Circulating Levels of Nesfatin-1 and Spexin in Children with Prader-Willi Syndrome during Growth Hormone Treatment and Dietary Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Assessment of Dietary Intake
2.3. Anthropometric Measurements
2.4. Biochemical Analyses
2.5. Statistical Analyses
3. Results
3.1. Clinical Characteristics and Dietary Intake of Children with PWS
3.2. Biochemical Characteristics and Dietary Intake of the PWS Subgroups with Lower BMI Z-Score (BMI Z-Score < −0.5) and Higher BMI Z-Score (BMI Z-Score ≥ −0.5)
3.3. Appetite-Regulating Peptides in the PWS Subgroups with Lower BMI Z-Score (BMI Z-Score < −0.5) and Higher BMI Z-Score (BMI Z-Score ≥ −0.5)
3.4. Associations between Peptides Regulating Appetite and Anthropometric Parameters in Children with PWS
3.5. Nesfatin-1 and Spexin Concentrations in Children with PWS Depending on the Nutritional Phase
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butler, M.G.; Miller, J.L.; Forster, J.L. Prader-Willi syndrome-clinical genetics, diagnosis and teatment approaches: An update. Curr. Pediatr. Rev. 2019, 15, 207–244. [Google Scholar] [CrossRef] [PubMed]
- Zahova, S.; Isles, A.R. Animal models for Prader-Willi syndrome. Handb. Clin. Neurol. 2021, 181, 391–404. [Google Scholar] [PubMed]
- Correa-da-Silva, F.; Fliers, E.; Swaab, D.F.; Yi, C.X. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J. Neuroendocrinol. 2021, 33, e12994. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Gerasimidis, K.; Edwards, C.A.; Shaikh, M.G. Mechanisms of obesity in Prader-Willi syndrome. Pediatr. Obes. 2018, 13, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.L.; Lynn, C.H.; Driscol, D.C.; Goldstone, A.P.; Gold, J.A.; Kimonis, V.; Dykens, E.; Butler, M.G.; Shuster, J.J.; Driscoll, D.J. Nutritional phases in Prader-Willi syndrome. Am. J. Med. Genet. A 2011, 155, 1040–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobrino Crespo, C.; Perianes Cachero, A.; Puebla Jiménez, L.; Barrios, V.; Arilla Ferreiro, E. Peptides and food intake. Front. Endocrinol. 2014, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Cowley, M.A.; Smart, J.L.; Rubinstein, M.; Cerdán, M.G.; Diano, S.; Horvath, T.L.; Cone, R.D.; Low, M.J. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001, 411, 480–484. [Google Scholar] [CrossRef] [Green Version]
- Schaab, M.; Kratzsch, J. The soluble leptin receptor. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 661–670. [Google Scholar] [CrossRef]
- Goldstone, A.P.; Holland, A.J.; Butler, J.V.; Whittington, J.E. Appetite hormones and the transition to hyperphagia in children with Prader-Willi syndrome. Int. J. Obes. 2012, 36, 1564–1570. [Google Scholar] [CrossRef] [Green Version]
