Congruence between Physical Activity Patterns and Dietary Patterns Inferred from Analysis of Sex Differences in Lifestyle Behaviors of Late Adolescents from Poland: Cophylogenetic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size and Power Calculation
2.2. Ethics
2.3. Study Design
2.4. Participants
2.5. Data Collection
2.6. Questionnaires Measurements
2.6.1. Physical Activity
2.6.2. Dietary Characteristics
2.7. Anthropometric and Body Composition Measurements
2.8. Handling and Imputation of Missing Data
2.9. Validation and assessment of the Consistency between Self-Reported and Empirically Measured Body Weight and Percentage of Body Fat
2.10. Statistics
3. Results
3.1. Sample Characteristics
3.2. Congruence in Patterns of Behavior between Males and Females Analysis
3.2.1. Physical Activity Patterns
3.2.2. Dietary Behaviors Patterns
3.3. Congruence between PAPs and DPs in Males and Females Analysis
3.4. Structure of the Individuals in Relation to Behaviors Patterns
3.4.1. Physical Activity
3.4.2. Dietary Behaviors
3.5. Associations between Physical Activity, Dietary Behaviors, and Body Composition Analysis
Validation of the Self-Reported Percentage of Body Fat Data
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cecchini, M.; Sassi, F.; Lauer, J.A.; Lee, Y.Y.; Guajardo-Barron, V.; Chisholm, D. Tackling of unhealthy diets, physical inactivity, and obesity: Health effects and cost-effectiveness. Lancet 2010, 376, 1775–1784. [Google Scholar] [CrossRef]
- Wadolowska, L.; Kowalkowska, J.; Lonnie, M.; Czarnocinska, J.; Jezewska-Zychowicz, M.; Babicz-Zielinska, E. Associations between physical activity patterns and dietary patterns in a representative sample of Polish girls aged 13–21 years: A cross-sectional study (GEBaHealth Project). BMC Public Health 2016, 16, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Bleyer, A. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Youth and Health Risks. 2011. Available online: http://apps.who.int/gb/ebwha/pdf_files/WHA64/A64_R28-en.pdf. (accessed on 18 November 2022).
- Youngblade, L.; Theokas, C.; Schulenberg, J.; Curry, L.; Huang, I.C.; Novak, M. Risk and promotive factors in families, schools, and communities: A contextual model of positive youth development in adolescence. Pediatrics 2007, 119, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Kiviruusu, O.; Konttinen, H.; Huurre, T.; Aro, H.; Marttunen, M.; Haukkala, A. Selfesteem and body mass index from adolescence to mid-adulthood. A 26-year follow-up. Int. J. Behav. Med. 2015, 23, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Csikszentmihalyi, M.; Larson, R.; Prescott, S. The ecology of adolescent activity and experience. In Applications of Flow in Human Development and Education; Csikszentmihalyi, M., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 241–254. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Costigan, S.A.; Ridgers, N.D.; Eather, N.; Plotnikoff, R.C.; Harris, N.; Lubans, D.R. Exploring the impact of high intensity interval training on adolescents’ objectively measured physical activity: Findings from a randomized controlled trial. J. Sports Sci. 2018, 36, 1087–1094. [Google Scholar] [CrossRef]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Bohn, L.; Castro, A.R.; Oliveira, J. Prevalence of cardiovascular risk factors in adults registered in a primary health unit of Porto. Hum. Mov. 2022, 23, 12–20. [Google Scholar] [CrossRef]
- Santos, A. Quality of life in professional, semiprofessional, and amateur athletes: An exploratory analysis in Brazil. SAGE Open 2013, 3, 1–8. [Google Scholar] [CrossRef]
- Vuillemin, A.; Boini, S.; Bertrais, S.; Tessier, S.; Oppert, J.M.; Hercberg, S.; Guillemin, F.; Briançon, S. Leisure time physical activity and health-related quality of life. Prev. Med. 2005, 41, 562–569. [Google Scholar] [CrossRef]
