Effects of COVID-19 Pandemic on Metabolic Status and Psychological Correlates of a Cohort of Italian NAFLD Outpatients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
- -
- 16 were on hypoglycemic therapy
- -
- 19 received hypolipemic drugs
- -
- 24 received anti-hypertensive drug
- -
- Group A (>5% of basal weight loss): 9/43 patients (21%) with a mean weight change of −7.5%.
- -
- Group B (<5% of basal weight loss): 34/43 patients (79%) with a mean weight change of +1.2%.
- -
- 17 patients modified lipid lowering therapy: 2 received a different drug, 13 added a second molecule, and 2 reduced the dosage of a previous therapy
- -
- 9 patients modified antidiabetic therapy: 4 reduced the oral antidiabetic level, 4 increased it one 1 patient was newly prescribed insulin therapy
- -
- 18 patients modified anti-hypertensive therapy: 4 reduced it and 14 incremented it.
Psychological Wellbeing and Quality of Life
- -
- Mobility: 4 out of 14 patients, all belonging to group B, affirmed that they felt at least a moderate restriction of their mobility (0% in group A versus 36.3% in group B).
- -
- Self-care: 1 patient in group B reported a decrease in the ability to take care of himself.
- -
- Daily activities: 2 patients in group B stated that they felt a moderate difficulty to routinely perform their daily activities.
- -
- Pain or discomfort: 4 patients declared a moderate pain feeling, with 3 of them being from group B and 1 from group A. One more patient from group B reported severe pain.
- -
- Anxiety or depression: 8 patients reported anxiety or moderate depression, with 6 of them being included in group B and 1 of them suffered from severe depression and being treated with another antidepressant molecule at the post-pandemic visit.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical practice guidelines for the management of non-alcoholic liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.S.; Wong, G.L.H.; Chan, R.S.M.; Shu, S.S.T.; Cheung, B.H.K.; Li, L.S.; Chim, A.M.L.; Chan, C.K.M.; Leung, J.K.Y.; Chu, W.C.W.; et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J. Hepatol. 2018, 69, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef]
- Haigh, L.; Kirk, C.; El Gendy, K.; Gallacher, J.; Errington, L.; Mathers, J.C.; Anstee, Q.M. The effectiveness and acceptability of Mediterranean diet and calorie restriction in non-alcoholic fatty liver disease (MAFLD): A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 1913–1931. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Medori, M.C.; Bonetti, G.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Stuppia, L.; Connelly, S.T.; Herbst, K.L.; et al. Modern vision of the Mediterranean diet. J. Prev. Med. Hyg. 2022, 63, E36–E43. [Google Scholar] [PubMed]
- Sberna, A.L.; Bouillet, B.; Rouland, A.; Brindisi, M.C.; Nguyen, A.; Mouillot, T.; Duvillard, L.; Denimal, D.; Loffroy, R.; Vergès, B.; et al. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) clinical practice recommendations for the management of non-alcoholic fatty liver disease: Evaluation of their application in people with Type 2 diabetes. Diabet. Med. 2018, 35, 368–375. [Google Scholar]
- Ferri, S.; Stefanini, B.; Mulazzani, L.; Alvisi, M.; Tovoli, F.; Leoni, S.; Muratori, L.; Lotti, T.; Granito, A.; Bolondi, L.; et al. Very Low Alcohol Consumption Is Associated with Lower Prevalence of Cirrhosis and Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients 2022, 14, 2493. [Google Scholar] [CrossRef]
- Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Salomone, F.; Webb, M.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Dietary vitamin E and C intake is inversely associated with the severity of nonalcoholic fatty liver disease. Dig. Liver Dis. 2019, 51, 1698–1705. [Google Scholar] [CrossRef] [Green Version]
