The Degree of Hydroxylation of Phenolic Rings Determines the Ability of Flavonoids and Stilbenes to Inhibit Calcium-Mediated Membrane Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Calcein Leakage Assay
2.3. Differential Scanning Microcalorimetry
2.4. Statistical Processing of Results
3. Results and Discussion
- (1)
- Low hydroxylated aglycones, having 1–3 OH-groups in the structure (Figure 1), do not inhibit the CaCl2-mediated fusion of DOPC/DOPG/CHOL liposomes. This concerns all tested chalcones (4′-hydroxychalcone, cardamonin, and isoliquiritigenin), dihydrochalcone phloretin, isoflavones (daidzein, genistein, and biochanin A), flavanones (liquiritigenin and naringenin), and lignan honokiol.
- (2)
- Flavonoid glycosides (genistin and rutin) are not able to inhibit the fusion of negatively charged lipid vesicles.
- (3)
- Highly hydroxylated aglycones, containing 5–6 OH-groups (Figure 1), in particular, flavan-3-ol catechin, flavononol taxifolin, and flavonols, quercetin, and myricetin, are able to inhibit liposome fusion.
- (4)
- Not only the number but also the localization of hydroxyl groups is important: dihydrochalcone phloretin and stilbene piceatannol, both characterized by the presence of 4 OH groups in the structure (Figure 1), exhibit different antifusogenic activities. This indicates that the degree of hydroxylation of the phenolic rings flanking the molecule plays a fundamental role. Thus, polyphenols containing at least two OH groups in both phenolic rings are able to inhibit calcium-mediated liposome fusion.
- (5)
- The presence of a carbonyl group and a double bond in the heterocycle of active polyphenols (Figure 1) does not matter, which indicates that the conformation of the polyphenol molecule, and, in particular, its rigidity and planarity, are not the determining factors for the manifestation of antifusogenic activity by polyphenols. For example, both the flavan-3-ol catechin (planar, [61]) and the flavonol taxifolin (nonplanar [62]) are capable of inhibiting the fusion of negatively charged membranes.
4. Conclusions
- (i)
- Polyphenols containing at least two OH groups in both phenolic rings, in particular, piceatannol, catechin, and taxifolin, are able to inhibit the calcium-mediated fusion of DOPC/DOPG/CHOL liposomes.
- (ii)
- The inhibitory activity of polyphenols is inter-related with their ability to influence lipid packing and curvature stress.
- (iii)
- The ability of polyphenols to suppress membrane fusion depends on the depth of immersion and the orientation of molecules in the bilayer. Polyphenols, which are predominantly localized in the region of the lipid heads, are characterized by significant antifusogenic activity. The insertion of polyphenols induces a disordering and a positive curvature stress, which leads to the suppression of membrane fusion due to an increase in the energetic cost of the formation of fusion lipid intermediates of high negative spontaneous curvature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drețcanu, G.; Știrbu, I.; Leoplold, N.; Cruceriu, D.; Danciu, C.; Stănilă, A.; Fărcaș, A.; Borda, I.M.; Iuhas, C.; Diaconeasa, Z. Chemical structure, sources and role of bioactive flavonoids in cancer prevention: A review. Plants 2022, 11, 1117. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Di Ferdinando, M.; Brunetti, C.; Fini, A.; Tattini, M. Flavonoids as antioxidants in plants under abiotic stresses. In Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 159–179. [Google Scholar] [CrossRef]
