Two Faces of Catechol-O-Methyltransferase Inhibitor on One-Carbon Metabolism in Parkinson’s Disease: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Statistical Analyses
3. Results
3.1. Search Results
3.2. Study Characteristics in the Meta-Analysis
3.3. Comparison of Hcy Levels in Blood
3.4. Comparison of Vitamin B12 Levels in Blood
3.5. Comparison of Folate Levels in Blood
3.6. Publication Bias
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charvin, D.; Medori, R.; Hauser, R.A.; Rascol, O. Therapeutic strategies for Parkinson disease: Beyond dopaminergic drugs. Nat. Rev. Drug Discov. 2018, 17, 804–822. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Haddad, F.; Sawalha, M.; Khawaja, Y.; Najjar, A.; Karaman, R. Dopamine and Levodopa Prodrugs for the Treatment of Parkinson’s Disease. Molecules 2017, 23, 40. [Google Scholar] [CrossRef] [PubMed]
- Oechsner, M.; Buhmann, C.; Strauss, J.; Stuerenburg, H.J. COMT-inhibition increases serum levels of dihydroxyphenylacetic acid (DOPAC) in patients with advanced Parkinson’s disease. J. Neural Transm. 2002, 109, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zhang, J.; Xue, T.; Yang, Y.; Wu, D.; Chen, Z.; You, W.; Wang, Z. Different Catechol-O-Methyl Transferase Inhibitors in Parkinson’s Disease: A Bayesian Network Meta-Analysis. Front. Neurol. 2021, 12, 707723. [Google Scholar] [CrossRef]
- Bandopadhyay, R.; Mishra, N.; Rana, R.; Kaur, G.; Ghoneim, M.M.; Alshehri, S.; Mustafa, G.; Ahmad, J.; Alhakamy, N.A.; Mishra, A. Molecular Mechanisms and Therapeutic Strategies for Levodopa-Induced Dyskinesia in Parkinson’s Disease: A Perspective Through Preclinical and Clinical Evidence. Front. Pharmacol. 2022, 13, 805388. [Google Scholar] [CrossRef]
- Hormann, P.; Delcambre, S.; Hanke, J.; Geffers, R.; Leist, M.; Hiller, K. Impairment of neuronal mitochondrial function by L-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage. Cell Death Discov. 2021, 7, 151. [Google Scholar] [CrossRef]
- Bostantjopoulou, S.; Katsarou, Z.; Frangia, T.; Hatzizisi, O.; Papazisis, K.; Kyriazis, G.; Kiosseoglou, G.; Kazis, A. Endothelial function markers in parkinsonian patients with hyperhomocysteinemia. J. Clin. Neurosci. 2005, 12, 669–672. [Google Scholar] [CrossRef]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef]
- Kumar, A.; Palfrey, H.A.; Pathak, R.; Kadowitz, P.J.; Gettys, T.W.; Murthy, S.N. The metabolism and significance of homocysteine in nutrition and health. Nutr. Metab. 2017, 14, 78. [Google Scholar] [CrossRef]
