An Intervention of Four Weeks of Time-Restricted Eating (16/8) in Male Long-Distance Runners Does Not Affect Cardiometabolic Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Familiarization Visit
2.4. Test Day Protocol
2.5. Resting Energy Expenditure
% energy from lipid = (1.67 × VO2) − (1.67 × VCO2) × 100
2.6. Blood Pressure
2.7. Body Composition
2.8. Blood Analyses
QUICKI = 1 ÷ (Log insulin (µU/mL) + log glucose (mg/dL))
2.9. Statistical Analysis
3. Results
3.1. Subject Enrollment and Retention
3.2. Resting Energy Expenditure
3.3. Body Mass and Composition
3.4. Bone Mineral Density
3.5. Insulin Resistance and Sensitivity
3.6. Blood Pressure
3.7. Circulating Lipids and Lipoproteins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnstone, A. Fasting for weight loss: An effective strategy or latest dieting trend? Int. J. Obes. 2015, 39, 727–733. [Google Scholar] [CrossRef]
- Stockman, M.C.; Thomas, D.; Burke, J.; Apovian, C.M. Intermittent Fasting: Is the Wait Worth the Weight? Curr. Obes. Rep. 2018, 7, 172–185. [Google Scholar] [CrossRef]
- Rynders, C.A.; Thomas, E.A.; Zaman, A.; Pan, Z.; Catenacci, V.A.; Melanson, E.L. Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients 2019, 11, 2442. [Google Scholar] [CrossRef] [Green Version]
- Harvie, M.; Howell, A. Potential Benefits and Harms of Intermittent Energy Restriction and Intermittent Fasting Amongst Obese, Overweight and Normal Weight Subjects-A Narrative Review of Human and Animal Evidence. Behav. Sci. 2017, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, B.; Zalewska, K.; Węsierska, A.; Sokołowska, M.M.; Socha, M.; Liczner, G.; Pawlak-Osińska, K.; Wiciński, M. Intermittent Fasting in Cardiovascular Disorders-An Overview. Nutrients 2019, 11, 673. [Google Scholar] [CrossRef] [Green Version]
- Peos, J.J.; Norton, L.E.; Helms, E.R.; Galpin, A.J.; Fournier, P. Intermittent Dieting: Theoretical Considerations for the Athlete. Sports 2019, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Pettersson, S.; Pipping Ekström, M.; Berg, C.M. The food and weight combat. A problematic fight for the elite combat sports athlete. Appetite 2012, 59, 234–242. [Google Scholar] [CrossRef]
- Moro, T.; Tinsley, G.; Bianco, A.; Marcolin, G.; Pacelli, Q.F.; Battaglia, G.; Palma, A.; Gentil, P.; Neri, M.; Paoli, A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 2016, 14, 290. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Moore, M.L.; Graybeal, A.J.; Paoli, A.; Kim, Y.; Gonzales, J.U.; Harry, J.R.; VanDusseldorp, T.A.; Kennedy, D.N.; Cruz, M.R. Time-restricted feeding plus resistance training in active females: A randomized trial. Am. J. Clin. Nutr. 2019, 110, 628–640. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, G.M.; Forsse, J.S.; Butler, N.K.; Paoli, A.; Bane, A.A.; La Bounty, P.M.; Morgan, G.B.; Grandjean, P.W. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur. J. Sport Sci. 2017, 17, 200–207. [Google Scholar] [CrossRef]
