Gender Differences in the Frequency of Positive and Negative Effects after Acute Caffeine Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
- Age 18–30 years old;
- Absence of medical contraindications;
- No hypersensitivity to caffeine;
- Consent to participate in the study and statement of compliance with the guidelines;
- Absence of electronic life support systems (pacemakers, active prostheses, etc.).
2.2. Caffeine Intake Assessment
2.3. Experiment Design
2.4. Negative and Positive Effects after Caffeine Ingestion Questionnaire (QUEST)
2.5. Side Effects
2.6. Ethics
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar] [PubMed]
- Domaszewski, P.; Pakosz, P.; Konieczny, M.; Bączkowicz, D.; Sadowska-Krępa, E. Caffeine-induced effects on human skeletal muscle contraction time and maximal displacement measured by tensiomyography. Nutrients 2021, 13, 815. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann-Viehoff, F.; Thayer, J.; Koenig, J.; Herrmann, C.; Weber, C.S.; Deter, H.C. Short-term effects of espresso coffee on heart rate variability and blood pressure in habitual and non-habitual coffee consumers—A randomized crossover study. Nutr. Neurosci. 2016, 19, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Monda, M.; Viggiano, A.; Vicidomini, C.; Viggiano, A.; Iannaccone, T.; Tafuri, D.; De Luca, B. Expresso coffee increases parasympathetic activity in young, healthy people. Nutr. Neurosci. 2009, 12, 43–48. [Google Scholar] [CrossRef]
- Alasmari, F. Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm. J. 2020, 28, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Crooks, E.; Hansen, D.A.; Satterfield, B.C.; Layton, M.E.; Van Dongen, H.P.A. Cardiac autonomic activity during sleep deprivation with and without caffeine administration. Physiol. Behav. 2019, 210, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sport. Nutr. 2021, 18, 1–37. [Google Scholar] [CrossRef]
- Commissioner, O. Of the Spilling the Beans: How Much Caffeine is Too Much? FDA 2019. Available online: https://www.fda.gov/consumers/consumer-updates/spilling-beans-how-much-caffeine-too-much (accessed on 7 February 2023).
- Desbrow, B.; Hughes, R.; Leveritt, M.; Scheelings, P. An examination of consumer exposure to caffeine from retail coffee outlets. Food Chem. Toxicol. 2007, 45, 1588–1592. [Google Scholar] [CrossRef]
- Severini, C.; Derossi, A.; Ricci, I.; Fiore, A.G.; Caporizzi, R. How Much Caffeine in Coffee Cup? Effects of Processing Operations, Extraction Methods and Variables. Quest. Caffeine 2017, 45–85. [Google Scholar] [CrossRef] [Green Version]
- Skinner, T.L.; Jenkins, D.G.; Leveritt, M.D.; McGorm, A.; Bolam, K.A.; Coombes, J.S.; Taaffe, D.R. Factors influencing serum caffeine concentrations following caffeine ingestion. J. Sci. Med. Sport 2014, 17, 516–520. [Google Scholar] [CrossRef]
- Benjamim, C.J.R.; Kliszczewicz, B.; Garner, D.M.; Cavalcante, T.C.F.; da Silva, A.A.M.; Santana, M.D.R.; Valenti, V.E. Is Caffeine Recommended Before Exercise? A Systematic Review to Investigate Its Impact On Cardiac Autonomic Control Via Heart Rate And Its Variability. J. Am. Coll. Nutr. 2020, 39, 563–573. [Google Scholar] [CrossRef] [PubMed]