- Bhatia, P.; Singh, N. Homocysteine excess: Delineating the possible mechanism of neurotoxicity and depression. Fundam. Clin. Pharmacol. 2015, 29, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.K.; Jadavji, N.M. The role of one-carbon metabolism and homocysteine in Parkinson’s disease onset, pathology and mechanisms. Nutr. Res. Rev. 2019, 32, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Valkovic, P.; Benetin, J.; Blazicek, P.; Valkovicova, L.; Gmitterova, K.; Kukumberg, P. Reduced plasma homocysteine levels in levodopa/entacapone treated Parkinson patients. Parkinsonism. Relat. Disord. 2005, 11, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Anamnart, C.; Kitjarak, R. Effects of vitamin B12, folate, and entacapone on homocysteine levels in levodopa-treated Parkinson’s disease patients: A randomized controlled study. J. Clin. Neurosci. 2021, 88, 226–231. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Blandini, F.; Fancellu, R.; Martignoni, E.; Mangiagalli, A.; Pacchetti, C.; Samuele, A.; Nappi, G. Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. Clin. Chem. 2001, 47, 1102–1104. [Google Scholar] [CrossRef]
- Caccamo, D.; Gorgone, G.; Curro, M.; Parisi, G.; Di Iorio, W.; Menichetti, C.; Belcastro, V.; Parnetti, L.; Rossi, A.; Pisani, F.; et al. Effect of MTHFR polymorphisms on hyperhomocysteinemia in levodopa-treated Parkinsonian patients. Neuromol. Med. 2007, 9, 249–254. [Google Scholar] [CrossRef]
- Yi, F.; Sheng-di, C.; Jian-rong, L.; Pei-hua, N.; Un, Y.Y. Correlation analysis between plasma homocysteine level and polymorphism of homocysteine metabolism related enzymes in Parkinson disease. Chin. J. Neurol. 2004, 20, 450–455. [Google Scholar]
- Gorgone, G.; Curro, M.; Ferlazzo, N.; Parisi, G.; Parnetti, L.; Belcastro, V.; Tambasco, N.; Rossi, A.; Pisani, F.; Calabresi, P.; et al. Coenzyme Q10, hyperhomocysteinemia and MTHFR C677T polymorphism in levodopa-treated Parkinson’s disease patients. Neuromol. Med. 2012, 14, 84–90. [Google Scholar] [CrossRef]
- Ha, S.-W.; Kim, J.-M.; Cho, J.-S.; Cho, E.-K. 2.269 Plasma homocysteine levels in idiopathic Parkinson’s disease: Role of idiopathic Parkinson’s disease and levodopa treatment. Parkinsonism. Relat. Disord. 2007, 13, S116. [Google Scholar] [CrossRef]
- Lamberti, P.; Zoccolella, S.; Iliceto, G.; Armenise, E.; Fraddosio, A.; de Mari, M.; Livrea, P. Effects of levodopa and COMT inhibitors on plasma homocysteine in Parkinson’s disease patients. Mov. Disord. 2005, 20, 69–72. [Google Scholar] [CrossRef]
- Lamberti, P.; Zoccolella, S.; Armenise, E.; Lamberti, S.V.; Fraddosio, A.; de Mari, M.; Iliceto, G.; Livrea, P. Hyperhomocysteinemia in L-dopa treated Parkinson’s disease patients: Effect of cobalamin and folate administration. Eur. J. Neurol. 2005, 12, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, K.; Gao, Y.; Shi, F. Effect of levodopa on plasma homocysteine level in patients with parkinsons disease. J. Clin. Neurol. 2014, 24, 399–400. [Google Scholar]
- Li, S.C. Effect of levodopa on plasma homocysteine level in elderly patients with Parkinson’s disease. Chin. J. Pract. Nerv. Dis. 2016, 19, 109–110. [Google Scholar]