- Dixon, R.A.; Steele, C.L. Flavonoids and isoflavonoids—A gold mine for metabolic engineering. Trends Plant Sci. 1999, 4, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of current extraction techniques for flavonoids from plant materials. Processes 2020, 8, 1222. [Google Scholar] [CrossRef]
- Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, M.R. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. Biomed. Res. Int. 2022, 2022, 5445291. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Manna, K. Chalcone scaffold in anticancer armamentarium: A molecular insight. J. Toxicol. 2016, 2016, 7651047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr. 2011, 6, 125–147. [Google Scholar] [CrossRef] [Green Version]
- Khalifa, S.A.M.; Yosri, N.; El-Mallah, M.F.; Ghonaim, R.; Guo, Z.; Musharraf, S.G.; Du, M.; Khatib, A.; Xiao, J.; Saeed, A.; et al. Screening for natural and derived bio-active compounds in preclinical and clinical studies: One of the frontlines of fighting the coronaviruses pandemic. Phytomedicine 2021, 85, 153311. [Google Scholar] [CrossRef]
- Daimary, U.D.; Parama, D.; Rana, V.; Banik, K.; Kumar, A.; Harsha, C.; Kunnumakkara, A.B. Emerging roles of cardamonin, a multitargeted nutraceutical in the prevention and treatment of chronic diseases. Curr. Res. Pharmacol. Drug Discov. 2020, 2, 100008. [Google Scholar] [CrossRef]
- Wang, K.L.; Yu, Y.C.; Hsia, S.M. Perspectives on the role of isoliquiritigenin in cancer. Cancers 2021, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yung, K.K.; Ko, J.K. Therapeutic intervention in cancer by isoliquiritigenin from Licorice: A natural antioxidant and redox regulator. Antioxidants 2022, 11, 1349. [Google Scholar] [CrossRef] [PubMed]
- Nakhate, K.T.; Badwaik, H.; Choudhary, R.; Sakure, K.; Agrawal, Y.O.; Sharma, C.; Ojha, S.; Goyal, S.N. Therapeutic potential and pharmaceutical development of a multitargeted flavonoid phloretin. Nutrients 2022, 14, 3638. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Pandey, R.P.; Sohng, J.K. Biosynthesis of resveratrol and piceatannol in engineered microbial strains: Achievements and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 2959–2972. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113 (Suppl. 9B), 71S–88S. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Landau, J.M.; Huang, M.T.; Newmark, H.L. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 2001, 21, 381–406. [Google Scholar] [CrossRef] [Green Version]
- Zaheer, K.; Humayoun Akhtar, M. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 1280–1293. [Google Scholar] [CrossRef]
- Sathyapalan, T.; Aye, M.; Rigby, A.S.; Thatcher, N.J.; Dargham, S.R.; Kilpatrick, E.S.; Atkin, S.L. Soy isoflavones improve cardiovascular disease risk markers in women during the early menopause. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 691–697. [Google Scholar] [CrossRef]
- Yari, Z. Review of isoflavones and their potential clinical impacts on cardiovascular and bone metabolism markers in peritoneal dialysis patients. Prev. Nutr. Food Sci. 2022, 27, 347–353. [Google Scholar] [CrossRef]