- Orsso, C.E.; Butler, A.A.; Muehlbauer, M.J.; Cui, H.N.; Rubin, D.A.; Pakseresht, M.; Butler, M.G.; Prado, C.M.; Freemark, M.; Haqq, A.M. Obestatin and adropin in Prader-Willi syndrome and nonsyndromic obesity: Associations with weight, BMI-z, and HOMA-IR. Pediatr. Obes. 2019, 14, e12493. [Google Scholar] [CrossRef]
- Tang, N.; Zhang, X.; Chen, D.; Li, Z. The Controversial Role of Adiponectin in Appetite Regulation of Animals. Nutrients 2021, 13, 3387. [Google Scholar] [CrossRef]
- Haqq, A.M.; Muehlbauer, M.; Svetkey, L.P.; Newgard, C.B.; Purnell, J.Q.; Grambow, S.C.; Freemark, M.S. Altered distribution of adiponectin isoforms in children with Prader-Willi syndrome (PWS): Association with insulin sensitivity and circulating satiety peptide hormones. Clin. Endocrinol. 2007, 67, 944–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAlister, K.L.; Fisher, K.L.; Dumont-Driscoll, M.C.; Rubin, D.A. The relationship between metabolic syndrome, cytokines and physical activity in obese youth with and without Prader-Willi syndrome. J. Pediatr. Endocrinol. Metab. 2018, 31, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Sohn, Y.B.; Kwak, M.J.; Kim, S.J.; Park, S.W.; Kim, C.H.; Kim, M.Y.; Kwon, E.K.; Paik, K.H.; Jin, D.K. Correlation of adiponectin receptor expression with cytokines and insulin sensitivity in growth hormone (GH)-treated children with Prader-Willi syndrome and in non-GH-treated obese children. Clin. Endocrinol. Metab. 2010, 95, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Goebel-Stengel, M.; Wang, L. Central and peripheral expression and distribution of NUCB2/nesfatin-1. Curr. Pharm. Des. 2013, 19, 6935–6940. [Google Scholar] [CrossRef] [PubMed]
- Ramanjaneya, M.; Addison, M.; Randeva, H.S. Possible role of NUCB2/nesfatin-1 in adipogenesis. Curr. Pharm. Des. 2013, 19, 6976–6980. [Google Scholar] [CrossRef] [PubMed]
- García-Galiano, D.; Navarro, V.M.; Gaytan, F.; Tena-Sempere, M. Expanding roles of NUCB2/nesfatin-1 in neuroendocrine regulation. J. Mol. Endocrinol. 2010, 45, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Anwar, G.M.; Yamamah, G.; Ibrahim, A.; El-Lebedy, D.; Farid, T.M.; Mahmoud, R. Nesfatin-1 in childhood and adolescent obesity and its association with food intake, body composition and insulin resistance. Regul. Pept. 2014, 188, 21–24. [Google Scholar] [CrossRef]
- Abaci, A.; Catli, G.; Anik, A.; Kume, T.; Bober, E. The relation of serum nesfatin-1 level with metabolic and clinical parameters in obese and healthy children. Pediatr. Diabetes 2013, 14, 189–195. [Google Scholar] [CrossRef]
- Kim, S.H.; Ahn, M.B.; Cho, W.K.; Cho, K.S.; Jung, M.H.; Suh, B.K. The relation of serum nesfatin-1 level with anthropometric and metabolic parameters in children and adolescents: A prospective observational study. Medicine 2019, 98, e15460. [Google Scholar] [CrossRef]