- Brady, A.J.; Langton, H.M.; Mulligan, M.; Egan, B. Effects of 8 wk of 16:8 Time-restricted Eating in Male Middle- and Long-Distance Runners. Med. Sci. Sports Exerc. 2021, 53, 633–642. [Google Scholar] [CrossRef]
- Tovar, A.P.; Richardson, C.E.; Keim, N.L.; Van Loan, M.D.; Davis, B.A.; Casazza, G.A. Four Weeks of 16/8 Time Restrictive Feeding in Endurance Trained Male Runners Decreases Fat Mass, without Affecting Exercise Performance. Nutrients 2021, 13, 2941. [Google Scholar] [CrossRef]
- Ackerman, K.E.; Holtzman, B.; Cooper, K.M.; Flynn, E.F.; Bruinvels, G.; Tenforde, A.S.; Popp, K.L.; Simpkin, A.J.; Parziale, A.L. Low energy availability surrogates correlate with health and performance consequences of Relative Energy Deficiency in Sport. Br. J. Sports Med. 2019, 53, 628–633. [Google Scholar] [CrossRef]
- Soleimany, G.; Dadgostar, H.; Lotfian, S.; Moradi-Lakeh, M.; Dadgostar, E.; Movaseghi, S. Bone Mineral Changes and Cardiovascular Effects among Female Athletes with Chronic Menstrual Dysfunction. Asian J. Sports Med. 2012, 3, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Billeci, L.; Tonacci, A.; Brunori, E.; Raso, R.; Calderoni, S.; Maestro, S.; Morales, M.A. Autonomic Nervous System Response during Light Physical Activity in Adolescents with Anorexia Nervosa Measured by Wearable Devices. Sensors 2019, 19, 2820. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.M. Mechanisms of sympathetic regulation in orthostatic intolerance. J. Appl. Physiol. 2012, 113, 1659–1668. [Google Scholar] [CrossRef] [Green Version]
- Fiuza-Luces, C.; Santos-Lozano, A.; Joyner, M.; Carrera-Bastos, P.; Picazo, O.; Zugaza, J.L.; Izquierdo, M.; Ruilope, L.M.; Lucia, A. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 2018, 15, 731–743. [Google Scholar] [CrossRef]
- Maffetone, P.B.; Laursen, P.B. Athletes: Fit but Unhealthy? Sports Med. Open 2015, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Aengevaeren, V.L.; Mosterd, A.; Braber, T.L.; Prakken, N.H.J.; Doevendans, P.A.; Grobbee, D.E.; Thompson, P.D.; Eijsvogels, T.M.H.; Velthuis, B.K. Relationship Between Lifelong Exercise Volume and Coronary Atherosclerosis in Athletes. Circulation 2017, 136, 138–148. [Google Scholar] [CrossRef]
- Baggish, A.L.; Levine, B.D. Coronary Artery Calcification Among Endurance Athletes: “Hearts of Stone”. Circulation 2017, 136, 149–151. [Google Scholar] [CrossRef]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhausen, A. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med. Sci. Sports Exerc. 