Impact of Vitamin B12 Insufficiency on the Incidence of Sarcopenia in Korean Community-Dwelling Older Adults: A Two-Year Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Population
2.2. Vitamin B12
2.3. Sarcopenia
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stabler, S.P. Vitamin B12 deficiency. N. Engl. J. Med. 2013, 368, 149–160. [Google Scholar] [CrossRef]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 2006, 5, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.; Mander, A.; Ames, D.; Carne, R.; Sanders, K.; Watters, D. Cognitive impairment and vitamin B12: A review. Int. Psychogeriatr. 2012, 24, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.; Geisel, J.; Obeid, R. Association between neuropathy and B-vitamins: A systematic review and meta-analysis. Eur. J. Neurol. 2021, 28, 2054–2064. [Google Scholar] [CrossRef]
- Heidelbaugh, J.J. Proton pump inhibitors and risk of vitamin and mineral deficiency: Evidence and clinical implications. Ther. Adv. Drug Saf. 2013, 4, 125–133. [Google Scholar] [CrossRef]
- Wolters, M.; Ströhle, A.; Hahn, A. Cobalamin: A critical vitamin in the elderly. Prev. Med. 2004, 39, 1256–1266. [Google Scholar] [CrossRef]
- Bulut, E.A.; Soysal, P.; Aydin, A.E.; Dokuzlar, O.; Kocyigit, S.E.; Isik, A.T. Vitamin B12 deficiency might be related to sarcopenia in older adults. Exp. Gerontol. 2017, 95, 136–140. [Google Scholar] [CrossRef]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Won, C.W. Sarcopenia in Korean community-dwelling adults aged 70 years and older: Application of screening and diagnostic tools from the Asian working group for sarcopenia 2019 update. J. Am. Med Dir. Assoc. 2020, 21, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.J.; Song, Y.; Moon, J.H.; Choi, S.H.; Jang, H.C. Diabetic peripheral neuropathy as a risk factor for sarcopenia. Ann. Geriatr. Med. Res. 2019, 23, 170. [Google Scholar] [CrossRef]
- Peng, T.-C.; Chen, W.-L.; Wu, L.-W.; Chang, Y.-W.; Kao, T.-W. Sarcopenia and cognitive impairment: A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.A.; Kim, H.-S.; Lee, J.H.; Yun, D.H.; Chon, J.; Yoo, M.C.; Yun, Y.; Yoo, S.D.; Kim, D.H.; Lee, S.A. Impact of Vitamin B12 Insufficiency on Sarcopenia in Community-Dwelling Older Korean Adults. Int. J. Environ. Res. Public Health 2021, 18, 12433. [Google Scholar] [CrossRef] [PubMed]
- Won, C.W.; Lee, S.; Kim, J.; Chon, D.; Kim, S.; Kim, C.-O.; Kim, M.K.; Cho, B.; Choi, K.M.; Roh, E. Korean frailty and aging cohort study (KFACS): Cohort profile. BMJ Open 2020, 10, e035573. [Google Scholar] [CrossRef] [PubMed]
- Perneczky, R.; Wagenpfeil, S.; Komossa, K.; Grimmer, T.; Diehl, J.; Kurz, A. Mapping scores onto stages: Mini-mental state examination and clinical dementia rating. Am. J. Geriatr. Psychiatry 2006, 14, 139–144. [Google Scholar] [CrossRef]
- Won, C.W.; Rho, Y.G.; Sun Woo, D.; Lee, Y.S. The validity and reliability of Korean Instrumental Activities of Daily Living (K-IADL) scale. J. Korean Geriatr. Soc. 2002, 6, 273–280. [Google Scholar]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.J. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Werder, S.F. Cobalamin deficiency, hyperhomocysteinemia, and dementia. Neuropsychiatr. Dis. Treat. 2010, 6, 159. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, W.; Li, D.; Yin, X.; Zhang, X.; Olsen, N.; Zheng, S.G. Vitamin D and chronic diseases. Aging Dis. 2017, 8, 346. [Google Scholar] [CrossRef]