- Hallsworth, K.; Thoma, C.; Moore, S.; Ploetz, T.; Anstee, Q.M.; Taylor, R.; Day, C.P.; Trenell, M.I. Non-alcoholic fatty liver disease is associated with higher levels of objectively measured sedentary behaviour and lower levels of physical activity than matched healthy controls. Frontline Gastroenterol. 2015, 6, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.; Shida, T.; Yamagishi, K.; Tanaka, K.; So, R.; Tsujimoto, T.; Shoda, J. Moderate to vigorous physical activity volume is an important factor for managing nonalcoholic fatty liver disease: A retrospective study. Hepatology 2015, 61, 1205–1215. [Google Scholar] [CrossRef]
- Katsagoni, C.N.; Georgoulis, M.; Papatheodoridis, G.V.; Panagiotakos, D.B.; Kontogianni, M.D. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: A meta-analysis. Metabolism. 2017, 68, 119–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, S.; Chang, Y.; Jung, H.S.; Yun, K.E.; Kwon, M.J.; Choi, Y.; Kim, C.W.; Cho, J.; Suh, B.S.; Cho, Y.K.; et al. Relationship of sitting time and physical activity with non-alcoholic fatty liver disease. J. Hepatol. 2015, 63, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Soto-Angona, Ó.; Anmella, G.; Valdés-Florido, M.J.; De Uribe-Viloria, N.; Carvalho, A.F.; Penninx, B.W.; Berk, M. Non-alcoholic fatty liver disease (NAFLD) as a neglected metabolic companion of psychiatric disorders: Common pathways and future approaches. BMC Med. 2020, 18, 261. [Google Scholar] [CrossRef]
- Youssef, N.A.; Abdelmalek, M.F.; Binks, M.; Guy, C.D.; Omenetti, A.; Smith, A.D.; Diehl, A.M.E.; Suzuki, A. Associations of depression, anxiety and antidepressants with histological severity of nonalcoholic fatty liver disease. Liver Int. 2013, 33, 1062–1070. [Google Scholar] [CrossRef]
- Fuller, B.E.; Rodriguez, V.L.; Linke, A.; Sikirica, M.; Dirani, R.; Hauser, P. Prevalence of liver disease in veterans with bipolar disorder or schizophrenia. Gen. Hosp. Psychiatry 2011, 33, 232–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, K.E.; Haller, D.L.; Sargeant, C.; Levenson, J.L.; Puri, P.; Sanyal, A.J. Readiness for behaviour change in non-alcoholic fatty liver disease: Implications for multidisciplinary care models. Liver Int. 2015, 35, 936–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortez-Pinto, H.; Chatham, J.; Chacko, V.P.; Arnold, C.; Rashid, A.; Diehl, A.M. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: A pilot study. JAMA 1999, 282, 1659–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smaga, I.; Niedzielska, E.; Gawlik, M.; Moniczewski, A.; Krzek, J.; Przegaliński, E.; Pera, J.; Filip, M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol. Rep. 2015, 67, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Moseley, G.; Berk, M.; Jacka, F. Nutritional psychiatry: The present state of the evidence. Proc. Nutr. Soc. 2017, 76, 427–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazzetta Ufficiale. Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/11/20A01605/sg (accessed on 3 December 2022).
- Bogataj Jontez, N.; Novak, K.; Kenig, S.; Petelin, A.; Jenko Pražnikar, Z.; Mohorko, N. The Impact of COVID-19-Related Lockdown on Diet and Serum Markers in Healthy Adults. Nutrients 2021, 13, 1082. [Google Scholar] [CrossRef]
- Shanmugam, H.; Di Ciaula, A.; Di Palo, D.M.; Molina-Molina, E.; Garruti, G.; Faienza, M.F.; VanErpecum, K.; Portincasa, P. Multiplying effects of COVID-19 lockdown on metabolic risk and fatty liver. Eur. J. Clin. Investig. 2021, 51, e13597. [Google Scholar] [CrossRef] [PubMed]
- de Almeida e Borges, V.F.; Diniz, A.L.; Cotrim, H.P.; Rocha, H.L.; Andrade, N.B. Sonographic hepatorenal ratio: A noninvasive method to diagnose nonalcoholic steatosis. J. Clin Ultrasound 2013, 41, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Mulazzani, L.; Cantisani, V.; Piscaglia, F. Different techniques for ultrasound liver elastography. J. Hepatol. 2019, 70, 545–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A User’s Guide to the Self Reporting Questionnaire (SRQ) Compiled by M. Beusenberg and J. Orley. Available online: https://apps.who.int/iris/handle/10665/61113 (accessed on 20 October 2022).
- Manual for the State-Trait Anxiety Inventory (Form Y1–Y2). Available online: https://www.researchgate.net/publication/235361542 (accessed on 3 December 2022).