- Sahu, B.D.; Kalvala, A.K.; Koneru, M.; Mahesh Kumar, J.; Kuncha, M.; Rachamalla, S.S.; Sistla, R. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence. PLoS ONE. 2014, 9, e105070. [Google Scholar] [CrossRef]
- Hirai, I.; Okuno, M.; Katsuma, R.; Arita, N.; Tachibana, M.; Yamamoto, Y. Characterisation of anti-Staphylococcus aureus activity of quercetin. Int. J. Food Sci. Technol. 2010, 45, 1250–1254. [Google Scholar] [CrossRef]
- Song, X.; Tan, L.; Wang, M.; Ren, C.; Guo, C.; Yang, B.; Ren, Y.; Cao, Z.; Li, Y.; Pei, J. Myricetin: A review of the most recent research. Biomed. Pharmacother. 2021, 134, 111017. [Google Scholar] [CrossRef] [PubMed]
- Emran, T.B.; Islam, F.; Nath, N.; Sutradhar, H.; Das, R.; Mitra, S.; Alshahrani, M.M.; Alhasaniah, A.H.; Sharma, R. Naringin and naringenin polyphenols in peurological diseases: Understandings from a therapeutic viewpoint. Life 2022, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, M.; Kim, H.; Lee, Y.; Lee, Y.I. Phytochemical and pharmacological role of liquiritigenin and isoliquiritigenin from radix glycyrrhizae in human health and disease models. Front. Aging Neurosci. 2018, 10, 348. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Baidya, R.; Chakraborty, T.; Samanta, A.K.; Roy, S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed. Pharmacother. 2021, 142, 112004. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.Y.; Sang, L.X.; Jiang, M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 2017, 22, 484. [Google Scholar] [CrossRef] [Green Version]
- Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; et al. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res. 2019, 144, 192–209. [Google Scholar] [CrossRef]
- Li, Y.; Liang, C.; Zhou, X. The application prospects of honokiol in dermatology. Dermatol. Ther. 2022, 35, e15658. [Google Scholar] [CrossRef]
- Ninfali, P.; Antonelli, A.; Magnani, M.; Scarpa, E.S. Antiviral properties of flavonoids and delivery strategies. Nutrients 2020, 12, 2534. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, X.W.; Schols, D.; Mori, M.; Botta, B.; Chevigné, A.; Mulinge, M.; Steinmetz, A.; Schmit, J.C.; Seguin-Devaux, C. Active components from Cassia abbreviata prevent HIV-1 entry by distinct mechanisms of action. Int. J. Mol. Sci. 2021, 22, 5052. [Google Scholar] [CrossRef]
- Apaza Ticona, L.; Bermejo, P.; Guerra, J.A.; Abad, M.J.; Beltrán, M.; Martín Lázaro, R.; Alcamí, J.; Bedoya, L.M. Ethanolic extract of Artemisia campestris subsp. glutinosa (Besser) Batt. inhibits HIV-1 replication in vitro through the activity of terpenes and flavonoids on viral entry and NF-κB pathway. J. Ethnopharmacol. 2020, 263, 113163. [Google Scholar] [CrossRef]
- Geiler, J.; Michaelis, M.; Sithisarn, P.; Cinatl, J., Jr. Comparison of pro-inflammatory cytokine expression and cellular signal transduction in human macrophages infected with different influenza A viruses. Med. Microbiol. Immunol. 2011, 200, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Jibiki, I.; Asai, Y.; Gon, Y.; Kobayashi, T.; Ichiwata, T.; Shimizu, K.; Hashimoto, S. Analysis of gene expression in human bronchial epithelial cells upon influenza virus infection and regulation by p38 mitogen-activated protein kinase and c-Jun-N-terminal kinase. Respirology 2008, 13, 203–214. [Google Scholar] [CrossRef]