- Hilal, S.; Perna, S.; Gasparri, C.; Alalwan, T.A.; Vecchio, V.; Fossari, F.; Peroni, G.; Riva, A.; Petrangolini, G.; Rondanelli, M. Comparison between Appendicular Skeletal Muscle Index DXA Defined by EWGSOP1 and 2 versus BIA Tengvall Criteria among Older People Admitted to the Post-Acute Geriatric Care Unit in Italy. Nutrients 2020, 12, 1818. [Google Scholar] [CrossRef]
- Park, Y.; Peterson, L.L.; Colditz, G.A. The plausibility of obesity paradox in cancer—Point. Cancer Res. 2018, 78, 1898–1903. [Google Scholar] [CrossRef]
- Ng, T.-P.; Aung, K.C.Y.; Feng, L.; Scherer, S.C.; Yap, K.B. Homocysteine, folate, vitamin B-12, and physical function in older adults: Cross-sectional findings from the Singapore Longitudinal Ageing Study. Am. J. Clin. Nutr. 2012, 96, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Vidoni, M.; Pettee Gabriel, K.; Luo, S.; Simonsick, E.; Day, R.S. Vitamin B12 and homocysteine associations with gait speed in older adults: The Baltimore Longitudinal Study of Aging. J. Nutr. Health Aging 2017, 21, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Matteini, A.M.; Walston, J.D.; Fallin, M.; Bandeen-Roche, K.; Kao, W.; Semba, R.; Allen, R.; Guralnik, J.; Fried, L.; Stabler, S. Markers of B-vitamin deficiency and frailty in older women. J. Nutr. Health Aging 2008, 12, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Oberlin, B.S.; Tangney, C.C.; Gustashaw, K.A.; Rasmussen, H.E.J.N. Vitamin B12 deficiency in relation to functional disabilities. Nutrients 2013, 5, 4462–4475. [Google Scholar] [CrossRef] [PubMed]
- Klee, G.G. Cobalamin and folate evaluation: Measurement of methylmalonic acid and homocysteine vs vitamin B12 and folate. Clin. Chem. 2000, 46, 1277–1283. [Google Scholar] [CrossRef]
- Saperstein, D.S.; Barohn, R.J. Peripheral neuropathy due to cobalamin deficiency. Curr. Treat. Options Neurol. 2002, 4, 197–201. [Google Scholar] [CrossRef]
- Miscusi, M.; Testaverde, L.; Rago, A.; Raco, A.; Colonnese, C. Subacute combined degeneration without nutritional anemia. J. Clin. Neurosci. 2012, 19, 1744–1745. [Google Scholar] [CrossRef]
- Gürsoy, A.E.; Kolukısa, M.; Babacan-Yıldız, G.; Çelebi, A. Subacute combined degeneration of the spinal cord due to different etiologies and improvement of MRI findings. Case Rep. Neurol. Med. 2013, 2013, 159649. [Google Scholar] [CrossRef]
- Gwathmey, K.G.; Grogan, J. Nutritional neuropathies. Muscle Nerve 2020, 62, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Franques, J.; Chiche, L.; De Paula, A.M.; Grapperon, A.M.; Attarian, S.; Pouget, J.; Mathis, S. Characteristics of patients with vitamin B12-responsive neuropathy: A case series with systematic repeated electrophysiological assessment. Neurol. Res. 2019, 41, 569–576. [Google Scholar] [CrossRef]