- James, R.S.; Wilson, R.S.; Askew, G.N. Effects of caffeine on mouse skeletal muscle power output during recovery from fatigue. J. Appl. Physiol. 2004, 96, 545–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astorino, T.A.; Roberson, D.W. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. J. Strength Cond. Res. 2010, 24, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Sökmen, B.; Armstrong, L.E.; Kraemer, W.J.; Casa, D.J.; Dias, J.C.; Judelson, D.A.; Maresh, C.M. Caffeine use in sports: Considerations for the athlete. J. Strength Cond. Res. 2008, 22, 978–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilk, M.; Krzysztofik, M.; Filip, A.; Zajac, A.; Del Coso, J. The effects of high doses of caffeine on maximal strength and muscular endurance in athletes habituated to caffeine. Nutrients 2019, 11, 1912. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, E.R.; Ziegenfuss, T.; Kalman, D.; Kreider, R.; Campbell, B.; Wilborn, C.; Taylor, L.; Willoughby, D.; Stout, J.; Graves, B.S.; et al. International society of sports nutrition position stand: Caffeine and performance. J. Int. Soc. Sport. Nutr. 2010, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panel, E.; Nda, A. Scientific Opinion on the safety of caffeine. EFSA J. 2015, 13, 4102. [Google Scholar] [CrossRef] [Green Version]
- Wilk, M.; Filip, A.; Krzysztofik, M.; Maszczyk, A.; Zajac, A. The acute effect of various doses of caffeine on power output and velocity during the bench press exercise among athletes habitually using caffeine. Nutrients 2019, 11, 1465. [Google Scholar] [CrossRef] [Green Version]
- Surma, S.; Romanczyk, M.; Fojcik, J.; Krzystanek, M. Coffee: Drug, stimulant substance and narcotic. Psychiatria 2020, 17, 237–246. [Google Scholar] [CrossRef]
- Heckman, M.A.; Weil, J.; de Mejia, E.G. Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci. 2010, 75, 77–87. [Google Scholar] [CrossRef]
- Graham, T.E. Caffeine, coffee and ephedrine: Impact on exercise performance and metabolism. Can. J. Appl. Physiol. 2001, 26, S186–S191. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Fernández-Elías, V.E.; Ortega, J.F.; Muñoz, G.; Muñoz-Guerra, J.; Mora-Rodríguez, R. Neuromuscular responses to incremental caffeine doses: Performance and side effects. Med. Sci. Sports Exerc. 2013, 45, 2184–2192. [Google Scholar] [CrossRef]
- Schwenk, T.L.; Costley, C.D. When food becomes a drug: Nonanabolic nutritional supplement use in athletes. Am. J. Sports Med. 2002, 30, 907–916. [Google Scholar] [CrossRef]
- Kerrigan, S.; Lindsey, T. Fatal caffeine overdose: Two case reports. Forensic Sci. Int. 2005, 153, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Gurley, B.J.; Steelman, S.C.; Thomas, S.L. Multi-ingredient, caffeine-containing dietary supplements: History, safety, and efficacy. Clin. Ther. 2015, 37, 275–301. [Google Scholar] [CrossRef] [PubMed]
- Soós, R.; Gyebrovszki, Á.; Tóth, Á.; Jeges, S.; Wilhelm, M. Effects of caffeine and caffeinated beverages in children, adolescents and young adults: Short review. Int. J. Environ. Res. Public Health 2021, 18, 12389. [Google Scholar] [CrossRef]
- Temple, J.L.; Ziegler, A.M. Gender Differences in Subjective and Physiological Responses to Caffeine and the Role of Steroid Hormones. J. Caffeine Res. 2011, 1, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo, J.A.; Benitez, J. CYP1A2 activity, gender and smoking, as variables influencing the toxicity of caffeine. Br. J. Clin. Pharmacol. 1996, 41, 605–608. [Google Scholar] [CrossRef] [Green Version]
- Khan, N. Caffeinated beverages and energy drink: Pattern, awareness and health side effects among Omani university students. Biomed. Res. 2019, 30, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Le, P.; Calleja-gonz, J. Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients 2019, 11, 2313. [Google Scholar]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Kamimori, G.H.; Somani, S.M.; Knowlton, R.G.; Perkins, R.M. The effects of obesity and exercise on the pharmacokinetics of caffeine in lean and obese volunteers. Eur. J. Clin. Pharmacol. 1987, 31, 595–600. [Google Scholar] [CrossRef]