2013, 45, 186–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emami, M.; Behforouz, A.; Jarahi, L.; Zarifian, A.; Rashidlamir, A.; Rashed, M.M.; Khaleghzade, H.; Ghaneifar, Z.; Safarian, M.; Azimi-Nezhad, M.; et al. The Risk of Developing Obesity, Insulin Resistance, and Metabolic Syndrome in Former Power-sports Athletes—Does Sports Career Termination Increase the Risk. Indian J. Endocrinol. Metab. 2018, 22, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Frayn, K.N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 628–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, D.; Young, H.A. Reducing Calorie Intake May Not Help You Lose Body Weight. Perspect. Psychol. Sci. 2017, 12, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Trexler, E.T.; Smith-Ryan, A.E.; Norton, L.E. Metabolic adaptation to weight loss: Implications for the athlete. J. Int. Soc. Sports Nutr. 2014, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Eshghinia, S.; Mohammadzadeh, F. The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women. J. Diabetes Metab. Disord. 2013, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Kelley, G.A.; Kelley, K.S.; Vu Tran, Z. Aerobic exercise, lipids and lipoproteins in overweight and obese adults: A meta-analysis of randomized controlled trials. Int. J. Obes. (Lond.) 2005, 29, 881–893. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, S.B.; Gonzalez, M.C.; Shen, W.; Redman, L.; Thomas, D. Weight loss composition is one-fourth fat-free mass: A critical review and critique of this widely cited rule. Obes. Rev. 2014, 15, 310–321. [Google Scholar] [CrossRef]
- Lu, Y.; Bradley, J.S.; McCoski, S.R.; Gonzalez, J.M.; Ealy, A.D.; Johnson, S.E. Reduced skeletal muscle fiber size following caloric restriction is associated with calpain-mediated proteolysis and attenuation of IGF-1 signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R806–R815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnosky, A.R.; Hoddy, K.K.; Unterman, T.G.; Varady, K.A. Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: A review of human findings. Transl. Res. 2014, 164, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity 2019, 27, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.D.; Skene, D.J.; Arendt, J.; Cade, J.E.; Grant, P.J.; Hardie, L.J. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocr. Rev. 2016, 37, 584–608. [Google Scholar] [CrossRef] [Green Version]
- Welsh, D.K.; Takahashi, J.S.; Kay, S.A. Suprachiasmatic nucleus: Cell autonomy and network properties. Annu. Rev. Physiol. 2010, 72, 551–577. [Google Scholar] [CrossRef] [Green Version]
Age (year) | 28. 7 ± 5.2 | Fat Free Mass (kg) | 57.6 ± 7.6 |
Body Mass (kg) | 73.5 ± 8.6 | VO2max (mL/kg/min) | 55.2 ± 6.7 |
Height (cm) | 177.7 ± 6.6 | Km run per week | 52.9 ± 10.8 |
Body fat (%) | 16.0 ± 5.6 | Years training | 7.8 ± 6.0 |
Fat Mass (kg) | 12.0 ± 4.5 |
Normal Diet (12/12) | Time-Restricted Eating (16/8) | p-Value | |
---|---|---|---|
Kcal/day | 2513 ± 367 | 2421 ± 478 | 0.41 |