- Mendenhall, E.; Singer, M. The global syndemic of obesity, undernutrition, and climate change. Lancet 2019, 393, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Liu, S.; Li, Y.; Li, X.; Ren, P.; Luo, F. The relationships between weight status and physical fitness among Chinese children and youth. Res. Q. Exercis. Sport 2019, 90, 113–122. [Google Scholar] [CrossRef]
- Troesch, B.; Biesalski, H.K.; Bos, R.; Buskens, E.; Calder, P.C.; Saris, W.H.M.; Spieldenner, J.; Verkade, H.J.; Weber, P.; Eggersdorfer, M. Increased Intake of Foods with High Nutrient Density Can Help to Break the Intergenerational Cycle of Malnutrition and Obesity. Nutrients 2015, 7, 6016–6037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krusinska, B.; Hawrysz, I.; Słowinska, M.A.; Wadolowska, L.; Biernacki, M.; Czerwińska, A.; Golota, J.J. Dietary patterns and breast or lung cancer risk: A pooled analysis of 2 case-control studies in north-eastern Poland. Adv. Clin. Exp. Med. 2017, 26, 1367–1375. [Google Scholar] [CrossRef] [Green Version]
- Wadolowska, L. Zasady obliczania i interpretacji wyników. In Przewodnik Metodyczny Badań Sposobu Żywienia; Gronowska-Senger, A., Ed.; PAN Warszawa: Warsaw, Poland, 2013; pp. 38–65. [Google Scholar]
- Naughton, P.; McCarthy, S.N.; McCarthy, M.B. The creation of a healthy eating motivation score and its association with food choice and physical activity in a cross sectional sample of Irish adults. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Loprinzi, P.D.; Smit, E.; Mahoney, S. Physical activity and dietary behavior in US adults and their combined influence on health. Mayo Clin. Proc. 2014, 89, 190–198. [Google Scholar] [CrossRef]
- Spencer, R.A.; Rehman, L.; Kirk, S.F. Understanding gender norms, nutrition, and physical activity in adolescent girls: A scoping review. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Leis, R.; Jurado-Castro, J.M.; Llorente-Cantarero, F.J.; Anguita-Ruiz, A.; Iris-Rupérez, A.; Bedoya-Carpente, J.J.; Vázquez-Cobela, R.; Aguilera, C.M.; Bueno, G.; Gil-Campos, M. Cluster Analysis of Physical Activity Patterns, and Relationship with Sedentary Behavior and Healthy Lifestyles in Prepubertal Children: Genobox Cohort. Nutrients 2020, 12, 1288. [Google Scholar] [CrossRef]
- Denney-Wilson, E.; Crawford, D.; Dobbins, T.; Hardy, L.; Okely, A.D. Influences on consumption of soft drinks and fast foods in adolescents. Asia Pac. J. Clin. Nutr. 2009, 18, 447–452. [Google Scholar] [PubMed]
- Michels, K.B.; Schulze, M.B. Can dietary patterns help us detect diet–disease associations? Nutr. Res. Rev. 2005, 18, 241–248. [Google Scholar] [CrossRef]
- Kant, A.K. Dietary patterns and health outcomes. J. Am. Diet. Assoc. 2004, 104, 615–635. [Google Scholar] [CrossRef]
- Dalmaijer, E.S.; Nord, C.L.; Astle, D.E. Statistical power for cluster analysis. BMC Bioinform. 2022, 23, 205. [Google Scholar] [CrossRef] [PubMed]
- Harriss, D.J.; Atkinson, G. Ethical Standards in Sport and Exercise Science Research: 2016 Update. Int. J. Sports Med. 2015, 36, 1121–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnier, S.; Ross, N.; Rudis, R.; Camargo, A.P.; Sciaini, M.; Scherer, C. Rvision—Colorblind-Friendly Color Maps for R. R package version 0.6.2. R Package Version 2021. [Google Scholar] [CrossRef]
- IPAQ Research Committee. Guidelines for the Data Processing and Analysis of the International Physical Activity Questionnaire. 2005. Available online: https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx0aGVpcGFxfGd4OjE0NDgxMDk3NDU1YWRlZTM (accessed on 15 November 2022).
- Questionnaire of Eating Behaviour. Available online: https://docs.google.com/forms/d/e/1FAIpQLSdEKO_zdm_kGlom2Bq5Hxqun1lNJtyhcT2HHXBRj1dYah3P6w/viewform (accessed on 15 November 2022).
- Wadolowska, L.; Krusińska, B. Procedura Opracowania Danych Żywieniowych z Kwestionariusza QEB. Available online: https://www.uwm.edu.pl/edu/lidiawadolowska (accessed on 15 November 2022).