- Mirabeau, O.; Perlas, E.; Severini, C.; Audero, E.; Gascuel, O.; Possenti, R.; Birney, E.; Rosenthal, N.; Gross, C. Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res. 2007, 17, 320–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porzionato, A.; Rucinski, M.; Macchi, V.; Stecco, C.; Malendowicz, L.K.; De Caro, R. Spexin expression in normal rat tissues. J. Histochem. Cytochem. 2010, 58, 825–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walewski, J.; Ge, F.; Lobdell, H., 4th; Levin, N.; Schwartz, G.J.; Vasselli, J.R.; Pomp, A.; Dakin, G.; Berk, P.D. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity. Obesity 2014, 22, 1643–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Hossain, M.J.; Javed, A.; Kullo, I.J.; Balagopal, P.B. Relationship of circulating spexin with markers of cardiovascular disease: A pilot study in adolescents with obesity. Pediatr. Obes. 2018, 13, 374–380. [Google Scholar] [CrossRef]
- Hodges, S.K.; Teague, A.M.; Dasari, P.S.; Short, K.R. Effect of obesity and type 2 diabetes, and glucose ingestion on circulating spexin concentration in adolescents. Pediatr. Diabetes 2018, 19, 212–216. [Google Scholar] [CrossRef]
- Kavalakatt, S.; Khadir, A.; Madhu, D.; Devarajan, S.; Warsame, S.; AlKandari, H.; AlMahdi, M.; Koistinen, H.A.; Al-Mulla, F.; Tuomilehto, J.; et al. Circulating levels of urocortin neuropeptides are impaired in children with overweight. Obesity 2022, 30, 472–481. [Google Scholar] [CrossRef]
- Lecka-Ambroziak, A.; Wysocka-Mincewicz, M.; Doleżal-Ołtarzewska, K.; Zygmunt-Górska, A.; Wędrychowicz, A.; Żak, T.; Noczyńska, A.; Birkholz-Walerzak, D.; Stawerska, R.; Hilczer, M.; et al. Effects of Recombinant Human Growth Hormone Treatment, Depending on the Therapy Start in Different Nutritional Phases in Paediatric Patients with Prader-Willi Syndrome: A Polish Multicentre Study. J. Clin. Med. 2021, 10, 3176. [Google Scholar] [CrossRef]
- Kułaga, Z.; Różdżyńska-Świątkowska, A.; Grajda, A.; Gurzkowska, B.; Wojtyło, M.; Góźdź, M.; Światek-Leśniak, A.; Litwin, M. Percentile charts for growth and nutritional status assessment in Polish children and adolescents from birth to 18 year of age. Stand. Med. 2015, 12, 119–135. [Google Scholar]
- Jarosz, M. Normy Żywienia dla Populacji Polskiej i ich Zastosowanie; National Food and Nutrition Institute: Warsaw, Poland, 2020; pp. 26–148. [Google Scholar]
- Erhardt, É.; Molnár, D. Prader-Willi syndrome: Possibilities of weight gain prevention and treatment. Nutrients 2022, 14, 1950. [Google Scholar] [CrossRef]
- Szponar, L. Album of Photographs of Food Products; National Food and Nutrition Institute: Warsaw, Poland, 2008. [Google Scholar]
- Gronowska-Senger, A. Przewodnik Metodyczny Badań Sposobu Żywienia; Science Committee on Human Nutrition of the Polish Academy of Science: Warsaw, Poland, 2013. [Google Scholar]