- Massey, L.K. Caffeine and the elderly. Drugs Aging 1998, 13, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Tallis, J.; Noon, M. The prevalence and practices of caffeine use as an ergogenic aid in English professional soccer. Biol. Sport 2021, 38, 525–534. [Google Scholar] [CrossRef]
- Bühler, E.; Lachenmeier, D.W.; Schlegel, K.; Winkler, G. Entwicklung eines Instruments zur Abschätzung der Koffeinaufnahme von Jugendlichen und jungen Erwachsenen. Ernahr. Umsch. 2014, 61, 58–63. [Google Scholar] [CrossRef]
- Gonçalves, L.d.S.; Painelli, V.d.S.; Yamaguchi, G.; de Oliveira, L.F.; Saunders, B.; da Silva, R.P.; Maciel, E.; Artioli, G.G.; Roschel, H.; Gualano, B. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J. Appl. Physiol. 2017, 123, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desbrow, B.; Leveritt, M. Awareness and use of caffeine by athletes competing at the 2005 Ironman Triathlon World Championships. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 545–558. [Google Scholar] [CrossRef]
- Childs, E.; deWit, H. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology 2006, 185, 514–523. [Google Scholar] [CrossRef]
- Wu, S.E.; Chen, W.L. Exploring the association between urine caffeine metabolites and urine flow rate: A cross-sectional study. Nutrients 2020, 12, 2803. [Google Scholar] [CrossRef]
- Mark, A.M.; Frank Jefries, D.D.B. From the SAGE Social Science Collections. Downloaded. Theory Psychol. 2015, 12, 825–853. [Google Scholar]
- Wikoff, D.; Welsh, B.T.; Henderson, R.; Brorby, G.P.; Britt, J.; Myers, E.; Goldberger, J.; Lieberman, H.R.; O’Brien, C.; Peck, J.; et al. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem. Toxicol. 2017, 109, 585–648. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, C.; Lara, B.; Salinero, J.J.; Brito de Souza, D.; Ordovás, J.M.; Del Coso, J. Time course of tolerance to adverse effects associated with the ingestion of a moderate dose of caffeine. Eur. J. Nutr. 2020, 59, 3293–3302. [Google Scholar] [CrossRef] [PubMed]
- Paz-Graniel, I.; Kose, J.; Babio, N.; Hercberg, S.; Galan, P.; Touvier, M.; Salas-Salvadó, J.; Andreeva, V.A. Caffeine Intake and Its Sex-Specific Association with General Anxiety: A Cross-Sectional Analysis among General Population Adults. Nutrients 2022, 14, 1242. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, P.; Levack, R.; Watters, J.; Xu, Z.; Yang, Y. Caffeine increases food intake while reducing anxiety-related behaviors. Appetite 2016, 101, 171–177. [Google Scholar] [CrossRef]
- Pomportes, L.; Davranche, K.; Brisswalter, I.; Hays, A.; Brisswalter, J. Heart Rate Variability and Cognitive Function Following a Multi-Vitamin and Mineral Supplementation with Added Guarana (Paullinia cupana). Nutrients 2015, 7, 196–208. [Google Scholar] [CrossRef] [Green Version]
- Ciruela, F.; Casadó, V.; Rodrigues, R.J.; Luján, R.; Burgueño, J.; Canals, M.; Borycz, J.; Rebola, N.; Goldberg, S.R.; Mallol, J.; et al. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J. Neurosci. 2006, 26, 2080–2087. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.; Kiely, J. Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sport. Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.; Kiely, J. What Should We Do About Habitual Caffeine Use in Athletes? Sport. Med. 2019, 49, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Domaszewski, P.; Konieczny, M.; Dybek, T.; Łukaniszyn-Domaszewska, K.; Anton, S.; Sadowska-Krępa, E.; Skorupska, E. Comparison of the effects of six-week time-restricted eating on weight loss, body composition, and visceral fat in overweight older men and women. Exp. Gerontol. 2023, 174, 112116. [Google Scholar] [CrossRef]