- Brooks, R.; Rabin, R.; Charro, F. The Measurement and Valuation of Health Status Using EQ-5D: A European Perspective: Evidence from the EuroQol BIOMED Research Programme; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Ware, J.J.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Kolokotroni, O.; Mosquera, M.C.; Quattrocchi, A.; Heraclides, A.; Demetriou, C.; Philippou, E. Lifestyle habits of adults during the COVID-19 pandemic lockdown in Cyprus: Evidence from a cross-sectional study. BMC Public Health 2021, 21, 786. [Google Scholar] [CrossRef]
- Khan, M.A.; Menon, P.; Govender, R.; Samra, A.M.A.; Allaham, K.K.; Nauman, J.; Östlundh, L.; Mustafa, H.; Smith, J.E.; AlKaabi, J.M. Systematic review of the effects of pandemic confinements on body weight and their determinants. Br. J. Nutr. 2022, 127, 298–317. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Cinelli, G.; Bigioni, G.; Soldati, L.; Attinà, A.; Bianco, F.F.; Caparello, G.; Camodeca, V.; Carrano, E.; et al. Psychological aspects and eating habits during COVID-19 home confinement: Results of EHLC-COVID-19 Italian online survey. Nutrients 2020, 12, 2152. [Google Scholar] [CrossRef]
Parameters | First Visit (T0) | Pre-Pandemic Visit (T1) | Post-Pandemic Visit (T2) | p |
---|---|---|---|---|
Sex M (%) | 17 (40%) | 17 (40%) | 17 (40%) | n.s. |
Diabetes n (%) | 15 (34.9%) | 18 (41.9%) | 18 (41.9%) | n.s. |
Hypertension n (%) | 27 (62.8%) | 27 (62.8%) | 27 (62.8%) | n.s. |
Dyslipidemia n (%) | 25 (58.1%) | 28 (65.1%) | 30 (69.8%) | n.s. |
Weight (kg) | 77.6 ± 10.9 | 77.1 ± 11.8 | 78.0 ± 12.3 | n.s. |
BMI | 29.0 ± 4.2 | 28.8 ± 4.3 | 29.1 ± 4.7 | n.s. |
Waist circumference (cm) | 105.3 ± 13.3 | 103.1 ± 12.0 | 101.3 ± 10.4 | c |
Physical activity | 1.5 ± 0.6 | 1.7 ± 0.6 | 1.9 ± 0.8 | a,b,c |
Triglycerides (mg/dL) | 133.4 ± 62.7 | 123.4 ± 50.6 | 145.8 ± 71.4 | n.s. |
Total cholesterol (mg/dL) | 194.1 ± 40.2 | 188.6 ± 34.3 | 188.1 ± 43.9 | n.s. |
HDL (mg/dL) | 54.6 ± 23.8 | 51.9 ± 12.9 | 57.3 ± 31.6 | n.s. |
LDL (mg/dL) | 111.9 ± 37.8 | 111.4 ± 29.9 | 108.6 ± 45.3 | n.s. |
HOMA index | 3.2 ± 2.5 | 3.3 ± 2.1 | 4.1 ± 3.9 | n.s. |
ALT/GPT (U/L) | 47.6 ± 27.2 | 38.8 ± 27.4 | 40.3 ± 27.7 | n.s. |
AST/GOT (U/L) | 37.7 ± 15.2 | 33.0 ± 16.1 | 34.5 ± 17.5 | n.s. |
gammaGT (U/L) | 91.8 ± 80.8 | 55.9 ± 40.4 | 59.2 ± 44.3 | a,c |
NAFLD fibrosis score | −0.80 ± 1.68 | −0.58 ± 2.07 | −0.45 ± 1.97 | n.s. |
FIB-4 | 1.73 ± 1.00 | 1.77 ± 1.84 | 1.91 ± 1.52 | n.s. |
Visceral adiposity (mm) | 66.5 ± 23.5 | 67.6 ± 21.7 | 75.4 ± 22.2 | b,c |
Hepato-renal Sonographic Index | 1.8 ± 0.6 | 1.9 ± 0.8 | 1.8 ± 0.6 | n.s. |