- Heymans, M.W.; Eekhout, I. Applied Missing Data Analysis with SPSS and R(Studio). 2019. Available online: https://bookdown.org/mwheymans/bookmi/ (accessed on 15 November 2022).
- Austin, P.C.; White, I.R.; Lee, D.S.; van Buuren, S. Missing Data in Clinical Research: A Tutorial on Multiple Imputation. Can. J. Cardiol. 2021, 37, 1322–1331. [Google Scholar] [CrossRef]
- Littell, R.C.; Stroup, W.W.; Freund, R.J. SAS for Linear Models, 4th ed.; SAS Institute: Cary, NC, USA, 2002. [Google Scholar]
- Conover, W.J. Practical Nonparametric Statistics, 3rd ed.; Wiley Series in Probability and Statistics; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Raymaekers, J.; Rousseeuw, P.J. Transforming variables to central normality. Mach Learn 2021, 110, 1–36. [Google Scholar] [CrossRef]
- Baker, F.B. Stability of Two Hierarchical Grouping Techniques Case 1: Sensitivity to Data Errors. JASA 1974, 69, 440–445. [Google Scholar] [CrossRef]
- Nguyen, N.; Chawshin, K.; Berg, C.F.; Varagnolo, D. Shuffle & untangle: Novel untangle methods for solving the tanglegram layout problem. Bioinform. Adv. 2022, 2, vbac014. [Google Scholar] [CrossRef]
- Galili, T. Dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics 2015, 31, 3718–3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revell, L.J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2012, 3, 217–223. [Google Scholar] [CrossRef]
- Wickham, H. The Split-Apply-Combine Strategy for Data Analysis. J. Stat. Softw. 2011, 40, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Paradis, E.; Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Morgan, M. BiocManager: Access the Bioconductor Project Package Repository, R package version 1.30.19. 2022. Available online: https://CRAN.R-project.org/package=BiocManager (accessed on 15 November 2022).
- Thioulouse, J.; Dray, S.; Dufour, A.; Siberchicot, A.; Jombart, T.; Pavoine, S. Multivariate Analysis of Ecological Data with ade4; Springer: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Winpenny, E.M.; Smith, M.; Penney, T.; Foubister, C.; Guagliano, J.M.; Love, R.; Clifford Astbury, C.; van Sluijs, E.M.; Corder, K. Changes in physical activity, diet, and body weight across the education and employment transitions of early adulthood: A systematic review and meta-analysis. Obes. Rev. 2020, 21, e12962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuzda, J.G.; Latosiewicz, R.; Augustyńska, B. Risk assessment and level of physical activity of students in Poland. Phys. Edu. Stud. 2017, 21, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Pastuszak, A.; Lisowski, K.; Lewandowska, J.; Buśko, K. Level of physical activity of physical education students according to criteria of the IPAQ questionnaire and the recommendation of WHO experts. Biomed. Hum. Kinet. 2014, 6, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Maciaszek, M.; Olponska-Lischka, M.; Pospieszna, B.; Knisel, E.; Honsova, S.; Epping, R.; Bronikowski, M. Physical activity rates of male and female students from selected European physical education universities. Trends Sport Sci. 2020, 27, 6–69. [Google Scholar] [CrossRef]
- Sjöström, M.; Oja, P.; Hagströmer, M. Health-enhancing physical activity across European Union countries: The Eurobarometer study. J. Public Health 2006, 14, 291–300. [Google Scholar] [CrossRef]
- Junger, J.; Kačúr, P.; Tlučáková, L.; Čech, P.; Bebčáková, V. Physical activity of female students in secondary schools in the context of physical activity recommendations fulfilment. Hum. Mov. 2017, 18, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Edelmann, D.; Pfirrmann, D.; Heller, S.; Dietz, P.; Reichel, J.L.; Werner, A.M.; Schäfer, M.; Tibubos, A.N.; Deci, N.; Letzel, S.; et al. Physical Activity and Sedentary Behavior in University Students–The Role of Gender, Age, Field of Study, Targeted Degree, and Study Semester. Front. Public Health 2022, 10, 821703. [Google Scholar] [CrossRef] [PubMed]
- Guła-Kubiszewska, H.; Debska, U.; Starościak, W.; Kałwa, M.; Hes, B. Physical activity undertaken by physical education students in the context of declared health behaviors. Lubus. Yearb. 2018, 44, 241–258. Available online: http://www.roczniklubuski.uz.zgora.pl/wydania/tom_44/RL_T44_2a_Gula-Kubiszewska_Debska_Starosciak_Kalwa_Hes.pdf (accessed on 6 December 2022).
