55, 895–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agha, M.; Agha, R. The rising prevalence of obesity: Part A: Impact on public health. Int. J. Surg. Oncol. 2017, 2, e17. [Google Scholar] [CrossRef] [Green Version]
- Valtorta, N.K.; Kanaan, M.; Gilbody, S.; Hanratty, B. Loneliness, social isolation and risk of cardiovascular disease in the English Longitudinal Study of Ageing. Eur. J. Prev. Cardiol. 2018, 25, 1387–1396. [Google Scholar] [CrossRef]
- Zhu, D.; Chung, H.F.; Pandeya, N.; Dobson, A.J.; Hardy, R.; Kuh, D.; Brunner, E.J.; Bruinsma, F.; Giles, G.G.; Demakakos, P.; et al. Premenopausal cardiovascular disease and age at natural menopause: A pooled analysis of over 170,000 women. Eur. J. Epidemiol. 2019, 34, 235–246. [Google Scholar] [CrossRef]
- Smith, L.; Gardner, B.; Fisher, A.; Hamer, M. Patterns and correlates of physical activity behaviour over 10 years in older adults: Prospective analyses from the English Longitudinal Study of Ageing. BMJ Open 2015, 5, e007423. [Google Scholar] [CrossRef] [Green Version]
- Aspell, N.; Laird, E.; Healy, M.; Lawlor, B.; O’Sullivan, M. Vitamin D Deficiency Is Associated with Impaired Muscle Strength and Physical Performance in Community-Dwelling Older Adults: Findings from The English Longitudinal Study of Ageing. Clin. Interv. Aging 2019, 14, 1751–1761. [Google Scholar] [CrossRef] [Green Version]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM criteria for the diagnosis of malnutrition–A consensus report from the global clinical nutrition community. J. Cachexia Sarcopenia Muscle 2019, 10, 207–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keevil, V.L.; Luben, R.; Dalzell, N.; Hayat, S.; Sayer, A.A.; Wareham, N.J.; Khaw, K.T. Cross-sectional associations between different measures of obesity and muscle strength in men and women in a British cohort study. J. Nutr. Health Aging 2015, 19, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozkok, S.; Aydin, C.O.; Sacar, D.E.; Catikkas, N.M.; Erdogan, T.; Bozkurt, M.E.; Kilic, C.; Karan, M.A.; Bahat, G. Sarcopenic obesity versus sarcopenia alone with the use of probable sarcopenia definition for sarcopenia: Associations with frailty and physical performance. Clin. Nutr. 2022, 41, 2509–2516. [Google Scholar] [CrossRef]
- Yoo, M.C.; Won, C.W.; Soh, Y. Association of high body mass index, waist circumference, and body fat percentage with sarcopenia in older women. BMC Geriatr. 2022, 22, 937. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ren, J. Obesity Paradox in Aging: From Prevalence to Pathophysiology. Prog. Cardiovasc. Dis. 2018, 61, 182–189. [Google Scholar] [CrossRef]
