Socioeconomic and Demographic Factors Associated with the Influence of the Food Traffic Light Labeling on the Decision of the Adult Population of Ecuador to Purchase Processed Foods, 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Source
2.2. Population and Sample
2.3. Variables and Measurements
2.3.1. Outcome Variable
2.3.2. Independent Variables
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Obesity and Overweight. Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 13 December 2022).
- FAO; FIDA; OPS; WFP; UNICEF. Panorama de la Seguridad Alimentaria y Nutricional en América Latina y el Caribe 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- World Obesity Federation Ecuador. Obesity Prevalence. Available online: https://data.worldobesity.org/country/ecuador-59/#data_prevalence (accessed on 13 December 2022).
- Hajri, T.; Angamarca-Armijos, V.; Caceres, L. Prevalence of Stunting and Obesity in Ecuador: A Systematic Review. Public Health Nutr. 2021, 24, 2259–2272. [Google Scholar] [CrossRef]
- Kivimäki, M.; Kuosma, E.; Ferrie, J.E.; Luukkonen, R.; Nyberg, S.T.; Alfredsson, L.; Batty, G.D.; Brunner, E.J.; Fransson, E.; Goldberg, M.; et al. Overweight, Obesity, and Risk of Cardiometabolic Multimorbidity: Pooled Analysis of Individual-Level Data for 120 813 Adults from 16 Cohort Studies from the USA and Europe. Lancet Public Health 2017, 2, e277–e285. [Google Scholar] [CrossRef]
- Larsson, S.C.; Burgess, S. Causal Role of High Body Mass Index in Multiple Chronic Diseases: A Systematic Review and Meta-Analysis of Mendelian Randomization Studies. BMC Med. 2021, 19, 320. [Google Scholar] [CrossRef]
- Censin, J.C.; Peters, S.A.E.; Bovijn, J.; Ferreira, T.; Pulit, S.L.; Mägi, R.; Mahajan, A.; Holmes, M.V.; Lindgren, C.M. Causal Relationships between Obesity and the Leading Causes of Death in Women and Men. PLoS Genet. 2019, 15, e1008405. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Censos Estadísticas Vitales: Registro Estadistico de Defunciones Generales de 2021. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Poblacion_y_Demografia/Defunciones_Generales_2021/Principales_resultados_EDG_2021_v2.pdf (accessed on 13 December 2022).
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The Obesity Transition: Stages of the Global Epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef]
- Endalifer, M.L.; Diress, G. Epidemiology, Predisposing Factors, Biomarkers, and Prevention Mechanism of Obesity: A Systematic Review. J. Obes. 2020, 2020, 6134362. [Google Scholar] [CrossRef]
- Sandoval, L.A.; Carpio, C.E.; Sanchez-Plata, M. The Effect of ‘Traffic-Light’ Nutritional Labelling in Carbonated Soft Drink Purchases in Ecuador. PLoS ONE 2019, 14, e0222866. [Google Scholar] [CrossRef]
- Sisa, I.; Herrera-Fontana, M.; Bovera, M.; Palomeque, M.; Teran, E. Urinary Sodium Excretion in a Young to Middle-Aged Adult Urban Population: A Pilot Study in Ecuador. Rev. Salud Publica Bogota Colomb. 2018, 20, 568–573. [Google Scholar] [CrossRef]
- Organización Panamericana de la Salud; Organización Mundial de la Salud Alimentos y Bebidas Ultraprocesados En América Latina: Tendencias, Efecto Sobre La Obesidad e Implicaciones Para Las Políticas Públicas. Available online: https://iris.paho.org/bitstream/handle/10665.2/7698/9789275318645_esp.pdf (accessed on 14 December 2022).