- Gaylis, J.B.; Levy, S.S.; Kviatkovsky, S.; DeHamer, R.; Hong, M.Y. Relationships between physical activity, food choices, gender and BMI in Southern Californian teenagers. Int. J. Adolesc. Med. Health 2017, 31, 20170067. [Google Scholar] [CrossRef]
- Mazur, J. Health and Health Behaviour of School Children in Poland against the Background of Selected Sociodemographic Conditions; HBSC 2014 Results; Instytut Matki i Dziecka: Warszawa, Poland, 2015. (In Polish) [Google Scholar]
- Myszkowska-Ryciak, J.; Harton, A.; Lange, E.; Laskowski, W.; Wawrzyniak, A.; Hamulka, J.; Gajewska, D. Reduced Screen Time is Associated with Healthy Dietary Behaviors but Not Body Weight Status among Polish Adolescents. Report from the Wise Nutrition—Healthy Generation Project. Nutrients 2020, 12, 1323. [Google Scholar] [CrossRef] [PubMed]
- Tsujiguchi, H.; Hori, D.; Kambayashi, Y.; Hamagishi, T.; Asakura, H.; Mitoma, J.; Kitaoka, M.; Anyenda, E.O.; Nguyen, T.T.T.; Yamada, Y.; et al. Relationship between screen time and nutrient intake in Japanese children and adolescents: A cross-sectional observational study. Environ. Health Prev. Med. 2018, 23, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jusienė, R.; Urbonas, V.; Laurinaitytė, I.; Rakickienė, L.; Breidokienė, R.; Kuzminskaitė, M.; Praninskienė, R. Screen Use During Meals Among Young Children: Exploration of Associated Variables. Medicina 2019, 55, 688. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.T.; Wong, J.E.; Shanita, S.N.; Ismail, M.N.; Deurenberg, P.; Poh, B.K. Daily physical activity and screen time, but not other sedentary activities, are associated with measures of obesity during childhood. Int. J. Environ. Res. Public Health 2015, 12, 146–161. [Google Scholar] [CrossRef]
- Wethington, H.; Pan, L.P.; Sherry, B. The Association of Screen Time, Television in the Bedroom, and Obesity Among School-Aged Youth: 2007 National Survey of Children’s Health. J. Sch. Health 2013, 83, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Matusiak-Wieczorek, E.; Lipert, A.; Kochan, E.; Jegier, A. The time spent sitting does not always mean a low level of physical activity. BMC Public Health 2020, 20, 317. [Google Scholar] [CrossRef] [Green Version]
- Jezewska-Zychowicz, M.; Gębski, J.; Guzek, D.; Świątkowska, M.; Stangierska, D.; Plichta, M.; Wasilewska, M. The Associations between Dietary Patterns and Sedentary Behaviors in Polish Adults (LifeStyle Study). Nutrients 2018, 10, 1004. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Rudy, M.; Stanisławczyk, R.; Duma-Kocan, P.; Żurek, J. Gender Differences in Eating Habits of Polish Young Adults Aged 20–26. Int. J. Environ. Res. Public Health 2022, 19, 15280. [Google Scholar] [CrossRef] [PubMed]
- Górna, S.; Pazdro-Zastawny, K.; Basiak-Rasała, A.; Krajewska, J.; Kolator, M.; Cichy, I.; Rokita, A.; Zatoński, T. Physical activity and sedentary behaviors in Polish children and adolescents. Arch Pédiatr. 2023, 30, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Bolesławska, I.; Błaszczyk-Bębenek, E.; Jagielski, P.; Jagielska, A.; Przysławski, J. Nutritional behaviors of women and men in Poland during confinement related to the SARS-CoV-2 epidemic. Sci. Rep. 2021, 11, 19984. [Google Scholar] [CrossRef]
- Sidor, A.; Rzymski, P. Dietary choices and habits during COVID-19 lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef]
- De Vries, H.; van’t Riet, J.; Spigt, M.; Metsemakers, J.; van den Akker, M.; Vermunt, J.K.; Kremers, S. Clusters of lifestyle behaviors: Results from the Dutch SMILE study. Prev. Med. 2008, 46, 203–208. [Google Scholar] [CrossRef]