- Wajszczyk, B.; Chwojnowska, Z.; Nasiadko, D.; Rybaczuk, M. Dieta 5.0 Software for Individual and Group Nutrition Assessment and Diet Planning; National Food and Nutrition Institute: Warsaw, Poland, 2015. [Google Scholar]
- Meade, C.; Martin, R.; McCrann, A.; Lyons, J.; Roche, E. Dietary intake and growth in children with Prader-Willi syndrome. J. Hum. Nutr. Diet. 2021, 34, 784–791. [Google Scholar] [CrossRef]
- Irizarry, K.A.; Bain, J.; Butler, M.G.; Ilkayeva, O.; Muehlbauer, M.; Haqq, A.M.; Freemark, M. Metabolic profiling in Prader-Willi syndrome and nonsyndromic obesity: Sex differences and the role of growth hormone. Clin. Endocrinol. 2015, 83, 797–805. [Google Scholar] [CrossRef]
- de Lind van Wijngaarden, R.F.; Siemensma, E.P.; Festen, D.A.; Otten, B.J.; van Mil, E.G.; Rotteveel, J.; Odink, R.J.; Bindels-de Heus, G.C.; van Leeuwen, M.; Haring, D.A.; et al. Efficacy and safety of long-term continuous growth hormone treatment in children with Prader-Willi syndrome. J. Clin. Endocrinol. Metab. 2009, 94, 4205–4215. [Google Scholar] [CrossRef] [PubMed]
- Kaba, S.; Karaman, K.; Kömüroğlu, U.; Bala, K.A.; Demir, N.; Kocaman, S.; Doğan, M.; Ceylan, N. Role of circulating nesfatin-1 in the underweight children with poor appetite. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4703–4706. [Google Scholar] [PubMed]
- Acar, S.; Çatlı, G.; Küme, T.; Tuhan, H.; Gürsoy Çalan, Ö.; Demir, K.; Böber, E.; Abacı, A. Increased concentrations of serum nesfatin-1 levels in childhood with idiopathic chronic malnutrition. Turk. J. Med. Sci. 2018, 48, 378–385. [Google Scholar]
- Ustabaş Kahraman, F.; Vehapoğlu, A.; Özgen, İ.T.; Terzioğlu, Ş.; Cesur, Y.; Dündaröz, R. Correlation of brain neuropeptide (nesfatin-1 and orexin-A) concentrations with anthropometric and biochemical parameters in malnourished children. J. Clin. Res. Pediatr. Endocrinol. 2015, 7, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Zegers, D.; Beckers, S.; Mertens, I.L.; Van Gaal, L.F.; Van Hul, W. Association between polymorphisms of the Nesfatin gene, NUCB2, and obesity in men. Mol. Genet. Metab. 2011, 103, 282–286. [Google Scholar] [CrossRef]
- Tan, B.K.; Hallschmid, M.; Kern, W.; Lehnert, H.; Randeva, H.S. Decreased cerebrospinal fluid/plasma ratio of the novel satiety molecule, nesfatin-1/NUCB-2, in obese humans: Evidence of nesfatin-1/NUCB-2 resistance and implications for obesity treatment. J. Clin. Endocrinol. Metab. 2011, 96, 669–673. [Google Scholar] [CrossRef]
- Dore, R.; Levata, L.; Lehnert, H.; Schulz, C. Nesfatin-1: Functions and physiology of a novel regulatory peptide. J. Endocrinol. 2017, 232, R45–R65. [Google Scholar] [CrossRef] [Green Version]
- Darambazar, G.; Nakata, M.; Okada, T.; Wang, L.; Li, E.; Shinozaki, A.; Motoshima, M.; Mori, M.; Yada, T. Paraventricular NUCB2/nesfatin-1 is directly targeted by leptin and mediates its anorexigenic effect. Biochem. Biophys. Res. Commun. 2015, 456, 913–918. [Google Scholar] [CrossRef]