- Ludwig, S. Disruption of virus-host cell interactions and cell signaling pathways as an anti-viral approach against influenza virus infections. Biol. Chem. 2011, 392, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.; Herold, S.; Cakarova, L.; Hoegner, K.; Lohmeyer, J.; Planz, O.; Pleschka, S. Inhibition of influenza virus-induced NF-kappaB and Raf/MEK/ERK activation can reduce both virus titers and cytokine expression simultaneously In Vitro and In Vivo. Antivir. Res. 2011, 92, 45–56. [Google Scholar] [CrossRef]
- Shin, Y.K.; Liu, Q.; Tikoo, S.K.; Babiuk, L.A.; Zhou, Y. Effect of the phosphatidylinositol 3-kinase/Akt pathway on influenza A virus propagation. J. Gen. Virol. 2007, 88 Pt 3, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.C.; Chen, M.C.; Liu, S.; Callahan, V.M.; Bracci, N.R.; Lehman, C.W.; Dahal, B.; de la Fuente, C.L.; Lin, C.C.; Wang, T.T.; et al. Phloretin inhibits Zika virus infection by interfering with cellular glucose utilisation. Int. J. Antimicrob. Agents. 2019, 54, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lei, E.; Wang, X.; Qi, X.; Li, L.; Ren, J.; Yang, J.; Wang, S. Licochalcone A inhibits enterovirus A71 replication in vitro and in vivo. Antivir. Res. 2021, 195, 105091. [Google Scholar] [CrossRef]
- Evers, D.L.; Chao, C.F.; Wang, X.; Zhang, Z.; Huong, S.M.; Huang, E.S. Human cytomegalovirus-inhibitory flavonoids: Studies on antiviral activity and mechanism of action. Antivir. Res. 2005, 68, 124–134. [Google Scholar] [CrossRef]
- Di Petrillo, A.; Orrù, G.; Fais, A.; Fantini, M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. 2022, 36, 266–278. [Google Scholar] [CrossRef]
- Peng, S.; Fang, C.; He, H.; Song, X.; Zhao, X.; Zou, Y.; Li, L.; Jia, R.; Yin, Z. Myricetin exerts its antiviral activity against infectious bronchitis virus by inhibiting the deubiquitinating activity of papain-like protease. Poult. Sci. 2022, 101, 101626. [Google Scholar] [CrossRef]
- Schwarz, S.; Sauter, D.; Wang, K.; Zhang, R.; Sun, B.; Karioti, A.; Bilia, A.R.; Efferth, T.; Schwarz, W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med. 2014, 80, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Paraiso, I.L.; Revel, J.S.; Stevens, J.F. Potential use of polyphenols in the battle against COVID-19. Curr. Opin. Food Sci. 2020, 32, 149–155. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Woo, H.J.; Kang, H.K.; Nguyen, V.D.; Kim, Y.M.; Kim, D.W.; Ahn, S.A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett. 2012, 34, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Pillay, D. The priorities for antiviral drug resistance surveillance and research. J. Antimicrob. Chemother. 2007, 60 (Suppl. S1), i57–i58. [Google Scholar] [CrossRef]
- Soares, M.M.; King, S.W.; Thorpe, P.E. Targeting inside-out phosphatidylserine as a therapeutic strategy for viral diseases. Nat. Med. 2008, 14, 1357–1362. [Google Scholar] [CrossRef]
- Ostroumova, O.S.; Efimova, S.S.; Schagina, L.V. Phloretin-induced reduction in dipole potential of sterol-containing bilayers. J. Membr. Biol. 2013, 246, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Efimova, S.S.; Ostroumova, O.S. Effect of dipole modifiers on the magnitude of the dipole potential of sterol-containing bilayers. Langmuir 2012, 28, 9908–9914. [Google Scholar] [CrossRef]