Carbohydrate (g/day) | 284.8 ± 79.3 | 269.4 ± 68.4 | 0.27 |
Protein (g/day) | 112.5 ± 27.1 | 113.1 ± 24.4 | 0.42 |
Fat (g/day) | 97.5 ± 24.5 | 96.8 ± 33.0 | 0.91 |
Normal Diet (12/12) | Time-Restricted Eating (16/8) | ||||||
---|---|---|---|---|---|---|---|
Pre- | Post- | Change | Pre- | Post- | Change | p Value | |
REE (kcal) | 1644 ± 361 | 1724 ± 277 | 80 ± 322 | 1689 ± 304 | 1698 ± 269 | 8 ± 158 | 0.33 |
REE/body mass (kcal/kg) | 22.5 ± 4.1 | 23.7± 3.7 | 1.1 ± 4.3 | 23.0 ± 3.7 | 23.4 ± 3.4 | 0.4 ± 2.4 | 0.44 |
REE/FFM (kcal/kg) | 28.6 ± 4.8 | 29.8 ± 4.6 | 1.2 ± 5.8 | 29.4 ± 4.0 | 29.5 ± 3.7 | 0.1 ± 3.0 | 0.40 |
RER | 0.85 ± 0.04 | 0.85 ± 0.05 | 0.0 ± 0.07 | 0.86 ± 0.07 | 0.82 ± 0.05 | −0.03 ± 0.08 | 0.19 |
Normal Diet (12/12) | Time-Restricted Eating (16/8) | ||||||
---|---|---|---|---|---|---|---|
Pre- | Post- | Change | Pre- | Post- | Change | p Value | |
Body mass (kg) | 73.0 ± 8.6 | 73.3 ± 8.7 | 0.4 ± 1.1 | 73.8 ± 8.6 | 73.0 ± 9.0 | −0.8 ± 1.9 | 0.09 |
Whole body FM | 11.7 ± 4.8 | 11. 8 ± 4.3 | 0.1 ± 4.3 | 12.3 ± 4.3 | 11.5 ± 4.4 | −0.8 ± 1.3 | * 0.05 |
Whole body FFM | 57.6 ± 7.2 | 58.3 ± 7.8 | 0.8 ± 2.4 | 57.7 ± 7.3 | 57.8 ± 7.2 | 0.2 ± 1.7 | 0.47 |
Total leg FM (kg) | 4.0 ± 1.6 | 4.1 ± 1.5 | 0.1 ± 0.4 | 4.2 ± 1.4 | 3.9 ± 1.4 | −0.3 ± 0.5 | * 0.03 |
Total leg FFM (kg) | 9.4 ± 1.2 | 9.5 ± 1.3 | 0.1 ± 0.4 | 9.3 ± 1.3 | 9.4 ± 1.3 | −0.1 ± 0.4 | 0.24 |
Trunk FM (kg) | 5.7 ± 2.7 | 5.7 ± 2.6 | −0.4 ± 1.5 | 6.0 ± 2.6 | 5.1 ± 3.0 | −0.8 ± 1.8 | 0.18 |
Trunk FFM (kg) | 28.3 ± 3.9 | 28.6 ± 3.9 | 0.1 ± 0.7 | 28.5 ± 4 | 28.6 ± 4.2 | −0.2 ± 1.0 | 0.25 |
Total arm FM (kg) | 1.1 ± 0.5 | 1.1 ± 0.5 | 0.0 ± 0.1 | 1.2 ± 0.5 | 1.1 ± 0.5 | −0.1 ± 0.1 | 0.08 |
Total arm FFM (kg) | 6.4 ± 0.9 | 6.3 ± 0.9 | 0.1 ± 0.2 | 6.4 ± 0.9 | 6.5 ± 0.9 | −0.0 ± 0.5 | 0.67 |
Body Fat % | 16.1 ± 5.7 | 16.2 ± 5.3 | 0.1 ± 1.3 | 16.8 ± 5.5 | 15.8 ± 5.2 | −1.0 ± 1.5 | * 0.04 |
Android/gynoid ratio | 0.9 ± 0.2 | 0.8 ± 0.2 | −0.0 ± 0.1 | 0.9 ± 0.2 | 0.8 ± 0.2 | −0.0 ± 0.1 | 0.65 |
Normal Diet (12/12) | Time-Restricted Eating (16/8) | ||||||
---|---|---|---|---|---|---|---|
Pre- | Post- | Change | Pre- | Post- | Change | p Value | |
BMD | 1.2 ± 0.1 | 1.2 ± 0.1 | -0.0 ± 0.0 | 1.2 ± 0.1 | 1.2 ± 0.1 | 0.0 ± 0.0 | 0.32 |
BMD z-score | 0.4 ± 1.0 | 0.5 ± 0.9 | 0.1 ± 0.7 | 0.5 ± 0.8 | 0.6 ± 0.8 | 0.1 ± 0.2 | 0.65 |
Normal Diet (12/12) | Time-Restricted Eating (16/8) | ||||||
---|---|---|---|---|---|---|---|
Pre- | Post- | Change | Pre- | Post- | Change | p Value | |
Glucose (mg/dL) | 98.5 ± 6.3 | 95.8 ± 6.8 | −2.7 ± 6.9 | 95.5 ± 6 | 94.6 ± 7.6 | −0.9 ± 7.6 | 0.78 |
Insulin (μIU/mL) | 6.7 ± 2.8 | 5.9 ± 2.9 | −0.7 ± 3.1 | 6.6 ± 2.6 | 7.3 ± 3.5 | 0.7 ± 2.6 | 0.21 |
HOMA-IR | 1.6 ± 0.7 | 1.4 ± 0.7 | −0.2 ± 0.8 | 1.6 ± 0.6 | 1.7 ± 0.9 | 0.2 ± 0.6 | 0.16 |
QUICKI | 0.36 ± 0.03 | 0.37 ± 0.03 | 0.01 ± 0.03 | 0.36 ± 0.02 | 0.36 ± 0.02 | 0.00 ± 0.03 | 0.27 |