- Wernecke, K.; Lamprecht, I.; Johren, O.; Lehnert, H.; Schulz, C. Nesfatin-1 increases energy expenditure and reduces food intake in rats. Obesity 2014, 22, 1662–1668. [Google Scholar] [CrossRef]
- Behrooz, M.; Vaghef-Mehrabany, E.; Ostadrahimi, A. Different spexin level in obese vs normal weight children and its relationship with obesity related risk factors. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Hossain, J.; Nader, N.; Aguirre, R.; Sriram, S.; Balagopal, P.B. Decreased circulating levels of spexin in obese children. J. Clin. Endocrinol. Metab. 2016, 101, 2931–2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.K.H.; Chen, Y.; He, M.; Lin, C.; Bian, Z.; Wong, A.O.L. Mouse Spexin: (II) Functional role as a ratiety factor inhibiting food intake by regulatory actions within the hypothalamus. Front. Endocrinol. 2021, 12, 681647. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mankowski, R.T.; Anton, S.D.; Babu Balagopal, P. Novel insights on the role of spexin as a biomarker of obesity and related cardiometabolic disease. Int. J. Obes. 2021, 45, 2169–2178. [Google Scholar] [CrossRef]
- Kolodziejski, P.A.; Pruszynska-Oszmalek, E.; Micker, M.; Skrzypski, M.; Wojciechowicz, T.; Szwarckopf, P.; Skieresz-Szewczyk, K.; Nowak, K.W.; Strowski, M.Z. Spexin: A novel regulator of adipogenesis and fat tissue metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1228–1236. [Google Scholar] [CrossRef]
- Ge, J.F.; Walewski, J.L.; Anglade, D.; Berk, P.D. Regulation of hepatocellular fatty acid uptake in mouse models of fatty liver disease with and without functional leptin signaling: Roles of NfKB and SREBP-1C and the effects of spexin. Semin. Liver Dis. 2016, 36, 360–372. [Google Scholar] [CrossRef]
- Nguyen, T.M.D. Adiponectin: Role in physiology and pathophysiology. Int. J. Prev. Med. 2020, 11, 136. [Google Scholar] [CrossRef]
- Kennedy, L.; Bittel, D.C.; Kibiryeva, N.; Kalra, S.P.; Torto, R.; Butler, M.G. Circulating adiponectin levels, body composition and obesity-related variables in Prader–Willi syndrome: Comparison with obese subjects. Int. J. Obes. 2006, 30, 382–387. [Google Scholar] [CrossRef] [Green Version]
Parameter | Children with PWS n = 25 | Healthy Children n = 30 | p-Value |
---|---|---|---|
Age (years) | 6.3 ± 3.0 | 6.6 ± 3.0 | 0.709 |
Male (%) | 48.0 | 46.7 | 0.921 |
Anthropometric parameters | |||
Height (cm) | 115.5 ± 21.0 | 121.3 ± 20.5 | 0.299 |
Weight (kg) | 21.0 ± 8.8 | 24.8 ± 9.5 | 0.132 |
BMI (kg/m2) | 15.1 ± 1.5 | 16.2 ± 1.9 | 0.019 |
BMI Z-score | −0.58 (−1.19–−0.27) | −0.19 (−0.58–0.55) | 0.011 |
Fat mass (%) | 19.0 ± 4.6 | 20.9 ± 5.6 | 0.299 |
Fat mass (kg) | 4.1 ± 2.2 | 5.2 ± 2.6 | 0.096 |
Biochemical measurements | |||