- Bakeberg, M.C.; Jefferson, A.; Riley, M.; Byrnes, M.; Ghosh, S.; Mastaglia, F.L.; Horne, M.K.; McGregor, S.; Stell, R.; Kenna, J.; et al. Elevated Serum Homocysteine Levels Have Differential Gender-Specific Associations with Motor and Cognitive States in Parkinson’s Disease. Park. Dis. 2019, 2019, 3124295. [Google Scholar] [CrossRef] [PubMed]
- Muller, T.; Werne, B.; Fowler, B.; Kuhn, W. Nigral endothelial dysfunction, homocysteine, and Parkinson’s disease. Lancet 1999, 354, 126–127. [Google Scholar] [CrossRef]
- Muller, T.; Woitalla, D.; Kuhn, W. Benefit of folic acid supplementation in parkinsonian patients treated with levodopa. J. Neurol. Neurosurg. Psychiatry 2003, 74, 549. [Google Scholar] [CrossRef]
- Muller, T.; Renger, K.; Kuhn, W. Levodopa-associated increase of homocysteine levels and sural axonal neurodegeneration. Arch. Neurol. 2004, 61, 657–660. [Google Scholar] [CrossRef]
- Muller, T.; Kuhn, W. Tolcapone decreases plasma levels of S-adenosyl-L-homocysteine and homocysteine in treated Parkinson’s disease patients. Eur. J. Clin. Pharmacol. 2006, 62, 447–450. [Google Scholar] [CrossRef]
- Nevrly, M.; Kanovsky, P.; Vranova, H.; Langova, K.; Hlustik, P. Effect of levodopa and entacapone treatment on plasma homocysteine levels in Parkinson’s disease patients. Parkinsonism. Relat. Disord. 2009, 15, 477–478. [Google Scholar] [CrossRef]
- Ozer, F.; Meral, H.; Hanoglu, L.; Aydemir, T.; Yilsen, M.; Cetin, S.; Ozturk, O.; Seval, H.; Koldas, M. Plasma homocysteine levels in patients treated with levodopa: Motor and cognitive associations. Neurol. Res. 2006, 28, 853–858. [Google Scholar] [CrossRef] [PubMed]
- O’Suilleabhain, P.E.; Bottiglieri, T.; Dewey, R.B., Jr.; Sharma, S.; Diaz-Arrastia, R. Modest increase in plasma homocysteine follows levodopa initiation in Parkinson’s disease. Mov. Disord. 2004, 19, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.H.; Wang, H.B.; Ouyang, J.; Gao, X.X. Correlational studies of serum homocysteine level and Parkinson’s disease. Intern. Med. China 2011, 6, 545–548. [Google Scholar] [CrossRef]
- Religa, D.; Czyzewski, K.; Styczynska, M.; Peplonska, B.; Lokk, J.; Chodakowska-Zebrowska, M.; Stepien, K.; Winblad, B.; Barcikowska, M. Hyperhomocysteinemia and methylenetetrahydrofolate reductase polymorphism in patients with Parkinson’s disease. Neurosci. Lett. 2006, 404, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.L.; Zhang, Z.S.; Zhao, X.Y.; Chen, D.Z.; Zhou, X.; Yang, X.P.; Mai, X.Q.; Wang, J.F. Discussion on the side-effect of levodopa on Parkinson’s disease. Health Vocat. Educ. 2015, 153–154. [Google Scholar]
- Guo, G.; Xu, S.; Cao, L.D.; Wu, Q.Y. Effect of Madopar on homocysteine in patients with Parkinson’s disease. Chin. J. Integr. Med. Cardio/Cerebrovasc. Dis. 2010, 8, 1188–1189. [Google Scholar]
- Todorovic, Z.; Dzoljic, E.; Novakovic, I.; Mirkovic, D.; Stojanovic, R.; Nesic, Z.; Krajinovic, M.; Prostran, M.; Kostic, V. Homocysteine serum levels and MTHFR C677T genotype in patients with Parkinson’s disease, with and without levodopa therapy. J Neurol. Sci. 2006, 248, 56–61. [Google Scholar] [CrossRef]