- Strotmeyer, E.S.; De Rekeneire, N.; Schwartz, A.V.; Faulkner, K.A.; Resnick, H.E.; Goodpaster, B.H.; Shorr, R.I.; Vinik, A.I.; Harris, T.B.; Newman, A.B. The relationship of reduced peripheral nerve function and diabetes with physical performance in older white and black adults: The Health, Aging, and Body Composition (Health ABC) study. Diabetes Care 2008, 31, 1767–1772. [Google Scholar] [CrossRef]
- Gedmantaite, A.; Celis-Morales, C.A.; Ho, F.; Pell, J.P.; Ratkevicius, A.; Gray, S.R. Development, Associations between diet and handgrip strength: A cross-sectional study from UK Biobank. Mech. Ageing Dev. 2020, 189, 111269. [Google Scholar] [CrossRef]
- Białek, M.; Zaremba, P.; Borowicz, K.K.; Czuczwar, S.J. Neuroprotective role of testosterone in the nervous system. Pol. J. Pharmacol. 2004, 56, 509–518. [Google Scholar] [PubMed]
- Davison, S.L.; Bell, R.; Donath, S.; Montalto, J.; Davis, S.R. Metabolism, Androgen levels in adult females: Changes with age, menopause, and oophorectomy. J. Clin. Endocrinol. Metab. 2005, 90, 3847–3853. [Google Scholar] [CrossRef] [PubMed]
- Feldman, H.A.; Longcope, C.; Derby, C.A.; Johannes, C.B.; Araujo, A.B.; Coviello, A.D.; Bremner, W.J.; McKinlay, J.B. Metabolism, Age trends in the level of serum testosterone and other hormones in middle-aged men: Longitudinal results from the Massachusetts male aging study. J. Clin. Endocrinol. Metab. 2002, 87, 589–598. [Google Scholar] [CrossRef]
- Beyer, C.; Hutchison, J.B. Androgens stimulate the morphological maturation of embryonic hypothalamic aromatase-immunoreactive neurons in the mouse. Dev. Brain Res. 1997, 98, 74–81. [Google Scholar] [CrossRef]
- Gürer, B.; Kertmen, H.; Kasim, E.; Yilmaz, E.R.; Kanat, B.H.; Sargon, M.F.; Arikok, A.T.; Ergüder, B.I.; Sekerci, Z. Neuroprotective effects of testosterone on ischemia/reperfusion injury of the rabbit spinal cord. Injury 2015, 46, 240–248. [Google Scholar] [CrossRef]
Characteristics | Men | Women | ||||
---|---|---|---|---|---|---|
B12 Sufficiency † (n = 366) | B12 Insufficiency † (n = 40) | p | B12 Sufficiency † (n = 478) | B12 Insufficiency † (n = 41) | p | |
Age (years) | 75.28 ± 3.56 | 75.49 ± 3.73 | 0.72 | 74.69 ± 3.53 | 76.46 ± 3.60 | <0.01 * |
BMI (kg/m2) | 25.15 ± 2.40 | 25.90 ± 2.62 | 0.06 | 25.26 ± 2.70 | 26.22 ± 3.34 | <0.05 * |
Education years (n, %) | ||||||
≤6 | 91 (26.7) | 11 (26.8) | 0.82 | 240 (56.7) | 16 (41.0) | 0.15 |
7–12 | 152 (44.6) | 20 (48.8) | 150 (35.5) | 18 (46.2) | ||
>13 | 98 (28.7) | 10 (24.4) | 33 (7.8) | 5 (12.8) | ||
Marriage (n, %) | ||||||
Married | 314 (92.1) | 38 (92.7) | 0.89 | 213 (50.4) | 20 (51.3) | 0.91 |
Not married | 27 (7.9) | 3 (7.3) | 210 (49.6) | 19 (48.7) | ||
Income per month (Korean million won) (n, %) | ||||||
>3 | 93 (27.3) | 12 (29.3) | 0.23 | 54 (12.8) | 4 (10.3) | 0.90 |
1–3 | 144 (42.2) | 12 (29.3) | 126 (36.9) | 15 (38.5) | ||
<1 | 104 (30.5) | 17 (41.5) | 213 (50.4) | 20 (51.3) | ||
Current smoker (n, %) | 31 (9.1) | 5 (12.2) | 0.52 | 1 (0.2) | 0 (0.0) | 0.76 |
Alcohol use (n, %) | 241 (70.7) | 28 (68.3) | 0.75 | 268 (63.4) | 32 (82.1) | <0.05 * |
Hypertension (n, %) | 172 (50.4) | 25 (61.0) | 0.20 | 256 (60.5) | 27 (69.2) | 0.29 |
Dyslipidemia (n, %) | 93 (27.3) | 13 (31.7) | 0.55 | 168 (39.7) | 18 (46.2) | 0.43 |
Diabetes mellitus (n, %) | 70 (20.5) | 13 (31.7) | 0.10 | 69 (16.2) | 12 (30.8) | <0.05 * |