- Crosbie, E.; Gomes, F.S.; Olvera, J.; Patiño, S.R.-G.; Hoeper, S.; Carriedo, A. A Policy Study on Front–of–Pack Nutrition Labeling in the Americas: Emerging Developments and Outcomes. Lancet Reg. Health—Am. 2022. [Google Scholar] [CrossRef]
- Mejean, C.; Macouillard, P.; Péneau, S.; Hercberg, S.; Castetbon, K. Consumer Acceptability and Understanding of Front-of-Pack Nutrition Labels. J. Hum. Nutr. Diet. 2013, 26, 494–503. [Google Scholar] [CrossRef]
- Vargas-Meza, J.; Jáuregui, A.; Contreras-Manzano, A.; Nieto, C.; Barquera, S. Acceptability and Understanding of Front-of-Pack Nutritional Labels: An Experimental Study in Mexican Consumers. BMC Public Health 2019, 19, 1751. [Google Scholar] [CrossRef]
- Ramos Padilla, P.D.; Carpio Arias, T.V.; Delgado López, V.C.; Villavicencio Barriga, V.D.; Andrade, C.E.; Fernández-Sáez, J. Actitudes y Prácticas de La Población En Relación al Etiquetado de Tipo “Semáforo Nutricional” En Ecuador. Rev. Esp. Nutr. Hum. Dietética 2017, 21, 121–129. [Google Scholar] [CrossRef]
- Ministerio de Salud Pública, Reglamento Sanitario de Etiquetado de Alimentos Procesados para el Consumo Humano; Ministerio de Salud Pública: Quito, Ecuador, 2013.
- Díaz, A.A.; Veliz, P.M.; Rivas-Mariño, G.; Vance Mafla, C.; Martínez Altamirano, L.M.; Vaca Jones, C. Etiquetado de alimentos en Ecuador: Implementación, resultados y acciones pendientes. Rev. Panam. Salud Pública 2017, 41, e54. [Google Scholar] [CrossRef]
- Teran, S.; Hernandez, I.; Freire, W.; Leon, B.; Teran, E. Use, Knowledge, and Effectiveness of Nutritional Traffic Light Label in an Urban Population from Ecuador: A Pilot Study. Glob. Health 2019, 15, 26. [Google Scholar] [CrossRef]
- Freire, W.B.; Waters, W.F.; Rivas-Mariño, G.; Nguyen, T.; Rivas, P. A Qualitative Study of Consumer Perceptions and Use of Traffic Light Food Labelling in Ecuador. Public Health Nutr. 2017, 20, 805–813. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Censos Encuesta Nacional de Salud y Nutrición. Available online: https://www.ecuadorencifras.gob.ec/salud-salud-reproductiva-y-nutricion/ (accessed on 14 December 2022).
- Instituto Nacional de Estadística y Censos. Documento Metodológico de La Encuesta Nacional de Salud y Nutrición (ENSANUT); Instituto Nacional de Estadística y Censos: Quito, Ecuador, 2018. [Google Scholar]
- Cantuña Tello, M.G.; Ordoñez Torres, C.J.; Ayala, J.L.; Ortiz, P. Etiquetado nutricional de alimentos procesados (semáforo nutri-cional) y su relación con factores socioeconómicos, culturales, demográficos y publicitarios, según padres de niños entre 5-11 años de dos colegios de Quito. Rev. Ecuat. Pediatr. 2021, 22, 1–14. [Google Scholar]
- Pillalaza Quilachamín, A.G. Frecuencia de Uso y Percepción de los Consumidores del Distrito Siete de Quito, Sobre la Etiqueta de Semáforo Nutricional. Bachelor’s Thesis, Universidad de las Américas, Quito, Ecuador, 2017. [Google Scholar]