- Triantafyllou, N.I.; Kararizou, E.; Angelopoulos, E.; Tsounis, S.; Boufidou, F.; Evangelopoulos, M.E.; Nikolaou, C.; Vassilopoulos, D. The influence of levodopa and the COMT inhibitor on serum vitamin B12 and folate levels in Parkinson’s disease patients. Eur. Neurol. 2007, 58, 96–99. [Google Scholar] [CrossRef]
- Wang, H.; Ge, X.; Zhou, L.; Geng, D. Effect of L-dopa on plasma homocysteine in elderly patients with Parkinson’s disease. Chin. J. Neurol. 2006, 39, 609–611. [Google Scholar]
- Fen, Y.Z.; Hua, G.J.; Zhuo, L. A study of plasma homocysteine in patients with Parkinson’s disease and its clinical significance. Chin. J. Stroke 2010, 5, 735–740. [Google Scholar]
- Yasui, K.; Kowa, H.; Nakaso, K.; Takeshima, T.; Nakashima, K. Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology 2000, 55, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Huiyan, Y.; Bin, Q.; Xiangyu, Z. Analysis on influence factors of hyperhomocysteinemia in patients with Parkinson’s disease. Stroke Nerv. Dis. 2010, 17, 83–85. [Google Scholar]
- Yuan, R.Y.; Sheu, J.J.; Yu, J.M.; Hu, C.J.; Tseng, I.J.; Ho, C.S.; Yeh, C.Y.; Hung, Y.L.; Chiang, T.R. Methylenetetrahydrofolate reductase polymorphisms and plasma homocysteine in levodopa-treated and non-treated Parkinson’s disease patients. J. Neurol. Sci. 2009, 287, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ping, S.; Li, G.Y.; Lina, L.; Tuan, C.T. Study of serum homocysteine level and Parkinson’s disease. Prog. Mod. Biomed. 2015, 15, 3660–3663. [Google Scholar]
- Zhang, S.A. Clinical significance of determination of plasma homocysteine in the treatment of Parkinson’s disease with levodopa. J. Bethune Med. Sci. 2015, 13, 622–623. [Google Scholar]
- Zoccolella, S.; Lamberti, P.; Armenise, E.; de Mari, M.; Lamberti, S.V.; Mastronardi, R.; Fraddosio, A.; Iliceto, G.; Livrea, P. Plasma homocysteine levels in Parkinson’s disease: Role of antiparkinsonian medications. Park. Relat. Disord. 2005, 11, 131–133. [Google Scholar] [CrossRef]
- Zoccolella, S.; dell’Aquila, C.; Abruzzese, G.; Antonini, A.; Bonuccelli, U.; Canesi, M.; Cristina, S.; Marchese, R.; Pacchetti, C.; Zagaglia, R.; et al. Hyperhomocysteinemia in levodopa-treated patients with Parkinson’s disease dementia. Mov. Disord. 2009, 24, 1028–1033. [Google Scholar] [CrossRef]
- Dong, B.; Wu, R. Plasma homocysteine, folate and vitamin B12 levels in Parkinson’s disease in China: A meta-analysis. Clin. Neurol. Neurosurg. 2020, 188, 105587. [Google Scholar] [CrossRef]
- Hu, X.W.; Qin, S.M.; Li, D.; Hu, L.F.; Liu, C.F. Elevated homocysteine levels in levodopa-treated idiopathic Parkinson’s disease: A meta-analysis. Acta Neurol. Scand. 2013, 128, 73–82. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, L.; Li, H.; Chen, G.; Qi, G.; Ma, X.; Jin, Y. Role of homocysteine in the development and progression of Parkinson’s disease. Ann. Clin. Transl. Neurol. 2020, 7, 2332–2338. [Google Scholar] [CrossRef]