2D-ShearWave elastography (kPa) | 10.4 ± 8.4 | 9.3 ± 7.3 | 10.3 ± 10.4 | n.s. |
Patients receiving anti-hypertensive drugs n (%) | 24 (55.8%) | 28 (65.1%) | 28 (65.1%) | n.s. |
Patients receiving hypoglycemic drugs n (%) | 16 (37.1%) | 17 (39.5%) | 17 (39.5%) | n.s. |
Patients receiving hypolipemic drugs n (%) | 19 (44.2%) | 25 (58.1%) | 27 (62.8%) | n.s. |
Patients receiving antidepressants n (%) | 8 (18.6%) | 7 (16.3%) | 11 (25.6%) | n.s. |
Variables | Group A T0 (n = 9) | Group B T0 (n = 34) | p |
---|---|---|---|
Age | 62.0 ± 12.0 | 56.9 ± 11.9 | n.s. |
Sex M (%) | 3 (33.3%) | 14 (41.1%) | n.s. |
Diabetes n (%) | 4 (44.4%) | 11 (32.4%) | n.s. |
Hypertension n (%) | 6 (66.7%) | 21 (61.8%) | n.s. |
Dyslipidemia n (%) | 6 (66.7%) | 19 (55.9%) | n.s. |
Weight (kg) | 73.9 ± 13.4 | 78.6 ± 9.9 | 0.008 |
BMI | 29.2 ± 3.0 | 29.0 ± 4.5 | n.s. |
Waist circumference (cm) | 105.6 ± 7.0 | 105.2 ± 17.9 | n.s. |
Physical activity | 1.2 ± 0.4 | 1.5 ± 0.7 | n.s. |
Triglycerides (mg/dL) | 157.8 ± 77.0 | 128.7 ± 59.8 | n.s. |
Total cholesterol (mg/dL) | 161.7 ± 26.9 | 200.9 ± 39.4 | 0.01 |
Cholesterol HDL (mg/dL) | 45.3 ± 14.4 | 56.5 ± 25.1 | n.s. |
Cholesterol LDL (mg/dL) | 81.2 ± 40.2 | 118.0 ± 34.7 | 0.02 |
HOMA index | 3.8 ± 3.5 | 3.0 ± 2.5 | n.s. |
ALT/GPT (U/L) | 45.4 ± 21.9 | 48.1 ± 28.8 | n.s. |
AST/GOT (U/L) | 35.9 ± 12.4 | 38.2 ± 16.1 | n.s. |
gammaGT (U/L) | 63.2 ± 54.7 | 97.9 ± 85.0 | n.s. |
NAFLD fibrosis score | −1.1 ± 1.7 | −0.7 ± 1.7 | n.s. |
FIB-4 | 1.99 ± 1.46 | 1.65 ± 0.83 | n.s. |
Visceral adiposity (mm) | 82.8 ± 24.6 | 63.4 ± 22.4 | 0.09 |
Hepato-renal Sonographic Index | 1.8 ± 0.5 | 1.8 ± 0.7 | n.s. |
2D-ShearWave elastography (kPa) | 13.8 ± 10.5 | 9.4 ± 7.5 | n.s. |
Patients receiving anti-hypertensive drugs n (%) | 5 (55.6%) | 19 (55.9%) | n.s. |
Patients receiving hypoglycemic drugs n (%) | 4 (44.4%) | 12 (35.3%) | n.s. |
Patients receiving hypolipemic drugs n (%) | 4 (44.4%) | 15 (44.1%) | n.s. |
Patients receiving antidepressant n (%) | 2 (22.2%) | 6 (17.7%) | n.s. |
Variables | Group A | p | Variables | Group B | p | ||||
---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T0 | T1 | T2 | ||||
Sex M (%) | 3 (33.3%) | 3 (33.3%) | 3 (33.3%) | Sex M (%) | 14 (41.1%) | 14 (41.1%) | 14 (41.1%) | ||
Diabetes n (%) | 4 (44.4%) | 4 (44.4%) | 4 (44.4%) | Diabetes n (%) | 11 (32.4%) | 14 (41.2%) | 14 (41.2%) | ||
Hypertension n (%) | 6 (66.7%) | 5 (55.5%) | 5 (55.5%) | Hypertension n (%) | 21 (61.8%) | 22 (64.7%) | 22 (64.7%) | ||
Dyslipidemia n (%) | 6 (66.7%) | 8 (88.9%) | 8 (88.9%) | Dyslipidemia n (%) | 19 (55.9%) | 20 (58.8%) | 22 (64.7%) | ||