- Mirghafourvand, M.; Mohammad-Alizadeh-Charandabi, S.; Tavananezhad, N.; Karkhaneh, M. Health-promoting lifestyle and its predictors among Iranian adolescent girls, 2013. Int. J. Adolesc. Med Health 2014, 26, 495–502. [Google Scholar] [CrossRef]
- Fitzgerald, A.; Heary, C.; Kelly, C.; Nixon, E.; Shevlin, M. Self-efficacy for healthy eating and peer support for unhealthy eating are associated with adolescents’ food intake patterns. Appetite 2013, 63, 48–58. [Google Scholar] [CrossRef]
- Sabbe, D.; De Bourdeaudhuij, I.; Legiest, E.; Maes, L. A cluster-analytical approach towards physical activity and eating habits among 10-year-old children. Health Educ. Res. 2008, 23, 753–762. [Google Scholar] [CrossRef]
- Mistry, R.; McCarthy, W.J.; Yancey, A.K.; Lu, Y.; Patel, M. Resilience and patterns of health risk behaviors in California adolescents. Prev. Med. 2009, 48, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Leech, R.M.; McNaughton, S.A.; Timperio, A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: A review. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.; Riggs, N.R.; Spruijt-Metz, D.; Chou, C.P.; Huang, Z.; Pentz, M. Identifying patterns of eating and physical activity in children: A latent class analysis of obesity risk. Obesity 2011, 19, 652–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, A.J.; Crawford, D.A.; Salmon, J.; Campbell, K.; McNaughton, S.A.; Mishra, G.D.; Ball, K. Clustering of obesity-related risk behaviors in children and their mothers. Ann. Epidemiol. 2011, 21, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, B.; Plachta-Danielzik, S.; Lange, D.; Johannsen, M.; Seiberl, J.; Müller, M.J. Clustering of lifestyle factors and association with overweight in adolescents of the Kiel Obesity Prevention Study. Public Health Nutr. 2010, 13, 1708–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, K.; Dwyer, J.J.M.; Edwards, A.M.; Allison, K.R. Clustering of specific health-related behaviours among Toronto adolescents. Can. J. Diet. Pract. Res. 2011, 72, e155–e160. [Google Scholar] [CrossRef]
- Patnode, C.D.; Lytle, L.A.; Erickson, D.J.; Sirard, J.R.; Barr-Anderson, D.J.; Story, M. Physical activity and sedentary activity patterns among children and adolescents: A latent class analysis approach. J. Phys. Act. Health 2011, 8, 457–467. [Google Scholar] [CrossRef]
- Gorely, T.; Marshall, S.J.; Biddle, S.J.H.; Cameron, N. Patterns of Sedentary Behaviour and Physical Activity Among Adolescents in the United Kingdom: Project STIL. J. Behav. Med. 2007, 30, 521–531. [Google Scholar] [CrossRef]
- Sallis, J.; Prochaska, J.; Taylor, W. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exer. 2000, 32, 963–975. [Google Scholar] [CrossRef]
- Marshall, S.; Gorely, T.; Biddle, S. A descriptive epidemiology of screen based media use among youth: A review and critique. J. Adoles. 2006, 29, 333–349. [Google Scholar] [CrossRef]
- Liu, J.; Kim, J.; Colabianchi, N.; Ortaglia, A.; Pate, R.R. Co-varying patterns of physical activity and sedentary behaviors and their long-term maintenance among adolescents. J. Phys. Act. Health 2010, 7, 465–474. [Google Scholar] [CrossRef]
- Ottevaere, C.; Huybrechts, I.; Benser, J.; De Bourdeaudhuij, I.; Cuenca-Garcia, M.; Dallongeville, J.; Zaccaria, M.; Gottrand, F.; Kersting, M.; Rey-Lopez, J.P. Clustering patterns of physical activity, sedentary and dietary behavior among European adolescents: The HELENA study. BMC Public Health 2011, 11, 328. [Google Scholar] [CrossRef] [PubMed]