- Wald, D.S.; Law, M.; Morris, J.K. Homocysteine and cardiovascular disease: Evidence on causality from a meta-analysis. BMJ 2002, 325, 1202. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; Huang, L.; Hong, J.; Zhao, X.; Chen, Y.; Hu, J.; Cong, X.; Xie, Y.; Pu, J. Elevated homocysteine levels in patients with heart failure: A systematic review and meta-analysis. Medicine 2021, 100, e26875. [Google Scholar] [CrossRef]
- Pieroth, R.; Paver, S.; Day, S.; Lammersfeld, C. Folate and Its Impact on Cancer Risk. Curr. Nutr. Rep. 2018, 7, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.H.; Mao, Q.Q. Vitamin B6, vitamin B12 and methionine and risk of pancreatic cancer: A meta-analysis. Nutr. J. 2020, 19, 111. [Google Scholar] [CrossRef] [PubMed]
- Pak, K.J.; Chan, S.L.; Mattson, M.P. Homocysteine and folate deficiency sensitize oligodendrocytes to the cell death-promoting effects of a presenilin-1 mutation and amyloid beta-peptide. Neuromol. Med. 2003, 3, 119–128. [Google Scholar] [CrossRef]
- Kruman, I.I.; Kumaravel, T.S.; Lohani, A.; Pedersen, W.A.; Cutler, R.G.; Kruman, Y.; Haughey, N.; Lee, J.; Evans, M.; Mattson, M.P. Folic Acid Deficiency and Homocysteine Impair DNA Repair in Hippocampal Neurons and Sensitize Them to Amyloid Toxicity in Experimental Models of Alzheimer’s Disease. J. Neurosci. 2002, 22, 1752–1762. [Google Scholar] [CrossRef]
- Lee, C.C.; Hsu, S.W.; Huang, C.W.; Chang, W.N.; Chen, S.F.; Wu, M.K.; Chang, C.C.; Hwang, L.C.; Chen, P.C. Effects of Homocysteine on white matter diffusion parameters in Alzheimer’s disease. BMC Neurol. 2017, 17, 192. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, G.T.; Yoon, S.; Lee, H.I.; Ko, K.R.; Lee, S.C.; Kim, D.K.; Shin, J.; Lee, S.Y.; Lee, S. Low serum vitamin B12 levels are associated with degenerative rotator cuff tear. BMC Musculoskelet. Disord. 2021, 22, 364. [Google Scholar] [CrossRef]
- Singh, G.; Hamdan, H.; Singh, V. Clinical utility of serum folate measurement in tertiary care patients: Argument for revising reference range for serum folate from 3.0 ng/mL to 13.0 ng/mL. Pract. Lab. Med. 2015, 1, 35–41. [Google Scholar] [CrossRef]
- Moll, R.; Davis, B. Iron, vitamin B12 and folate. Medicine 2017, 45, 198–203. [Google Scholar] [CrossRef]
- Allouche, O.; Kalyuzhny, M.; Moreno-Rueda, G.; Pizarro, M.; Kadmon, R. Area-heterogeneity tradeoff and the diversity of ecological communities. Proc. Natl. Acad. Sci. USA 2012, 109, 17495–17500. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.; Pan, J.; Tang, S.; Duan, D.; Yu, D.; Nong, H.; Wang, Z. Global Trends in the Incidence, Prevalence, and Years Lived with Disability of Parkinson’s Disease in 204 Countries/Territories From 1990 to 2019. Front. Public Health 2021, 9, 776847. [Google Scholar] [CrossRef] [PubMed]