Weight (kg) | 73.9 ± 13.4 | 68.0 ± 12.4 | 69.1 ± 12.8 | a,c | Weight (kg) | 78.6 ± 9.9 | 79.4 ± 9.4 | 80.4 ± 9.3 | |
BMI | 29.2 ± 3.0 | 27.1 ± 2.8 | 27.3 ± 3.0 | a,c | BMI | 29.0 ± 4.5 | 29.3 ± 4.9 | 29.6 ± 4.9 | c |
Waist circumference (cm) | 105.6 ± 7.0 | 97.8 ± 11.1 | 96.5 ± 9.0 | a,c | Waist circumference (cm) | 105.2 ± 17.9 | 104.6 ± 10.4 | 103.0 ± 10.8 | |
Physical activity | 1.2 ± 0.4 | 1.7 ± 0.5 | 1.8 ± 0.8 | a,c | Physical activity | 1.5 ± 0.7 | 1.7 ± 0.6 | 1.9 ± 0.8 | b,c |
Triglycerides (mg/dL) | 157.8 ± 77.0 | 122.0 ± 43.6 | 148.1 ± 56.2 | Triglycerides (mg/dL) | 128.7 ± 59.8 | 123.8 ± 52.9 | 145.1 ± 76.3 | ||
Total cholesterol (mg/dL) | 161.7 ± 26.9 | 178.2 ± 51.3 | 175.6 ± 40.0 | Total cholesterol (mg/dL) | 200.9 ± 39.4 | 191.5 ± 28.2 | 191.7 ± 44.9 | ||
Cholesterol HDL (mg/dL) | 45.3 ± 14.4 | 50.0 ± 15.9 | 50.6 ± 15.0 | Cholesterol HDL (mg/dL) | 56.5 ± 25.1 | 52.4 ± 12.1 | 59.0 ± 34.7 | ||
Cholesterol LDL (mg/dL) | 81.2 ± 40.2 | 105.5 ± 28.8 | 106.6 ± 30.6 | a | Cholesterol LDL (mg/dL) | 118.0 ± 34.7 | 113.0 ± 30.6 | 109.0 ± 48.9 | |
HOMA index | 3.8 ± 3.5 | 3.0 ± 1.3 | 3.1 ± 1.7 | HOMA index | 3.0 ± 2.5 | 3.5 ± 2.3 | 4.3 ± 4.2 | ||
ALT/GPT (U/L) | 45.4 ± 21.9 | 40.8 ± 24.8 | 43.3 ± 33.3 | ALT/GPT (U/L) | 48.1 ± 28.8 | 38.2 ± 28.4 | 39.5 ± 26.6 | ||
AST/GOT (U/L) | 35.9 ± 12.4 | 35.0 ± 12.5 | 35.0 ± 13.6 | AST/GOT (U/L) | 38.2 ± 16.1 | 32.5 ± 17.1 | 34.3 ± 18.6 | ||
gammaGT (U/L) | 63.2 ± 54.7 | 43.6 ± 31.7 | 64.4 ± 66.2 | gammaGT (U/L) | 97.9 ± 85.0 | 58.6 ± 42.2 | 58.0 ± 40.0 | a,c | |
NAFLD fibrosis score | −1.1 ± 1.7 | −1.3 ± 1.7 | −1.1 ± 1.5 | NAFLD fibrosis score | −0.7 ± 1.7 | −0.4 ± 2.2 | −0.3 ± 2.0 | ||
FIB-4 | 1.99 ± 1.46 | 1.50 ± 0.71 | 1.62 ± 0.79 | FIB-4 | 1.65 ± 0.83 | 1.8 ± 2.0 | 1.97 ± 1.64 | ||
Visceral adiposity (mm) | 82.8 ± 24.6 | 68.5 ± 19.8 | 73.8 ± 20.3 | a | Visceral adiposity (mm) | 63.4 ± 22.4 | 67.4 ± 22.3 | 75.7 ± 22.8 | b |
Hepato-renal Sonographic Index | 1.8 ± 0.5 | 2.0 ± 1.3 | 1.7 ± 0.4 | Hepato-renal Sonographic Index | 1.8 ± 0.7 | 1.8 ± 0.7 | 1.8 ± 0.6 | ||
2D-ShearWave Elastography (kPa) | 13.8 ± 10.5 | 12.9 ± 11.4 | 12.8 ± 11.3 | 2D-ShearWave Elastography (kPa) | 9.4 ± 7.5 | 8.3 ± 5.5 | 9.6 ± 7.0 | ||
Patients receiving anti-hypertensive drug n (%) | 5 (55.6%) | 4 (44.4%) | 4 (44.4%) | Patients receiving anti-hypertensive drug n (%) | 19 (55.9%) | 22 (64.7%) | 23 (67.6%) |
SRQ-20 | EQ-5D | SF-12 | STAI | ||||||
---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | PCS-12 | MCS-12 | |||
Group A | 6 | 1 | 1 | 1 | 1 | 2 | 53.0 | 49.9 | 43 |
6 | 1 | 1 | 1 | 2 | 2 | 47.1 | 55.9 | ||
1 | 1 | 1 | 1 | 1 | 1 | 55.5 | 57.8 | ||