- Johansson, J.; Strand, B.H.; Morseth, B.; Hopstock, L.A.; Grimsgaard, S. Differences in sarcopenia prevalence between upper-body and lower-body based EWGSOP2 muscle strength criteria: The Tromsø study 2015–2016. BMC Geriatr. 2020, 20, 461. [Google Scholar] [CrossRef]
- Guo, J.; Shang, Y.; Fratiglioni, L.; Johnell, K.; Welmer, A.K.; Marseglia, A.; Xu, W. Individual changes in anthropometric measures after age 60 years: A 15-year longitudinal population-based study. Age Ageing 2021, 50, 1666–1674. [Google Scholar] [CrossRef]
- Schoufour, J.D.; Tieland, M.; Barazzoni, R.; Ben Allouch, S.; Bie, J.V.D.; Boirie, Y.; Cruz-Jentoft, A.J.; Eglseer, D.; Topinková, E.; Visser, B.; et al. The Relevance of Diet, Physical Activity, Exercise, and Persuasive Technology in the Prevention and Treatment of Sarcopenic Obesity in Older Adults. Front. Nutr. 2021, 8, 661449. [Google Scholar] [CrossRef]
- Gandham, A.; Mesinovic, J.; Jansons, P.; Zengin, A.; Bonham, M.P.; Ebeling, P.R.; Scott, D. Falls, fractures, and areal bone mineral density in older adults with sarcopenic obesity: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13187. [Google Scholar] [CrossRef] [PubMed]
Overall Study Population (n = 5783) | Reference b No Probable Sarcopenia (n = 3945) | Probable Sarcopenia (n = 1838) | p-Value c | |
---|---|---|---|---|
Age, years, mean ± SD | 70.4 ± 7.5 | 68.4 ± 6.4 | 74.6 ± 8.1 | <0.001 * |
Age categories, n (%) | ||||
60–64 | 1539 (26.6%) | 1294 (32.8%) | 245 (13.3%) | <0.001 * |
65–69 | 1470 (25.4%) | 1169 (29.6%) | 301 (16.4%) | <0.001 * |
70–74 | 1073 (18.6%) | 727 (18.4%) | 346 (18.8%) | 0.745 |
75–79 | 941 (16.3%) | 512 (13.0%) | 429 (23.3%) | <0.001 * |
>80 | 760 (13.1%) | 243 (6.2%) | 517 (28.1%) | <0.001 * |
Sex, n (%) | ||||
Male | 2628 (45.4%) | 1884 (47.8%) | 744 (40.5%) | <0.001 * |
Female | 3155 (54.6%) | 2061 (52.2%) | 1094 (59.5%) | <0.001 * |
Ethnicity, n (%) | ||||
White | 5649 (97.7%) | 3862 (97.9%) | 1787 (97.2%) | 0.138 |
Non-White | 134 (2.3%) | 83 (2.1%) | 51 (2.8%) | 0.138 |
Educational attainment, n (%) | ||||
No formal qualification | 1556 (26.9%) | 861 (21.9%) | 695 (37.8%) | <0.001 * |
Lower sec/international qual. | 1678 (29.1%) | 1141 (29.0%) | 537 (29.2%) | 0.865 |
Upper secondary | 1495 (25.9%) | 1089 (27.7%) | 406 (22.1%) | <0.001 * |
Degree | 1046 (18.1%) | 847 (21.5%) | 199 (10.8%) | <0.001 * |
BMI (kg/m2), mean ± SD | 28.2 ± 5.1 | 28.1 ± 4.8 | 28.6 ± 5.7 | <0.001 * |
BMI (WHO criteria), n (%) | ||||
Underweight (<18.5 kg/m2) | 53 (0.9%) | 24 (0.6%) | 29 (1.6%) | <0.001 * |
Healthy (18.5–25 kg/m2) | 1487 (25.7%) | 1041 (26.4%) | 446 (24.3%) | 0.092 |
Overweight (25–30 kg/m2) | 2464 (42.6%) | 1728 (43.8%) | 736 (40.0%) | 0.008 * |
Obese (≥30 kg/m2) | 1779 (30.8%) | 1152 (29.2%) | 627 (34.1%) | <0.001 * |