Author Year ref | Country | L-Dopa | Without L-Dopa | COMT Inhibitor | Healthy Control | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L-Dopa Dose (mg/day) | Duration (year) | Age | Case | Duration (yr) | Age | Case | L-Dopa Dose (mg/day) | Duration (year) | Age | Case | Age | Case | ||
Blandini F., 2001 [16] | Italy | 768 ± 216 | 12.4 ± 5.4 | 62.7 ± 13.8 | 36 | NA | NA | NA | NA | NA | NA | NA | 58.9 ± 7.2 | 31 |
Bostantjopoulou S., 2005 [8] | Greece | 563.9 ± 232.2 | 8.1 ± 5.1 | 58.0 ± 10.3 | 43 | - | - | 14 | NA | NA | NA | NA | - | 40 |
Caccamo D., 2007 [17] | Italy | 509.4 ± 312.1 | 5.8 ± 4.1 | 64.2 ± 7.5 | 49 | NA | NA | NA | NA | NA | NA | NA | 64.1 ± 7.1 | 86 |
Chumpol A., 2021 [14] | Thailand | 300 | 4.5 | 68.67 ± 6.04 | 12 | 1 | 75.40 ± 8.65 | 20 | 375 | 5.29 | 69.17 ± 10.88 | 12 | n.a. | n.a |
Fu Y., 2004 [18] | China | - | - | 62.4 ± 8.8 | 30 | NA | NA | NA | NA | NA | NA | NA | 62.7 ± 9.8 | 60 |
Gorgone G., 2012 [19] | Italy | 452.0 ± 170.0 | 5.0 ± 3.0 | 64.4 ± 7.7 | 60 | NA | NA | NA | NA | NA | NA | NA | 64.7 ± 7.2 | 82 |
Ha S., 2007 [20] | Republic of Korea | 628 | 3.3 | 67 | 60 | NA | NA | NA | NA | NA | NA | NA | 68 | 27 |
Lamberti P., 2004 [21] | Italy | 570 ± 250 | 9.3 ± 4.2 | 64 ± 8.5 | 26 | NA | NA | NA | 780 ± 250 | 12.8 ± 5.4 | 63.3 ± 9.6 | 20 | 64.5 ± 11.5 | 32 |
Lamberti P., 2005 [22] | Italy | 640 ± 240 | 9.4 ± 4.2 | 65.1 ± 8.5 | 20 | NA | NA | NA | NA | NA | NA | NA | 64.1 ± 11 | 35 |
Li J., 2014 [23] | China | - | - | - | 104 | - | - | 56 | NA | NA | NA | NA | 63.8 ± 9.8 | 60 |
Li S., 2016 [24] | China | - | 6.4 ± 1.3 | 66.7 ± 4.2 | 55 | 6.4 ± 1.3 | 66.7 ± 4.2 | 55 | NA | NA | NA | NA | 65.8 ± 5.1 | 50 |
Megan C., 2019 [25] | Australia | 888.6 ± 587.9 | 8.9 ± 5.80 | 64.0 ± 9.38 | 205 | NA | NA | NA | NA | NA | NA | NA | - | 78 |
Müller T., 1999 [26] | Germany | - | - | - | 15 | - | - | 15 | NA | NA | NA | NA | - | 15 |
Müller T., 2003 [27] | Germany | - | - | - | 212 | - | - | 29 | NA | NA | NA | NA | - | 110 |
Müller T., 2004 [28] | Germany | 473.21 ± 228.11 | 8.03 ± 6.10 | 62.65 ± 7.3 | 31 | NA | NA | NA | NA | NA | NA | NA | 59.56 ± 10.86 | 27 |
Müller T., 2006 [29] | Germany | 457.69 ± 272.22 | - | 65.23 ± 10.26 | 13 | NA | NA | NA | - | - | - | 13 | - | 13 |
Nevrly M., 2009 [30] | Czechia | 560.8 ± 208.6 | 7.5 | 4.2 | 30 | NA | NA | NA | NA | NA | NA | NA | 51.7 ± 11.1 | 21 |
Ozer F., 2006 [31] | Turkey | 338.5 ± 222.3 | 6.4 ± 3.9 | 67.0 ± 9.3 | 39 | NA | NA | NA | NA | NA | NA | NA | 61.9 ± 8.3 | 28 |
Padraig E., 2004 [32] | USA | 604 ± 204 | 3.3 ± 1.6 | 64 ± 12 | 30 | NA | NA | NA | - | 4.3 | 67 | 15 | 64 ± 12 | 30 |
Peng J., 2011 [33] | China | 438 ± 265 | - | 69.8 ± 7.83 | 54 | NA | NA | NA | NA | NA | NA | NA | 64.8 ± 7.58 | 18 |
Peter V., 2005 [13] | Slovakia | 439.5 ± 203.8 | 3.62 ± 3.54 | 71.7 ± 9.2 | 19 | 2.18 ± 1.66 | 62.4 ± 7.1 | 17 | 567.9 ± 332.5 | 7.76 ± 4.91 | 68.7 ± 9.6 | 21 | NA | NA |