Nesfatin-1 (ng/mL) | 0.91 (0.44–1.93) | 0.65 (0.32–0.84) | 0.019 |
Spexin (ng/mL) | 0.20 (0.12–0.33) | 0.45 (0.35–0.61) | <0.001 |
Leptin (ng/mL) | 2.76 (1.25–3.95) | 1.96 (0.98–3.98) | 0.722 |
sOB-R (ng/mL) | 43.2 ± 16.1 | 44.1 ± 15.7 | 0.753 |
Leptin/sOB-R | 0.06 (0.03–0.11) | 0.05 (0.02–0.09) | 0.483 |
Total adiponectin (µg/mL) | 11.5 ± 3.5 | 11.4 ± 4.4 | 0.574 |
Leptin/adiponectin | 0.21 (0.1–0.39) | 0.20 (0.08–0.38) | 0.844 |
HMW adiponectin (µg/mL) | 6.12 ± 2.27 | 7.04 ± 3.65 | 0.529 |
HMW adiponectin (%) | 52.4 ± 8.4 | 60.6 ± 19.7 | 0.148 |
Proinsulin (pmol/L) | 2.12 (1.04–3.47) | 1.43 (0.91–2.18) | 0.069 |
Glucose (mg/dL) | 84.0 ± 6.2 | 84.0 ± 5.0 | 0.870 |
Total cholesterol (mg/dL) | 172.2 ± 30.0 | 150.9 ± 20.6 | 0.001 |
HDL cholesterol (mg/dL) | 57.5 ± 13.3 | 54.2 ± 12.9 | 0.251 |
LDL cholesterol (mg/dL) | 110.0 ± 24.7 | 88.5 ± 16.4 | <0.001 |
Triglycerides (mg/dL) | 82.8 ± 26.5 | 65.1 ± 23.8 | 0.005 |
IGF-I (ng/mL) | 307.5 (192.4–343.0) | 143.5 (109.7–230.8) | <0.001 |
t-IGFBP-3 (µg/mL) | 4.19 ± 1.27 | 3.41 ± 1.05 | 0.016 |
f-IGFBP-3 (µg/mL) | 2.88 ± 1.35 | 2.22 ± 1.01 | 0.055 |
IGF-I/t-IGFBP-3 molar ratio | 0.25 ± 0.07 | 0.17 ± 0.06 | <0.001 |
f-IGFBP-3/t-IGFBP-3 molar ratio | 0.67 ± 0.20 | 0.64 ± 0.18 | 0.394 |
Parameter | Children with PWS n = 25 | Healthy Children n = 30 | p-Value |
---|---|---|---|
Energy (kcal/day) | 1034 ± 316 | 1422 ± 424 | 0.001 |
Protein (g/day) | 46.1 ± 17.9 | 44.7 ± 14.9 | 0.993 |
Carbohydrates (g/day) | 143.7 ± 45.3 | 199.1 ± 67.3 | 0.001 |
Fat (g/day) | 35.1 ± 14.2 | 53.4 ± 20.8 | 0.001 |
Cholesterol (mg/day) | 128.6 (77.3–197.3) | 205.1 (151.0–258.8) | 0.006 |
Saturated fatty acids (g/day) | 12.0 ± 5.7 | 19.7 ± 9.1 | 0.001 |
Fiber (g/day) | 15.3 ± 5.9 | 14.2 ± 5.3 | 0.659 |
Energy (% of EER) | 69.0 ± 14.0 | 88.6 ± 18.5 | <0.001 |
Proteins (% of energy intake) | 17.8 ± 4.0 | 13.0 ± 1.7 | <0.001 |
Carbohydrates (% of energy intake) | 50.7 ± 6.9 | 53.2 ± 6.6 | 0.132 |
Fat (% of energy intake) | 29.8 ± 5.4 | 33.7 ± 5.6 | 0.018 |
Fiber (% of AI) | 106.3 ± 35.3 | 91.8 ± 31.8 | 0.274 |
Parameter | Children with BMI Z-Score < −0.5 | Children with BMI Z-Score ≥ −0.5 | PWS1 vs. PWS2 | Controls1 vs. Controls2 | ||||
---|---|---|---|---|---|---|---|---|
PWS1 (n = 13) | Controls1 (n = 10) | p | PWS 2 (n = 12) | Controls 2 (n = 20) | p | p | p | |
Age (years) | 5.5 ± 3.3 | 7.1 ± 2.8 | 0.162 | 7.1 ± 2.6 | 6.4 ± 3.2 | 0.624 | 0.164 | 0.657 |
Height (cm) | 110.9 ± 23.4 | 127.0 ± 21.0 | 0.091 | 120.4 ± 17.7 | 118.5 ± 20.1 | 1.000 | 0.264 | 0.502 |
Weight (kg) | 17.9 ± 7.8 | 24.4 ± 10.4 | 0.088 | 24.3 ± 9.0 | 24.9 ± 9.3 | 0.803 | 0.060 | 0.854 |
BMI (kg/m2) | 14.1 ± 0.6 | 14.5 ± 1.4 | 0.512 | 16.2 ± 1.4 | 17.1 ± 1.6 | 0.078 | <0.001 | <0.001 |
BMI Z-score | −1.15 (−1.51–−0.75) | −0.89 (−1.16–−0.56) | 0.119 | −0.27 (−0.41–0.17) | 0.28 (−0.2–0.74) | 0.035 | <0.001 | <0.001 |