BMI (alternative criteria), n (%) | ||||
Underweight (<20 kg/m2) | 169 (2.9%) | 97 (2.5%) | 72 (3.9%) | 0.003 * |
Healthy (20–25 kg/m2) | 1371 (23.7%) | 968 (24.5%) | 403 (21.9%) | 0.032 * |
Overweight (25–30 kg/m2) | 2464 (42.6%) | 1728 (43.8%) | 736 (40.0%) | 0.008 * |
Obese (≥30 kg/m2) | 1779 (30.8%) | 1152 (29.2%) | 627 (34.1%) | <0.001 * |
Waist circumference (cm), mean ± SD | 96.61 ± 13.51 | 96.04 ± 13.16 | 97.87 ± 14.17 | <0.001 * |
Waist circumference categories, n (%) | ||||
Low-risk | 1178 (20.6%) | 853 (21.8%) | 325 (17.9%) | <0.001 * |
Medium-risk | 1431 (25.0%) | 1028 (26.2%) | 403 (22.2%) | 0.001 * |
High-risk | 3121 (54.5%) | 2037 (52.0%) | 1084 (59.8%) | <0.001 * |
Waist-to-height ratio, mean ± SD | 0.59 ± 0.08 | 0.58 ± 0.08 | 0.60 ± 0.08 | <0.001 * |
Waist-to-height ratio categories, n (%) | ||||
No increased-risk | 767 (13.4%) | 572 (14.6%) | 195 (10.8%) | <0.001 * |
Increased-risk | 2658 (46.4%) | 1938 (49.5%) | 720 (39.7%) | <0.001 * |
Very high-risk | 2305 (40.2%) | 1408 (35.9%) | 897 (49.5%) | <0.001 * |
Smoking status, n (%) | ||||
Never smoked | 2072 (35.8%) | 1464 (37.1%) | 608 (33.1%) | 0.003 * |
Past smoker | 3147 (54.4%) | 2117 (53.7%) | 1030 (56.0%) | 0.097 |
Current smoker | 564 (9.8%) | 364 (9.2%) | 200 (10.9%) | 0.054 |
Physical activity level, n (%) | ||||
Low | 1341 (23.2%) | 538 (13.6%) | 803 (43.7%) | <0.001 * |
Intermediate | 2781 (48.1%) | 2023 (51.3%) | 758 (41.2%) | <0.001 * |
High | 1661 (28.7%) | 1384 (35.1%) | 277 (15.1%) | <0.001 * |
Chronic conditions, n (%) | ||||
0 | 1567 (27.1%) | 1307 (33.1%) | 260 (14.1%) | <0.001 * |
1 | 1962 (33.9%) | 1437 (36.4%) | 525 (28.6%) | <0.001 * |
≥2 | 2254 (39.0%) | 1201 (30.4%) | 1053 (57.3%) | <0.001 * |
Cardiovascular disease, n (%) | 1348 (23.3%) | 710 (18.0%) | 638 (34.7%) | <0.001 * |
Diabetes, n (%) | 677 (11.7%) | 336 (9.3%) | 311 (16.9%) | <0.001 * |
Osteoarthritis, n (%) | 1723 (29.8%) | 991 (25.1%) | 732 (39.8%) | <0.001 * |
Number of falls in last 2 years, n (%) | ||||
0 | 4199 (72.7%) | 3029 (76.8%) | 1170 (63.8%) | <0.001 * |
1 | 921 (15.9%) | 603 (15.3%) | 318 (17.3%) | 0.051 |
≥2 | 657 (11.4%) | 312 (7.9%) | 345 (18.8%) | <0.001 * |
Difficulty with ADLs or IADLs, n (%) | 1496 (25.9%) | 602 (15.3%) | 894 (48.6%) | <0.001 * |
Probable Sarcopenia | |||||||||
---|---|---|---|---|---|---|---|---|---|
HGS and/or CRT Model 1 | HGS Only Model 2 | CRT Only Model 3 | |||||||
Variable | OR | 95% CI for OR | * p-value | OR | 95% CI for OR | * p-value | OR | 95% CI for OR | * p-value |
Age, years | 1.09 | 1.08–1.10 | <0.001 | 1.10 | 1.08–1.11 | <0.001 | 1.09 | 1.07–1.10 | <0.001 |
Ethnicity | |||||||||
White | Ref | ||||||||
Non-white | 1.55 | 1.03–2.34 | 0.036 | - | - | - | - | - | - |