- Mouttapa, M.; Wallace, S. Comparisons between Married and Never Married Women Employed in Two Southern California Universities on Frequencies of Food and Beverage Consumption: Implications for Health. J. Food Nutr. Res. 2017, 5, 80–85. [Google Scholar] [CrossRef]
- Payette, H.; Shatenstein, B. Determinants of Healthy Eating in Community-Dwelling Elderly People. Can. J. Public Health Rev. Can. Sante Publique 2005, 96 (Suppl. 3), S27–S31. [Google Scholar]
- Kamphuis, C.B.M.; de Bekker-Grob, E.W.; van Lenthe, F.J. Factors Affecting Food Choices of Older Adults from High and Low Socioeconomic Groups: A Discrete Choice Experiment. Am. J. Clin. Nutr. 2015, 101, 768–774. [Google Scholar] [CrossRef]
- Alkerwi, A.; Vernier, C.; Sauvageot, N.; Crichton, G.E.; Elias, M.F. Demographic and Socioeconomic Disparity in Nutrition: Application of a Novel Correlated Component Regression Approach. BMJ Open 2015, 5, e006814. [Google Scholar] [CrossRef]
- Orozco, F.; Ochoa, D.; Muquinche, M.; Padro, M.; Melby, C.L. Awareness, Comprehension, and Use of Newly-Mandated Nutrition Labels Among Mestiza and Indigenous Ecuadorian Women in the Central Andes Region of Ecuador. Food Nutr. Bull. 2017, 38, 37–48. [Google Scholar] [CrossRef]
- Feres, J.C.; Mancero, X. El Método de las Necesidades Básicas Insatisfechas (NBI) y Sus Aplicaciones en América Latina; Serie estudios estadísticos y prospectivos; Naciones Unidas, CEPAL, Div. de Estadística y Proyecciones Económicas: Santiago, Chile, 2001; ISBN 978-92-1-321791-7. [Google Scholar]
- Instituto Nacional de Estadística y Censos. Pobreza por Necesidades Básicas Insatisfechas. Available online: https://www.ecuadorencifras.gob.ec/pobreza-por-necesidades-basicas-insatisfechas/ (accessed on 2 February 2023).
- Rippin, H.L.; Hutchinson, J.; Greenwood, D.C.; Jewell, J.; Breda, J.J.; Martin, A.; Rippin, D.M.; Schindler, K.; Rust, P.; Fagt, S.; et al. Inequalities in Education and National Income Are Associated with Poorer Diet: Pooled Analysis of Individual Participant Data across 12 European Countries. PloS ONE 2020, 15, e0232447. [Google Scholar] [CrossRef]
- Rao, M.; Afshin, A.; Singh, G.; Mozaffarian, D. Do Healthier Foods and Diet Patterns Cost More than Less Healthy Options? A Systematic Review and Meta-Analysis. BMJ Open 2013, 3, e004277. [Google Scholar] [CrossRef]
- Clark, P.; Mendoza-Gutiérrez, C.F.; Montiel-Ojeda, D.; Denova-Gutiérrez, E.; López-González, D.; Moreno-Altamirano, L.; Reyes, A. A Healthy Diet Is Not More Expensive than Less Healthy Options: Cost-Analysis of Different Dietary Patterns in Mexican Children and Adolescents. Nutrients 2021, 13, 3871. [Google Scholar] [CrossRef]
- Hilmers, A.; Hilmers, D.C.; Dave, J. Neighborhood Disparities in Access to Healthy Foods and Their Effects on Environmental Justice. Am. J. Public Health 2012, 102, 1644–1654. [Google Scholar] [CrossRef]