- Arora, A.; Byrem, T.M.; Nair, M.G.; Strasburg, G.M. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch. Biochem. Biophys. 2000, 373, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Akimov, S.A.; Molotkovsky, R.J.; Kuzmin, P.I.; Galimzyanov, T.R.; Batishchev, O.V. Continuum models of membrane fusion: Evolution of the theory. Int. J. Mol. Sci. 2020, 21, 3875. [Google Scholar] [CrossRef] [PubMed]
- St Vincent, M.R.; Colpitts, C.C.; Ustinov, A.V.; Muqadas, M.; Joyce, M.A.; Barsby, N.L.; Epand, R.F.; Epand, R.M.; Khramyshev, S.A.; Valueva, O.A.; et al. Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proc. Natl. Acad. Sci. USA 2010, 107, 17339–17344. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, K.; Hattori, S.; Komizu, Y.; Kariya, R.; Ueoka, R.; Okada, S. Cepharanthine inhibited HIV-1 cell-cell transmission and cell-free infection via modification of cell membrane fluidity. Bioorg. Med. Chem. Lett. 2014, 24, 2115–2117. [Google Scholar] [CrossRef] [PubMed]
- Shekunov, E.V.; Efimova, S.S.; Yudintceva, N.M.; Muryleva, A.A.; Zarubaev, V.V.; Slita, A.V.; Ostroumova, O.S. Plant alkaloids inhibit membrane fusion mediated by calcium and fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 fusion peptides. Biomedicines 2021, 9, 1434. [Google Scholar] [CrossRef]
- Neves, A.R.; Nunes, C.; Amenitsch, H.; Reis, S. Effects of resveratrol on the structure and fluidity of lipid bilayers: A membrane biophysical study. Soft Matter 2016, 12, 2118–2126. [Google Scholar] [CrossRef]
- Ostroumova, O.S.; Chulkov, E.G.; Stepanenko, O.V.; Schagina, L.V. Effect of flavonoids on the phase separation in giant unilamellar vesicles formed from binary lipid mixtures. Chem. Phys. Lipids 2014, 178, 77–83. [Google Scholar] [CrossRef]
- Efimova, S.S.; Zakharova, A.A.; Medvedev, R.Y.; Ostroumova, O.S. Ion channels induced by antimicrobial agents in model lipid membranes are modulated by plant polyphenols through surrounding lipid media. J. Membr. Biol. 2018, 251, 551–562. [Google Scholar] [CrossRef]
- Pattnaik, G.P.; Chakraborty, H. Coronin 1 derived tryptophan-aspartic acid containing peptides inhibit membrane fusion. Chem. Phys. Lipids 2018, 217, 35–42. [Google Scholar] [CrossRef]
- Leventis, R.; Gagné, J.; Fuller, N.; Rand, R.P.; Silvius, J.R. Divalent cation induced fusion and lipid lateral segregation in phosphatidylcholine-phosphatidic acid vesicles. Biochemistry 1986, 25, 6978–6987. [Google Scholar] [CrossRef]
- Allolio, C.; Harries, D. Calcium ions promote membrane fusion by forming negative-curvature inducing clusters on specific anionic lipids. ACS Nano 2021, 15, 12880–12887. [Google Scholar] [CrossRef]
- Efimova, S.S.; Zlodeeva, P.D.; Shekunov, E.V.; Ostroumova, O.S. The mechanisms of lipid vesicle fusion inhibition by extracts of chaga and buckthorn leaves. Biochem. Moscow Suppl. Ser. A 2022, 16, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Sanver, D.; Murray, B.S.; Sadeghpour, A.; Rappolt, M.; Nelson, A.L. Experimental modeling of flavonoid-biomembrane interactions. Langmuir 2016, 32, 13234–13243. [Google Scholar] [CrossRef] [PubMed]
- Boerboom, A.M.; Vermeulen, M.; van der Woude, H.; Bremer, B.I.; Lee-Hilz, Y.Y.; Kampman, E.; van Bladeren, P.J.; Rietjens, I.M.; Aarts, J.M. Newly constructed stable reporter cell lines for mechanistic studies on electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity. Biochem. Pharmacol. 2006, 72, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Efimova, S.S.; Zakharova, A.A.; Chernyshova, D.N.; Ostroumova, O.S. The specific effect of grapefruit seed, sea-buckthorn leaves, and chaga extracts on the properties of model lipid membranes. Cell Tissue Biol. 2023, 17, 72–80. [Google Scholar] [CrossRef]