Group B | 3 | 1 | 1 | 1 | 2 | 1 | 48.0 | 59.6 | |
1 | 1 | 1 | 1 | 1 | 2 | 54.2 | 56.0 | ||
9 | 1 | 1 | 1 | 1 | 2 | 55.8 | 37.1 | 50 | |
4 | 1 | 1 | 1 | 1 | 1 | 49.6 | 57.4 | ||
8 | 1 | 1 | 1 | 1 | 3 | 55.8 | 28.1 | 42 | |
5 | 1 | 1 | 1 | 1 | 2 | 48.1 | 53.8 | 42 | |
3 | 2 | 1 | 2 | 2 | 1 | 29.3 | 56.9 | ||
6 | 2 | 2 | 1 | 2 | 2 | 40.4 | 56.4 | ||
12 | 2 | 1 | 2 | 3 | 2 | 29.1 | 25.7 | 56 | |
0 | 1 | 1 | 1 | 1 | 1 | 55.9 | 55.9 | ||
5 | 1 | 1 | 1 | 1 | 2 | 47.5 | 51.7 |
Group A | Group B | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
In the Last 4 Weeks | Never | Rarely | Sometimes | Often | Always | Never | Rarely | Sometimes | Often | Always |
I have paid attention to my diet | 1 | 2 | 1 | 3 | 4 | 3 | ||||
I have increased my alcohol consumption | 2 | 1 | 9 | 2 | ||||||
I have smoked more | 3 | 10 | 1 | |||||||
I have felt guilty | 1 | 1 | 1 | 7 | 3 | 1 | ||||
I have tried to maintain some physical activity every day | 1 | 1 | 1 | 3 | 2 | 1 | 5 | |||
I have slept badly | 1 | 1 | 1 | 2 | 1 | 6 | 1 | 1 | ||
I have not felt like talking to people | 3 | 4 | 4 | 3 | ||||||
I have been scared for my health | 3 | 3 | 3 | 2 | 2 | 1 | ||||
I have felt less motivated to follow healthy behaviors | 2 | 1 | 4 | 3 | 1 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri, S.; Stefanini, B.; Minguzzi, M.; Leoni, S.; Capelli, R.; Secomandi, A.; Chen, R.; Abbati, C.; Santangeli, E.; Mattarozzi, K.; et al. Effects of COVID-19 Pandemic on Metabolic Status and Psychological Correlates of a Cohort of Italian NAFLD Outpatients. Nutrients 2023, 15, 1445. https://doi.org/10.3390/nu15061445
Ferri S, Stefanini B, Minguzzi M, Leoni S, Capelli R, Secomandi A, Chen R, Abbati C, Santangeli E, Mattarozzi K, et al. Effects of COVID-19 Pandemic on Metabolic Status and Psychological Correlates of a Cohort of Italian NAFLD Outpatients. Nutrients. 2023; 15(6):1445. https://doi.org/10.3390/nu15061445
Chicago/Turabian StyleFerri, Silvia, Bernardo Stefanini, Marta Minguzzi, Simona Leoni, Roberta Capelli, Alice Secomandi, Rusi Chen, Chiara Abbati, Ernestina Santangeli, Katia Mattarozzi, and et al. 2023. "Effects of COVID-19 Pandemic on Metabolic Status and Psychological Correlates of a Cohort of Italian NAFLD Outpatients" Nutrients 15, no. 6: 1445. https://doi.org/10.3390/nu15061445
APA StyleFerri, S., Stefanini, B., Minguzzi, M., Leoni, S., Capelli, R., Secomandi, A., Chen, R., Abbati, C., Santangeli, E., Mattarozzi, K., & Fabio, P. (2023). Effects of COVID-19 Pandemic on Metabolic Status and Psychological Correlates of a Cohort of Italian NAFLD Outpatients. Nutrients, 15(6), 1445. https://doi.org/10.3390/nu15061445