- Gacek, M. Selected personal conditions determining the frequency of consuming groups of products among athletes professionally training individual sports disciplines. Hum. Mov. 2019, 20, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Northstone, K.; Smith, A.D.; Cribb, V.L.; Emmett, P.M. Dietary patterns in UK adolescents obtained from a dual-source FFQ and their associations with socio-economic position, nutrient intake and modes of eating. Public Health Nutr. 2014, 17, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
Males | Females | ||||
---|---|---|---|---|---|
Mean 95%CI | Median Interquartile Ratio | Mean 95%CI | Median Interquartile Ratio | p | |
body mass index [kg/m2] | 24.45 (23.69–25.22) | 24.21 (3.52) | 22.69 (21.93–23.45) | 22.12 (3.81) | <0.001 |
percentage of body fat [%] | 18.45 (17.13–19.77) | 17.70 (5.94) | 22.55 (20.98–24.12) | 21.79 (6.58) | <0.001 |
body fat mass [kg] | 14.92 (13.45–16.39) | 13.48 (6.05) | 14.84 (13.26–16.43) | 14.20 (6.45) | 0.001 |
fat mass index [kg/m2] | 4.59 (4.15–5.02) | 4.15 (1.94) | 5.24 (4.71–5.78) | 4.86 (2.40) | <0.001 |
work/school domain [min/week] | 1617.81 (1182.25–2053.37) | 933.25 (2170.00) | 2316.96 (1868.40–2765.53) | 1973.00 (2486) | 0.432 |
transport domain [min/week] | 1490.97 (1187.55–1794.40) | 1353.00 (1301.25) | 1606.94 (1181.89–2031.98) | 1188.00 (1578.00) | 0.027 |
domestic/yard domain [min/week] | 1056.78 (799.57–1313.99) | 840.00 (1413.75) | 937.32 (703.27–1171.36) | 620.00 (690.00) | 0.660 |
leisure time domain [min/week] | 1926.31 (1617.34–2235.28) | 1857.50 (1448.25) | 1713.04 (1473.87–1952.21) | 1662.00 (1251.00) | 0.491 |
total vigorous [min/week] | 1680.77 (1338.48–2023.06) | 1440.00 (1240) | 1816.87 (1476.82–2156.93) | 1600.00 (1440.00) | 0.273 |
total moderate [min/week] | 2467.16 (2059.16–2875.16) | 2270.00 (2022.50) | 2279.50 (1874.24–2684.76) | 1905.00 (1600.00) | 0.573 |
total walking [min/week] | 1943.94 (1621.95–2265.92) | 1724.25 (1410.75) | 2477.88 (1981.91–2973.86) | 1848.00 (2614.20) | 0.514 |
total sitting [min/week] | 1868.27 (1703.39–2033.15) | 1700.00 (910.00) | 1960.00 (1784.33–2135.67) | 1920.00 (1070.00) | 0.076 |
overall MET [min/week] | 6091.87 (5395.63–6788.10) | 5714.25 (3317.50) | 6574.26 (5694.10–7454.42) | 5810.00 (4155.00) | 0.448 |
positive HDI-8 index | 22.38 (19.67–25.08) | 21.44 (14.19) | 19.80 (17.26–22.34) | 19.88 (14.25) | 0.236 |
negative HDI-8 index | 16.04 (13.88–18.20) | 14.19 (9.56) | 13.28 (11.47–15.08) | 11.00 (9.50) | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaradzki, J. Congruence between Physical Activity Patterns and Dietary Patterns Inferred from Analysis of Sex Differences in Lifestyle Behaviors of Late Adolescents from Poland: Cophylogenetic Approach. Nutrients 2023, 15, 608. https://doi.org/10.3390/nu15030608
Domaradzki J. Congruence between Physical Activity Patterns and Dietary Patterns Inferred from Analysis of Sex Differences in Lifestyle Behaviors of Late Adolescents from Poland: Cophylogenetic Approach. Nutrients. 2023; 15(3):608. https://doi.org/10.3390/nu15030608
Chicago/Turabian StyleDomaradzki, Jarosław. 2023. "Congruence between Physical Activity Patterns and Dietary Patterns Inferred from Analysis of Sex Differences in Lifestyle Behaviors of Late Adolescents from Poland: Cophylogenetic Approach" Nutrients 15, no. 3: 608. https://doi.org/10.3390/nu15030608
APA StyleDomaradzki, J. (2023). Congruence between Physical Activity Patterns and Dietary Patterns Inferred from Analysis of Sex Differences in Lifestyle Behaviors of Late Adolescents from Poland: Cophylogenetic Approach. Nutrients, 15(3), 608. https://doi.org/10.3390/nu15030608