Fat mass (%) | 17.2 ± 4.5 | 19.3 ± 2.9 | 0.171 | 20.9 ± 3.9 | 21.7 ± 6.4 | 0.916 | 0.031 | 0.455 |
Fat mass (kg) | 3.2 ± 1.8 | 4.5 ± 1.9 | 0.101 | 5.0 ± 2.3 | 5.6 ± 2.9 | 0.716 | 0.060 | 0.588 |
Biochemical measurements | ||||||||
Leptin/sOB-R | 0.03 (0.01–0.06) | 0.03 (0.02–0.07) | 0.636 | 0.1 (0.08–0.17) | 0.06 (0.03–0.1) | 0.037 | <0.001 | 0.072 |
sOB-R (ng/mL) | 51.1 ± 18.3 | 49.3 ± 14.7 | 0.879 | 34.7 ± 6.7 | 41.6 ± 15.9 | 0.307 | 0.016 | 0.172 |
Leptin/adiponectin | 0.11 (0.05–0.18) | 0.13 (0.06–0.27) | 0.343 | 0.35 (0.31–0.50) | 0.24 (0.10–0.38) | 0.060 | <0.001 | 0.267 |
Total cholesterol (mg/dL) | 159.2 ± 28.7 | 139.7 ± 17.8 | 0.029 | 186.3 ± 25.5 | 156.6 ± 20.0 | 0.001 | 0.054 | 0.036 |
HDL-cholesterol (mg/dL) | 53.5 ± 12.4 | 57.8 ± 12.3 | 0.455 | 61.8 ± 13.3 | 52.5 ± 13.1 | 0.054 | 0.181 | 0.165 |
LDL-cholesterol (mg/dL) | 101.9 ± 23.8 | 75.4 ± 15.8 | 0.008 | 118.7 ± 23.5 | 95.1 ± 12.6 | 0.003 | 0.126 | 0.001 |
Triglycerides (mg/dL) | 77.2 ± 23.1 | 57.3 ± 14.4 | 0.024 | 89.0 ± 29.5 | 69.0 ± 26.8 | 0.054 | 0.327 | 0.379 |
IGF-I/t-IGFBP-3 molar ratio | 0.25 ± 0.07 | 0.17 ± 0.05 | 0.008 | 0.25 ± 0.06 | 0.17 ± 0.06 | 0.002 | 0.799 | 0.838 |
Dietary intake | ||||||||
Energy (kcal/day) | 981 ± 300 | 1480 ± 379 | 0.004 | 1090 ± 337 | 1393 ± 451 | 0.076 | 0.470 | 0.619 |
Energy (% of EER) | 72.5 ± 15.3 | 88.4 ± 22.4 | 0.085 | 65.3 ± 12.1 | 88.8 ± 17.0 | <0.001 | 0.398 | 0.787 |
Protein (% of energy intake) | 17.1 ± 4.1 | 13.7 ± 1.8 | 0.030 | 18.7 ± 4.0 | 12.6 ± 1.6 | <0.001 | 0.283 | 0.093 |
Carbohydrates (% of energy intake) | 51.8 ± 5.2 | 51.5 ± 7.4 | 0.962 | 49.4 ± 8.5 | 54.0 ± 6.1 | 0.142 | 0.865 | 0.454 |
Fat (% of energy intake) | 28.9 ± 3.8 | 34.7 ± 6.2 | 0.049 | 31.0 ± 7.0 | 33.2 ± 5.4 | 0.333 | 0.691 | 0.481 |
Protein (g/day) | 42.4 ± 17.6 | 45.9 ± 13.6 | 0.563 | 50.1 ± 18.2 | 44.0 ± 15.9 | 0.477 | 0.247 | 0.846 |
Carbohydrates (g/day) | 139.8 ± 39.3 | 198.9 ± 76.5 | 0.067 | 148.0 ± 52.6 | 199.1 ± 64.4 | 0.009 | 0.810 | 1.000 |
Fat (g/day) | 32.0 ± 12.4 | 57.5 ± 18.9 | 0.001 | 38.6 ± 15.8 | 51.3 ± 21.8 | 0.182 | 0.295 | 0.530 |
Cholesterol | 94.4 (65.5–170.8) | 228.4 (169.1–251.4) | 0.015 | 147.2 (108.2–246.7) | 202.4 (142.9–279.4) | 0.207 | 0.077 | 0.892 |
Saturated fatty acids (g/day) | 10.3 ± 4.7 | 20.4 ± 10.2 | 0.004 | 14.0 ± 6.1 | 19.2 ± 8.6 | 0.104 | 0.060 | 0.739 |
Fiber (g/day) | 15.0 ± 4.9 | 12.7 ± 6.7 | 0.376 | 15.6 ± 7.0 | 15.1 ± 4.2 | 0.836 | 0.769 | 0.259 |
Fiber (% of AI) | 111.3 ± 31.1 | 79.9 ± 43.7 | 0.049 | 100.9 ± 40.1 | 98.8 ± 20.7 | 0.556 | 0.650 | 0.040 |
Parameter | Nesfatin-1 | Spexin | Leptin | Adiponectin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | p-Value | 95% CI | Coefficient | p-Value | 95% CI | Coefficient | p-Value | 95% CI | Coefficient | p-Value | 95% CI | |