Religa D., 2006 [34] | Poland | 681.2 ± 328.7 | 6.06 ± 4.05 | 70.5 ± 7.57 | 99 | 1.97 ± 1.02 | 66.0 ± 7.11 | 15 | NA | NA | NA | NA | 71.2 ± 6.0 | 100 |
Ren B., 2015 [35] | China | - | 6.0 ± 4.5 | 63.1 ± 10.2 | 40 | 6.0 ± 4.5 | 63.1 ± 10.2 | 20 | NA | NA | NA | NA | - | 20 |
Sun M., 2010 [36] | China | - | 3.0 ± 1.25 | 62.9 ± 6.1 | 15 | 3 ± 1.25 | 62.9 ± 6.1 | 15 | NA | NA | NA | NA | NA | NA |
Todorović Z., 2006 [37] | Canada | 531.95 ± 183 | 3.7 ± 2.7 | 61.86 ± 9.14 | 83 | 1.69 ± 0.59 | 59.13 ± 8.65 | 30 | NA | NA | NA | NA | 60.83 ± 13.13 | 53 |
Triantafyllou N., 2007 [38] | Greece | 659.6 ± 172.6 | 7.3 ± 3.4 | 69.9 ± 5.3 | 67 | NA | NA | NA | - | - | 631.9 ± 170.2 | 34 | - | 67 |
Wang H., 2006 [39] | China | - | - | 62.4 ± 8.8 | 28 | - | 62.4 ± 8.8 | 28 | NA | NA | NA | NA | 63.5 ± 8.3 | 30 |
Yan Z., 2010 [40] | China | - | - | 60.0 ± 11.0 | 24 | - | 60.0 ± 11.0 | 16 | NA | NA | NA | NA | 58 ± 11 | 35 |
Yasui K., 2000 [41] | Japan | 412.6 ± 253.6 | 6.3 ± 5.7 | 68 ± 9.1 | 54 | NA | NA | NA | NA | NA | NA | NA | 71.8 ± 4.9 | 132 |
Yu H., 2010 [42] | China | - | 6.2 ± 5.1 | 66.9 ± 10.2 | 106 | 6.2 ± 5.1 | 66.9 ± 10.2 | 48 | NA | NA | NA | NA | NA | NA |
Yuan R., 2009 [43] | Taiwan, China | 360.21 ± 137.62 | 6.56 ± 4.3 | 71.83 ± 10.34 | 48 | 2.45 ± 1.37 | 70.59 | 28 | NA | NA | NA | NA | 69.95 ± 8.46 | 110 |
Zhang L., 2015 [44] | China | 383.4 ± 225.3 | 4.6 ± 3.4 | 65 ± 9 | 53 | NA | NA | NA | NA | NA | NA | NA | 64 ± 8 | 53 |
Zhang S., 2015 [45] | China | - | 5.79 ± 2.53 | 62.97 ± 3.98 | 60 | NA | NA | NA | NA | NA | NA | NA | 62.46 ± 4.21 | 60 |
Zoccolella S., 2005 [46] | Italy | 790 ± 290 | 9.8 ± 4.8 | 61.6 ± 8.1 | 15 | 4.7 ± 3.6 | 60.7 ± 8.4 | 15 | - | 13.5 ± 5.8 | 61.3 ± 10.2 | 15 | 61 ± 10.4 | 15 |
Zoccolella S., 2009 [47] | Italy | - | - | 68.7 ± 8.8 | 121 | NA | NA | NA | NA | NA | NA | NA | 67.4 ± 8 | 154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Jin, S.; Eo, H.; Oh, M.S.; Lim, Y. Two Faces of Catechol-O-Methyltransferase Inhibitor on One-Carbon Metabolism in Parkinson’s Disease: A Meta-Analysis. Nutrients 2023, 15, 901. https://doi.org/10.3390/nu15040901
Kim JH, Jin S, Eo H, Oh MS, Lim Y. Two Faces of Catechol-O-Methyltransferase Inhibitor on One-Carbon Metabolism in Parkinson’s Disease: A Meta-Analysis. Nutrients. 2023; 15(4):901. https://doi.org/10.3390/nu15040901
Chicago/Turabian StyleKim, Jin Hee, Shaoyue Jin, Hyeyoon Eo, Myung Sook Oh, and Yunsook Lim. 2023. "Two Faces of Catechol-O-Methyltransferase Inhibitor on One-Carbon Metabolism in Parkinson’s Disease: A Meta-Analysis" Nutrients 15, no. 4: 901. https://doi.org/10.3390/nu15040901
APA StyleKim, J. H., Jin, S., Eo, H., Oh, M. S., & Lim, Y. (2023). Two Faces of Catechol-O-Methyltransferase Inhibitor on One-Carbon Metabolism in Parkinson’s Disease: A Meta-Analysis. Nutrients, 15(4), 901. https://doi.org/10.3390/nu15040901