Educational attainment | <0.001 | 0.002 | 0.005 | ||||||
No formal | 1.68 | 1.36–2.09 | <0.001 | 1.55 | 1.18–2.04 | 0.001 | 1.52 | 1.19–1.94 | <0.001 |
Low secondary | 1.35 | 1.09–1.66 | 0.006 | 1.51 | 1.15–1.97 | 0.003 | 1.21 | 0.95–1.54 | 0.125 |
Upper secondary | 1.26 | 1.01–1.57 | 0.037 | 1.18 | 0.89–1.56 | 0.259 | 1.22 | 0.95–1.56 | 0.125 |
Degree | Ref | Ref | Ref | ||||||
BMI (WHO criteria) | 0.046 | <0.001 | <0.001 | ||||||
Underweight | 2.25 | 1.17–4.33 | 0.015 | 1.30 | 0.65–2.62 | 0.458 | 2.32 | 1.15–4.70 | 0.019 |
Healthy | Ref | Ref | Ref | ||||||
Overweight | 0.92 | 0.78–1.09 | 0.322 | 0.72 | 0.60–0.88 | 0.001 | 1.23 | 1.02–1.49 | 0.035 |
Obese | 0.94 | 0.78–1.12 | 0.475 | 0.64 | 0.52–0.79 | <0.001 | 1.49 | 1.21–1.83 | <0.001 |
Physical activity level | <0.001 | <0.001 | <0.001 | ||||||
Low | 2.92 | 2.40–3.55 | <0.001 | 2.57 | 2.02–3.29 | <0.001 | 3.27 | 2.62–4.08 | <0.001 |
Intermediate | 1.32 | 1.12–1.56 | 0.001 | 1.36 | 1.09–1.71 | 0.007 | 1.38 | 1.13–1.69 | 0.002 |
High | Ref | Ref | Ref | ||||||
Smoking status | - | - | - | - | - | - | <0.001 | ||
Never smoker | Ref | ||||||||
Past smoker | 1.01 | 0.86–1.19 | 0.890 | ||||||
Current smoker | 1.72 | 1.33–2.24 | <0.001 | ||||||
Chronic conditions | <0.001 | <0.001 | 0.010 | ||||||
0 | Ref | Ref | Ref | ||||||
1 | 1.12 | 0.92–1.35 | 0.252 | 1.16 | 0.90–1.49 | 0.254 | 1.08 | 0.87–1.35 | 0.496 |
≥2 | 1.44 | 1.18–1.76 | <0.001 | 1.67 | 1.30–2.15 | <0.001 | 1.35 | 1.08–1.69 | 0.010 |
CVD | 1.32 | 1.13–1.53 | <0.001 | - | - | 1.38 | 1.17–1.62 | <0.001 | |
Diabetes | 1.27 | 1.05–1.55 | 0.017 | 1.35 | 1.08–1.68 | 0.008 | - | - | |
Osteoarthritis | 1.36 | 1.17–1.58 | <0.001 | 1.21 | 1.02–1.45 | 0.034 | 1.29 | 1.09–1.52 | 0.003 |
Falls in past 2 | <0.001 | <0.001 | <0.001 | ||||||
years | |||||||||
0 | Ref | Ref | Ref | ||||||
1 | 1.13 | 0.94–1.35 | 0.190 | 1.09 | 0.88–1.34 | 0.452 | 1.18 | 0.97–1.44 | 0.091 |
≥2 | 1.74 | 1.42–2.13 | <0.001 | 1.87 | 1.51–2.33 | <0.001 | 2.29 | 1.85–2.84 | <0.001 |
Difficulty with ADLs and IADLs | 2.55 | 2.19–2.97 | <0.001 | 1.67 | 1.40–1.99 | <0.001 | 2.62 | 2.23–3.09 | <0.001 |
Probable Sarcopenia | |||||||||
---|---|---|---|---|---|---|---|---|---|
HGS and/or CRT Model 1 | HGS Only Model 2 | CRT Only Model 3 | |||||||
Variable | OR | 95% CI for OR | * p-value | OR | 95% CI for OR | * p-value | OR | 95% CI for OR | * p-value |
Age, years | 1.09 | 1.08–1.10 | <0.001 | 1.1 | 1.09–1.11 | <0.001 | 1.08 | 1.07–1.09 | <0.001 |
Ethnicity | Ref 1.55 | 1.03–2.34 | 0.036 | ||||||
White Non-white | |||||||||
Educational attainment | <0.001 | <0.001 | 0.005 | ||||||
No formal | 1.67 | 1.34–2.06 | <0.001 | 1.62 | 1.23–2.13 | <0.001 | 1.54 | 1.2–1.97 | <0.001 |