- Sánchez-Carreño, V.N.; Franco-Cantos, J.H.; Vélez-Cedeño, M.J.; Cruz-Felipe, M. del R. Análisis de La Alimentación En Regiones Del Ecuador Mediante Big Data. Rev. Tecnol. Inf. Las Telecomun. 2021, 5, 44–58. [Google Scholar] [CrossRef]
- Nicklett, E.J.; Kadell, A.R. Fruit and Vegetable Intake among Older Adults: A Scoping Review. Maturitas 2013, 75, 305–312. [Google Scholar] [CrossRef]
- Devine, C.M.; Connors, M.M.; Sobal, J.; Bisogni, C.A. Sandwiching It in: Spillover of Work onto Food Choices and Family Roles in Low- and Moderate-Income Urban Households. Soc. Sci. Med. 2003, 56, 617–630. [Google Scholar] [CrossRef]
Characteristic | Absolute Frequency (n = 25,932) | Weighted Proportion * |
---|---|---|
Understanding of the NTL | ||
No | 2899 | 10.9 |
Yes | 23,033 | 89.1 |
Place of residence | ||
Urban | 17,956 | 76.8 |
Rural | 7976 | 23.2 |
Age group | ||
18–49 | 20,077 | 73.9 |
50–64 | 4045 | 18.2 |
64 or more | 1810 | 7.9 |
Education level | ||
None or Literacy Center | 431 | 1.5 |
Basic education | 8903 | 34.5 |
Middle school/high school | 10,032 | 37.2 |
Superior | 6566 | 26.7 |
Ethnicity | ||
Non-indigenous | 23,713 | 94.9 |
Indigenous | 2219 | 5.1 |
Natural region | ||
Highlands | 10,037 | 45.0 |
Coast | 9435 | 50.8 |
Amazon | 5136 | 4.1 |
Insular | 1324 | 0.1 |
Sex | ||
Men | 12,087 | 48.4 |
Women | 13,845 | 51.6 |
Poverty by UBN | ||
Not poor | 23,141 | 91.3 |
Poor | 2791 | 8.7 |
Marital status | ||
With a partner | 9164 | 37.9 |
Without a partner | 16,768 | 62.1 |
Characteristics | Does Not Influence % (95% CI) | Influences % (95% CI) | p-Value * |
---|---|---|---|
Overall | 47.6 (46.3–48.9) | 52.4 (51.1–53.7) | |
Understanding of the NTL | |||
No | 78.7 (75.8–81.3) | 21.3 (18.7–24.2) | <0.001 |
Yes | 43.8 (42.5–45.2) | 56.2 (54.8–57.5) | |
Place of residence | |||
Urban | 46.1 (44.6–47.7) | 53.9 (52.3–55.4) | <0.001 |
Rural | 52.6 (50.3–54.9) | 47.4 (45.1–49.7) | |
Age group | |||
18–49 | 48.0 (46.6–49.5) | 52.0 (50.5–53.4) | 0.484 |
50–64 | 46.4 (43.6–49.2) | 53.6 (50.8–56.4) | |
64 or more | 46.8 (43.1–50.5) | 53.2 (49.5–56.9) | |
Education level | |||
None or Literacy Center | 64.2 (57.1–70.8) | 35.8 (29.2–42.9) | <0.001 |
Basic education | 53.0 (51.0–54.9) | 47.0 (45.1–49.0) | |
Middle school/high school | 48.5 (46.4–50.7) | 51.5 (49.3–53.6) | |
Superior | 38.6 (36.2–41.0) | 61.4 (59.0–63.8) | |
Ethnicity | |||
Non-indigenous | 47.4 (46.0–48.7) | 52.6 (51.3–54.0) | 0.017 |
Indigenous | 52.9 (48.4–57.3) | 47.1 (42.7–51.6) | |
Natural region | |||
Highlands | 44.5 (42.6–46.3) | 55.5 (53.7–57.4) | <0.001 |
Coast | 50.1 (48.2–52.1) | 49.9 (47.9–51.8) | |
Amazon | 51.4 (49.3–53.5) | 48.6 (46.5–50.7) | |
Insular | 56.2 (51.5–60.7) | 43.8 (39.3–48.5) | |
Sex | |||
Men | 49.1 (47.2–50.9) | 50.9 (49.1–52.8) | 0.017 |
Women | 46.3 (44.7–47.9) | 53.7 (52.1–55.3) | |
Poverty by UBN | |||
Not poor | 46.6 (45.2–47.9) | 53.4 (52.1–54.8) | <0.001 |
Poor | 58.9 (55.5–62.3) | 41.1 (37.7–44.5) | |
Marital status | |||
With a partner | 49.3 (47.3–51.4) | 50.7 (48.6–52.7) | 0.022 |