- Domaszewski, P.; Konieczny, M.; Pakosz, P.; Łukaniszyn-Domaszewska, K.; Mikuláková, W.; Sadowska-Krępa, E.; Anton, S. Effect of a six-week times restricted eating intervention on the body composition in early elderly men with overweight. Sci. Rep. 2022, 12, 9816. [Google Scholar] [CrossRef]
Outcome | Predictor | Χ2 | p | Cramers V |
---|---|---|---|---|
Negative effect 60 min after CAF Yes/No | Gender | 3.86 | 0.049 | 0.24 |
Positive Effect 60 min after CAF Yes/No | 7.85 | 0.005 | 0.35 | |
Negative effect 24 h after CAF Yes/No | 2.65 | 0.104 | 0.20 | |
Positive Effect 24 h after CAF Yes/No | 3.96 | 0.047 | 0.25 |
Outcome | Predictor | Χ2 | p | Cramers V |
---|---|---|---|---|
Muscle soreness * | Gender | - | - | - |
Increased urine output | 0.23 | 0.632 | 0.06 | |
Tachycardia and heart palpitations | 0.63 | 0.429 | 0.1 | |
Anxiety or nervousness | 1.79 | 0.181 | 0.17 | |
Headache | 0.21 | 0.648 | 0.06 | |
Gastrointestinal problems | 0.11 | 0.744 | 0.04 | |
Insomnia * | - | - | - |
Outcome | Predictor | Χ2 | p | Cramers V |
---|---|---|---|---|
Perception improvement | Gender | 4.59 | 0.032 | 0.27 |
Increased vigor/activeness | 6.81 | 0.009 | 0.32 |
Outcome | Predictor | Χ2 | p | Cramers V |
---|---|---|---|---|
Muscle soreness | Gender | 0.78 | 0.376 | 0.11 |
Increased urine output | 2.405 | 0.121 | 0.19 | |
Tachycardia and heart palpitations | 1.92 | 0.166 | 0.17 | |
Anxiety or nervousness | 0.006 | 0.938 | 0.01 | |
Headache | 0.41 | 0.525 | 0.08 | |
Gastrointestinal problems | 0.006 | 0.938 | 0.01 | |
Insomnia | 1.92 | 0.166 | 0.17 |
Outcome | Predictor | Χ2 | p | Cramers V |
---|---|---|---|---|
Perception improvement | Gender | 3.25 | 0.072 | 0.22 |
Increased vigor/activeness | 0.564 | 0.453 | 0.09 |
Side Effects | Group | Men (n = 30) | Women (n = 35) | ||
---|---|---|---|---|---|
60 min | 24 h | 60 min | 24 h | ||
Muscle soreness | CAF3 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
CAF6 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Increased urine output | CAF3 | 2 (7%) | 2 (7%) | 6 (17%) | 0 (0%) |
CAF6 | 5 (17%) | 1 (3%) | 4 (11%) | 0 (0%) | |
Tachycardia and heart palpitations | CAF3 | 0 (0%) | 0 (0%) | 1 (3%) | 3 (9%) |
CAF6 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Anxiety or nervousness | CAF3 | 0 (0%) | 0 (0%) | 5 (14%) | 0 (0%) |
CAF6 | 1 (3%) | 1 (3%) | 1 (3%) | 1 (3%) | |
Headache | CAF3 | 0 (0%) | 0 (0%) | 2 (6%) | 0 (0%) |
CAF6 | 3 (10%) | 1 (3%) | 0 (0%) | 3 (9%) | |
Gastrointestinal problems | CAF3 | 0 (0%) | 0 (0%) | 2 (6%) | 1 (3%) |
CAF6 | 1 (3%) | 1 (3%) | 0 (0%) | 0 (0%) | |
Insomnia | CAF3 | 0 (0%) | 0 (0%) | 0 (0%) | 3 (9%) |
CAF6 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |
Perception improvement | CAF3 | 4 (13%) | 1 (3%) | 1 (3%) | 0 (0%) |
CAF6 | 6 (20%) | 3 (10%) | 3 (9%) | 0 (0%) | |
Increased vigor/ activeness | CAF3 | 8 (27%) | 3 (10%) | 1 (3%) | 2 (6%) |
CAF6 | 5 (17%) | 1 (3%) | 4 (11%) | 0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaszewski, P. Gender Differences in the Frequency of Positive and Negative Effects after Acute Caffeine Consumption. Nutrients 2023, 15, 1318. https://doi.org/10.3390/nu15061318
Domaszewski P. Gender Differences in the Frequency of Positive and Negative Effects after Acute Caffeine Consumption. Nutrients. 2023; 15(6):1318. https://doi.org/10.3390/nu15061318
Chicago/Turabian StyleDomaszewski, Przemysław. 2023. "Gender Differences in the Frequency of Positive and Negative Effects after Acute Caffeine Consumption" Nutrients 15, no. 6: 1318. https://doi.org/10.3390/nu15061318
APA StyleDomaszewski, P. (2023). Gender Differences in the Frequency of Positive and Negative Effects after Acute Caffeine Consumption. Nutrients, 15(6), 1318. https://doi.org/10.3390/nu15061318