Low secondary | 1.34 | 1.08–1.65 | 0.008 | 1.54 | 1.18–2.03 | 0.002 | 1.24 | 0.97–1.58 | 0.089 |
Upper secondary | 1.25 | 1.01–1.56 | 0.043 | 1.18 | 0.87–1.57 | 0.259 | 1.24 | 0.96–1.59 | 0.096 |
Degree | Ref | Ref | Ref | ||||||
Waist circumference | <0.001 | 0.009 | |||||||
Low-risk | Ref | Ref | |||||||
Medium-risk | 0.79 | 0.63–1.00 | 0.054 | 1.13 | 0.89–1.43 | 0.307 | |||
High-risk | 0.61 | 0.50–0.76 | <0.001 | 1.35 | 1.10–1.66 | 0.005 | |||
Physical activity level | <0.001 | <0.001 | <0.001 | ||||||
Low | 2.93 | 2.41–3.56 | <0.001 | 2.67 | 2.09–3.43 | <0.001 | 3.24 | 2.59–4.06 | <0.001 |
Intermediate | 1.32 | 1.12–1.56 | 0.001 | 1.42 | 1.13–1.78 | 0.002 | 1.39 | 1.14–1.70 | 0.001 |
High | Ref | Ref | Ref | ||||||
Smoking status, n (%) | <0.001 | ||||||||
Never smoker | Ref | ||||||||
Past smoker | 1.01 | 0.86–1.18 | 0.925 | ||||||
Current smoker | 1.69 | 1.30–2.19 | <0.001 | ||||||
Chronic conditions | <0.001 | <0.001 | 0.006 | ||||||
0 | Ref | Ref | Ref | ||||||
1 | 1.13 | 0.93–1.36 | 0.219 | 1.18 | 0.91–1.51 | 0.207 | 1.1 | 0.88–1.37 | 0.4 |
≥2 | 1.46 | 1.20–1.78 | <0.001 | 1.68 | 1.31–2.17 | <0.001 | 1.38 | 1.10–1.74 | 0.005 |
CVD | 1.32 | 1.13–1.53 | <0.001 | 1.38 | 1.17–1.63 | <0.001 | |||
Diabetes | 1.26 | 1.04–1.53 | 0.021 | 1.35 | 1.08–1.69 | 0.008 | |||
Osteoarthritis | 1.35 | 1.16–1.57 | <0.001 | 1.23 | 1.03–1.47 | 0.024 | 1.27 | 1.07–1.50 | 0.005 |
Falls in past 2 | <0.001 | <0.001 | <0.001 | ||||||
years | |||||||||
0 | Ref | Ref | Ref | ||||||
1 | 1.12 | 0.94–1.34 | 0.204 | 1.11 | 0.90–1.37 | 0.343 | 1.17 | 0.96–1.43 | 0.117 |
≥2 | 1.74 | 1.42–2.12 | <0.001 | 1.91 | 1.54–2.38 | <0.001 | 2.35 | 1.89–2.91 | <0.001 |
Difficulty with ADLs and IADLs | 2.54 | 2.18–2.95 | <0.001 | 1.65 | 1.38–1.97 | <0.001 | 2.64 | 2.25–3.11 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curtis, M.; Swan, L.; Fox, R.; Warters, A.; O’Sullivan, M. Associations between Body Mass Index and Probable Sarcopenia in Community-Dwelling Older Adults. Nutrients 2023, 15, 1505. https://doi.org/10.3390/nu15061505
Curtis M, Swan L, Fox R, Warters A, O’Sullivan M. Associations between Body Mass Index and Probable Sarcopenia in Community-Dwelling Older Adults. Nutrients. 2023; 15(6):1505. https://doi.org/10.3390/nu15061505
Chicago/Turabian StyleCurtis, Molly, Lauren Swan, Rebecca Fox, Austin Warters, and Maria O’Sullivan. 2023. "Associations between Body Mass Index and Probable Sarcopenia in Community-Dwelling Older Adults" Nutrients 15, no. 6: 1505. https://doi.org/10.3390/nu15061505
APA StyleCurtis, M., Swan, L., Fox, R., Warters, A., & O’Sullivan, M. (2023). Associations between Body Mass Index and Probable Sarcopenia in Community-Dwelling Older Adults. Nutrients, 15(6), 1505. https://doi.org/10.3390/nu15061505