Depression (n, %) | 4 (1.2) | 1 (2.4) | 0.50 | 3 (0.7) | 0 (0.0) | 0.60 |
OA (n, %) | 36 (10.6) | 8 (19.5) | 0.09 | 136 (32.2) | 10 (25.6) | 0.40 |
Osteoporosis (n, %) | 5 (1.5) | 4 (9.8) | <0.01 * | 89 (21.0) | 10 (25.6) | 0.50 |
Hb (g/dL) | 14.33 ± 1.33 | 14.15 ± 1.09 | 0.41 | 12.93 ± 1.02 | 12.68 ± 1.37 | 0.27 |
MMSE-KC | 26.86 ± 2.18 | 26.71 ± 2.41 | 0.68 | 26.10 ± 2.53 | 26.54 ± 2.29 | 0.30 |
HGS (kg) | 35.58 ± 4.63 | 35.03 ± 5.71 | 0.48 | 22.96 ± 2.95 | 22.42 ± 3.11 | 0.28 |
ASMI (kg/m2) | 7.71 ± 0.55 | 7.69 ± 0.69 | 0.84 | 6.16 ± 0.59 | 6.25 ± 0.63 | 0.35 |
SPPB | 11.56 ± 0.69 | 11.61 ± 0.70 | 0.66 | 11.37 ± 0.77 | 11.10 ± 0.85 | <0.05 * |
Variables | B12 Sufficiency (≥350 pg/mL) | B12 Insufficiency (<350 pg/mL) | |||
---|---|---|---|---|---|
Men | Women | ||||
Unadjusted | Fully Adjusted | Unadjusted | Fully Adjusted | ||
B Estimate (CI) | B Estimate (CI) | B Estimate (CI) | B Estimate (CI) | ||
Change of HGS (%) | Reference | −2.92 (−6.1 to 0.26) | −2.61 (−5.82 to 0.61) | −3.35 (−7.33 to 0.64) | −3.12 (−7.22 to 0.98) |
Change of ASMI (%) | Reference | 0.97 (−1.51 to 3.45) | 1.03 (−1.42 to 3.48) | −2.09 (−4.95 to 0.77) | −1.89 (−4.81 to 1.03) |
Change of SPPB (%) | Reference | 0.86 (−2.53 to 4.25) | 1.47 (−1.93 to 4.86) | −5.27 (−9.48 to −1.63) * | −4.85 (−9.11 to −0.59) * |
Variables | Unadjusted Model | Fully Adjusted Model | ||
---|---|---|---|---|
Men | Women | Men | Women | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Muscle strength | ||||
Low HGS † | 2.26 (0.87–5.92) | 1.84 (0.73–4.68) | 1.87 (0.64–5.43) | 1.72 (0.63–4.70) |
Muscle mass | ||||
Low ASMI † | 0.58 (0.27–1.26) | 1.23 (0.56–2.69) | 0.51 (0.22–1.22) | 1.67 (0.56–3.34) |
Physical performance | ||||
Low SPPB † | 0.50 (0.11–2.15) | 4.36 (2.15–8.84) ** | 0.38 (0.07–1.94) | 4.38 (2.01–9.55) ** |
Sarcopenia †† | 1.27 (0.36–4.46) | 2.96 (1.05–8.39) * | 0.81 (0.18–3.73) | 5.90 (1.55–22.43) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Chon, J.; Lee, S.A.; Yoo, M.C.; Chung, S.J.; Shim, G.Y.; Soh, Y.; Won, C.W. Impact of Vitamin B12 Insufficiency on the Incidence of Sarcopenia in Korean Community-Dwelling Older Adults: A Two-Year Longitudinal Study. Nutrients 2023, 15, 936. https://doi.org/10.3390/nu15040936
Choi S, Chon J, Lee SA, Yoo MC, Chung SJ, Shim GY, Soh Y, Won CW. Impact of Vitamin B12 Insufficiency on the Incidence of Sarcopenia in Korean Community-Dwelling Older Adults: A Two-Year Longitudinal Study. Nutrients. 2023; 15(4):936. https://doi.org/10.3390/nu15040936
Chicago/Turabian StyleChoi, Seongmin, Jinmann Chon, Seung Ah Lee, Myung Chul Yoo, Sung Joon Chung, Ga Yang Shim, Yunsoo Soh, and Chang Won Won. 2023. "Impact of Vitamin B12 Insufficiency on the Incidence of Sarcopenia in Korean Community-Dwelling Older Adults: A Two-Year Longitudinal Study" Nutrients 15, no. 4: 936. https://doi.org/10.3390/nu15040936
APA StyleChoi, S., Chon, J., Lee, S. A., Yoo, M. C., Chung, S. J., Shim, G. Y., Soh, Y., & Won, C. W. (2023). Impact of Vitamin B12 Insufficiency on the Incidence of Sarcopenia in Korean Community-Dwelling Older Adults: A Two-Year Longitudinal Study. Nutrients, 15(4), 936. https://doi.org/10.3390/nu15040936