Normal Diet (12/12) | Time-Restricted Eating (16/8) | ||||||
---|---|---|---|---|---|---|---|
Pre- | Post- | Change | Pre- | Post- | Change | p Value | |
Supine | |||||||
Systolic | 113.9 ± 5.9 | 116.9 ± 7.5 | 3.0 ± 6.7 | 115.0 ± 8.5 | 116.1 ± 5.9 | 1.1 ± 6.4 | 0.58 |
Diastolic | 74.6 ± 3.7 | 77.0 ± 5.6 | 2.4 ± 7 | 77.4 ± 4.9 | 76.6 ± 5.7 | −0.9 ± 5.5 | 0.40 |
Standing | |||||||
Systolic | 117.6 ± 5.2 | 118.2 ± 6.3 | 0.6 ± 5 | 119.7 ± 7.6 | 120.6 ± 5.5 | 0.9 ± 6.5 | 0.93 |
Diastolic | 78.4 ± 3 | 78.2 ± 5.6 | −0.2 ± 5.4 | 80.4 ± 4.7 | 79.7 ± 2.9 | −0.7 ± 4.1 | 0.52 |
Normal Diet (12/12) | Time-Restricted Eating (16/8) | ||||||
---|---|---|---|---|---|---|---|
Pre- | Post- | Change | Pre- | Post- | Change | p Value | |
Total cholesterol | 170.5 ± 27.4 | 172.1 ± 27.9 | 1.6 ± 15.9 | 177.0 ± 25.4 | 167.1 ± 32.9 | −2.9 ± 17.8 | 0.55 |
Total triglycerides | 74.1 ± 21.0 | 82.6 ± 51.7 | 8.5 ± 40.4 | 72.9 ± 23.7 | 70.5 ± 24.7 | −3.0 ± 16.2 | 0.71 |
VLDLc | 14.9 ± 4.2 | 17.0 ± 10.1 | 2.1 ± 8.1 | 15.0 ± 4.9 | 14.5 ± 5.0 | −0.6 ± 3.3 | 0.46 |
LDLc | 92.5 ± 19.9 | 93.8 ± 19.9 | 1.3 ± 10.3 | 99.2 ± 18.9 | 91.3 ± 23.6 | −2.6 ± 12.1 | 0.31 |
HDLc | 63.0 ± 10.4 | 62.2 ± 12.0 | −0.8 ± 6.6 | 62.9 ± 10.8 | 61.3 ± 10.0 | −0.4 ± 8.0 | 0.60 |
nHDLc | 107.5 ± 20.6 | 109.9 ± 23.5 | 2.4 ± 13.0 | 114.2 ± 19.9 | 105.9 ± 26.1 | −3.1 ± 13.3 | 0.30 |
TC/HDL | 2.7 ± 0.3 | 2.8 ± 0.5 | 0.1 ± 0.3 | 2.9 ± 0.4 | 2.8 ± 0.4 | −0.1 ± 0.3 | 0.06 |
LDL/HDL | 1.5 ± 0.3 | 1.5 ± 0.4 | −0.1 ± 0.5 | 1.6 ± 0.3 | 1.5 ± 2.9 | −0.5 ± 1.6 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richardson, C.E.; Tovar, A.P.; Davis, B.A.; Van Loan, M.D.; Keim, N.L.; Casazza, G.A. An Intervention of Four Weeks of Time-Restricted Eating (16/8) in Male Long-Distance Runners Does Not Affect Cardiometabolic Risk Factors. Nutrients 2023, 15, 985. https://doi.org/10.3390/nu15040985
Richardson CE, Tovar AP, Davis BA, Van Loan MD, Keim NL, Casazza GA. An Intervention of Four Weeks of Time-Restricted Eating (16/8) in Male Long-Distance Runners Does Not Affect Cardiometabolic Risk Factors. Nutrients. 2023; 15(4):985. https://doi.org/10.3390/nu15040985
Chicago/Turabian StyleRichardson, Christine E., Ashley P. Tovar, Brian A. Davis, Marta D. Van Loan, Nancy L. Keim, and Gretchen A. Casazza. 2023. "An Intervention of Four Weeks of Time-Restricted Eating (16/8) in Male Long-Distance Runners Does Not Affect Cardiometabolic Risk Factors" Nutrients 15, no. 4: 985. https://doi.org/10.3390/nu15040985
APA StyleRichardson, C. E., Tovar, A. P., Davis, B. A., Van Loan, M. D., Keim, N. L., & Casazza, G. A. (2023). An Intervention of Four Weeks of Time-Restricted Eating (16/8) in Male Long-Distance Runners Does Not Affect Cardiometabolic Risk Factors. Nutrients, 15(4), 985. https://doi.org/10.3390/nu15040985