Without a partner | 46.6 (45.1–48.1) | 53.4 (51.9–54.9) |
Characteristics | Crude Model | Adjusted Model * | ||
---|---|---|---|---|
PR (95% CI) | p-Value | aPR (95% CI) | p-Value | |
Understanding of the NTL | ||||
No | Reference | Reference | ||
Yes | 2.63 (2.32–2.99) | <0.001 | 2.49 (2.19–2.83) | <0.001 |
Place of residence | ||||
Urban | Reference | Reference | ||
Rural | 0.88 (0.83–0.93) | <0.001 | 0.99 (0.93–1.05) | 0.688 |
Age group | ||||
18–49 | Reference | Not included | ||
50–64 | 1.03 (0.97–1.09) | 0.287 | ||
64 or more | 1.02 (0.95–1.10) | 0.530 | ||
Education level | ||||
None or Literacy Center | Reference | Reference | ||
Basic education | 1.32 (1.08–1.60) | 0.006 | 1.12 (0.93–1.35) | 0.222 |
Middle school/high school | 1.44 (1.18–1.75) | <0.001 | 1.16 (0.96–1.40) | 0.125 |
Superior | 1.72 (1.41–2.09) | <0.001 | 1.33 (1.09–1.61) | 0.004 |
Ethnicity | ||||
Non-indigenous | Reference | Reference | ||
Indigenous | 0.90 (0.81–0.98) | 0.023 | 0.95 (0.87–1.05) | 0.313 |
Natural region | ||||
Highlands | Reference | Reference | ||
Coast | 0.90 (0.85–0.95) | <0.001 | 0.92 (0.88–0.97) | 0.002 |
Amazon | 0.87 (0.83–0.92) | <0.001 | 0.93 (0.88–0.98) | 0.009 |
Insular | 0.79 (0.71–0.88) | <0.001 | 0.76 (0.68–0.84) | <0.001 |
Sex | ||||
Men | Reference | Reference | ||
Women | 1.06 (1.01–1.10) | 0.017 | 1.06 (1.01–1.10) | 0.011 |
Poverty by UBN | ||||
Not poor | Reference | Reference | ||
Poor | 0.77 (0.71–0.84) | <0.001 | 0.89 (0.82–0.97) | 0.007 |
Marital status | ||||
With a partner | Reference | Reference | ||
Without a partner | 1.05 (1.01–1.10) | 0.023 | 1.09 (1.04–1.14) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobbio Gonzáles, P.A.; Azañedo, D.; Hernández-Vásquez, A. Socioeconomic and Demographic Factors Associated with the Influence of the Food Traffic Light Labeling on the Decision of the Adult Population of Ecuador to Purchase Processed Foods, 2018. Nutrients 2023, 15, 885. https://doi.org/10.3390/nu15040885
Bobbio Gonzáles PA, Azañedo D, Hernández-Vásquez A. Socioeconomic and Demographic Factors Associated with the Influence of the Food Traffic Light Labeling on the Decision of the Adult Population of Ecuador to Purchase Processed Foods, 2018. Nutrients. 2023; 15(4):885. https://doi.org/10.3390/nu15040885
Chicago/Turabian StyleBobbio Gonzáles, Paolo Alfredo, Diego Azañedo, and Akram Hernández-Vásquez. 2023. "Socioeconomic and Demographic Factors Associated with the Influence of the Food Traffic Light Labeling on the Decision of the Adult Population of Ecuador to Purchase Processed Foods, 2018" Nutrients 15, no. 4: 885. https://doi.org/10.3390/nu15040885
APA StyleBobbio Gonzáles, P. A., Azañedo, D., & Hernández-Vásquez, A. (2023). Socioeconomic and Demographic Factors Associated with the Influence of the Food Traffic Light Labeling on the Decision of the Adult Population of Ecuador to Purchase Processed Foods, 2018. Nutrients, 15(4), 885. https://doi.org/10.3390/nu15040885