BMI | 0.344 | 0.018 | 0.065–0.623 | −0.001 | 0.960 | −0.061–0.059 | 0.934 | 0.001 | 0.408–1.460 | −0.619 | 0.349 | −1.962–.723 |
BMI Z-score | 0.711 | 0.031 | 0.073–10.349 | 0.034 | 0.600 | −0.098–0.166 | 1.473 | 0.027 | 0.180–2.767 | −2.030 | 0.205 | −5.253–1.192 |
Fat mass (%) | 0.076 | 0.169 | −0.035–0.188 | 0.002 | 0.808 | −0.018–0.022 | 0.235 | 0.026 | 0.031–0.439 | −0.028 | 0.909 | −0.541–0.484 |
Nesfatin-1 | - | - | - | 0.011 | 0.793 | −0.075–0.097 | 1.345 | 0.042 | 0.050–2.640 | −0.679 | 0.666 | −3.902–2.543 |
Spexin | −0.830 | 0.624 | −4.297–2.637 | - | - | - | −0.762 | 0.823 | −7.731–6.208 | −3.391 | 0.613 | −17.116–10.334 |
Leptin | 0.244 | 0.042 | 0.010–0.478 | −0.005 | 0.805 | −0.048–0.038 | - | - | - | −0.296 | 0.657 | −1.662–1.069 |
Adiponectin | 0.045 | 0.583 | −0.121–0.211 | 0.001 | 0.954 | −0.024–0.025 | −0.030 | 0.864 | −0.392–0.332 | - | - | - |
Group | Parameter | Phase 2a (20–31 Months) | Phase 2b (3–5.25 Years) | Phase 3 (6–12 Years) | ptrend |
---|---|---|---|---|---|
Children with PWS n = 25 | Nesfatin-1 (ng/mL) | 0.40 (0.29–1.57) N = 3 | 0.30 (0.25–0.87) N = 7 | 1.74 (0.83–2.70) N = 15 | 0.004 |
Children with PWS n = 30 | Spexin (ng/mL) | 0.08 (0.06–0.17) N = 3 | 0.15 (0.06–0.33) N = 7 | 0.23 (0.17–0.35) N = 15 | 0.041 |
Healthy children n = 30 | Nesfatin-1 (ng/mL) | 0.61 (0.34–0.83) N = 4 | 0.40 (0.27–0.45) N = 6 | 0.83 (0.32–0.90) N = 20 | 0.132 |
Healthy children n = 30 | Spexin (ng/mL) | 0.50 (0.31–0.77) N = 4 | 0.44 (0.34–0.57) N = 6 | 0.44 (0.34–0.76) N = 20 | 0.698 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajewska, J.; Szamotulska, K.; Klemarczyk, W.; Chełchowska, M.; Strucińska, M.; Ambroszkiewicz, J. Circulating Levels of Nesfatin-1 and Spexin in Children with Prader-Willi Syndrome during Growth Hormone Treatment and Dietary Intervention. Nutrients 2023, 15, 1240. https://doi.org/10.3390/nu15051240
Gajewska J, Szamotulska K, Klemarczyk W, Chełchowska M, Strucińska M, Ambroszkiewicz J. Circulating Levels of Nesfatin-1 and Spexin in Children with Prader-Willi Syndrome during Growth Hormone Treatment and Dietary Intervention. Nutrients. 2023; 15(5):1240. https://doi.org/10.3390/nu15051240
Chicago/Turabian StyleGajewska, Joanna, Katarzyna Szamotulska, Witold Klemarczyk, Magdalena Chełchowska, Małgorzata Strucińska, and Jadwiga Ambroszkiewicz. 2023. "Circulating Levels of Nesfatin-1 and Spexin in Children with Prader-Willi Syndrome during Growth Hormone Treatment and Dietary Intervention" Nutrients 15, no. 5: 1240. https://doi.org/10.3390/nu15051240
APA StyleGajewska, J., Szamotulska, K., Klemarczyk, W., Chełchowska, M., Strucińska, M., & Ambroszkiewicz, J. (2023). Circulating Levels of Nesfatin-1 and Spexin in Children with Prader-Willi Syndrome during Growth Hormone Treatment and Dietary Intervention. Nutrients, 15(5), 1240. https://doi.org/10.3390/nu15051240