Polyphenol Group | Compound | LogD # | RF, % | RI, % |
---|---|---|---|---|
92 ± 3 | ||||
chalcones | 4′-hydroxychalcone | 3.46 | 92 ± 5 | −4 ± 7 |
cardamonin | 3.64 | 95 ± 3 | −8 ± 5 | |
isoliquiritigenin | 3.47 | 84 ± 13 | 5 ± 15 | |
dihydrochalcones | phloretin | 3.79 | 81 ± 6 | 8 ± 7 |
stilbenes | resveratrol | 3.37 | 94 ± 3 | −7 ± 5 |
piceatannol | 3.06 | 29 ± 10 * | 67 ± 12 | |
isoflavones | daidzein | 2.43 | 95 ± 4 | −8 ± 6 |
biochanin A | 2.95 | 94 ± 1 | −7 ± 4 | |
genistein | 2.79 | 89 ± 7 | −1 ± 9 | |
genistin | 0.63 | 83 ± 10 | 6 ± 12 | |
flavanones | liquiritigenin | 2.34 | 79 ± 17 | 10 ± 20 |
naringenin | 2.70 | 82 ± 10 | 7 ± 11 | |
flavan-3-ols | catechin | 1.79 | 68 ± 8 * | 22 ± 10 |
flavononols | taxifolin | 1.65 | 58 ± 16 * | 37 ± 17 |
flavonols | quercetin $ | 1.46 | 9 ± 1 * | 85 ± 2 |
myricetin $ | 1.06 | 31 ± 3 * | 58 ± 4 | |
rutin $ | −1.35 | 88 ± 1 | −5 ± 2 | |
lignans | honokiol | 5.19 | 75 ± 17 | 17 ± 20 |
DPPC | DPPG | |||||
---|---|---|---|---|---|---|
Polyphenol | Charge # | ΔTp, °C | −ΔTm, °C | ΔΔTb, °C | −ΔTm, °C | ΔΔTb, °C |
isoliquiritigenin | −0.38 | –@ | 1.7 ± 0.2 | 4.7 ± 0.4 | ND | ND |
phloretin | −0.21 | –@ | 1.2 ± 0.3 | 5.1 ± 0.7 * | ND | ND |
piceatannol | −0.14 | –@ | 1.8 ± 0.2 * | 4.5 ± 0.1 * | 0.8 ± 0.2 * | 4.8 ± 1.0 * |
genistein | −0.32 | 0 | 0.2 ± 0.1 | 0.7 ± 0.1 | 0.1 ± 0.1 | 0.8 ± 0.2 |
genistin | −0.11 | 0 | 0 | 0.1 ± 0.1 | 0 | 0.2 ± 0.1 |
liquiritigenin | −0.30 | –@ | 0.9 ± 0.6 § | 2.0 ± 0.2 | 0.4 ± 0.1 | 1.5 ± 0.2 |
catechin | −0.03 | –@ | 0.3 ± 0.1 * | 1.3 ± 0.2 * | 0 | 0.6 ± 0.1 |
taxifolin | −0.35 | –@ | 0.9 ± 0.1 * | 1.4 ± 0.2 * | 0.7 ± 0.2 * | 1.3 ± 0.3 * |
quercetin | −0.80 | –@,& | 0.3 ± 0.1 *,& | 3.2 ± 0.3 * | 1.2 ± 0.2 *,$ | 1.0 ± 0.1 * |
myricetin | −0.88 | –@,& | 0.3 ± 0.1 *,& | 2.8 ± 0.4 * | 1.1 ± 0.2 *,$ | 0.8 ± 0.1 * |
rutin | −0.48 | 0 & | 0 *,& | 0.6 ± 0.1 | 0 $ | 0.3 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlodeeva, P.D.; Shekunov, E.V.; Ostroumova, O.S.; Efimova, S.S. The Degree of Hydroxylation of Phenolic Rings Determines the Ability of Flavonoids and Stilbenes to Inhibit Calcium-Mediated Membrane Fusion. Nutrients 2023, 15, 1121. https://doi.org/10.3390/nu15051121
Zlodeeva PD, Shekunov EV, Ostroumova OS, Efimova SS. The Degree of Hydroxylation of Phenolic Rings Determines the Ability of Flavonoids and Stilbenes to Inhibit Calcium-Mediated Membrane Fusion. Nutrients. 2023; 15(5):1121. https://doi.org/10.3390/nu15051121
Chicago/Turabian StyleZlodeeva, Polina D., Egor V. Shekunov, Olga S. Ostroumova, and Svetlana S. Efimova. 2023. "The Degree of Hydroxylation of Phenolic Rings Determines the Ability of Flavonoids and Stilbenes to Inhibit Calcium-Mediated Membrane Fusion" Nutrients 15, no. 5: 1121. https://doi.org/10.3390/nu15051121
APA StyleZlodeeva, P. D., Shekunov, E. V., Ostroumova, O. S., & Efimova, S. S. (2023). The Degree of Hydroxylation of Phenolic Rings Determines the Ability of Flavonoids and Stilbenes to Inhibit Calcium-Mediated Membrane Fusion. Nutrients, 15(5), 1121. https://doi.org/10.3390/nu15051121