Cocoa Flavanol Supplementation and the Effect on Insulin Resistance in Females Who Are Overweight or Obese: A Randomized, Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Participants
3.2. Compliance
3.3. Insulin Sensitivity
3.4. Body Composition
3.5. Indirect Calorimetry
3.6. Dietary Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cicero, A.F.; Colletti, A. Role of phytochemicals in the management of metabolic syndrome. Phytomedicine 2015, 23, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Wedick, N.M.; Pan, A.; Cassidy, A.; Rimm, E.; Sampson, L.; Rosner, B.; Willett, W.; Hu, F.; Sun, Q.; van Dam, R. Dietary flavonoid intakes and risk of type 2 diabetes in US men and females. Am. J. Clin. Nutr. 2012, 95, 925–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonne, M.P.; Højbjerre, L.; Alibegovic, A.C.; Vaag, A.; Stallknecht, B.; Dela, F. Impaired endothelial function and insulin action in first-degree relatives of patients with type 2 diabetes mellitus. Metabolism 2009, 58, 93–101. [Google Scholar] [CrossRef]
- A Hsueh, W.; Quiñones, M.J. Role of endothelial dysfunction in insulin resistance. Am. J. Cardiol. 2003, 92, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Jonk, A.M.; Houben, A.J.H.M.; De Jongh, R.T.; Serné, E.H.; Schaper, N.; Stehouwer, C.D.A. Microvascular Dysfunction in Obesity: A Potential Mechanism in the Pathogenesis of Obesity-Associated Insulin Resistance and Hypertension. Physiology 2007, 22, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, J.I.; Momma, T.Y.; Heiss, C.; Kwik-Uribe, C.; Schroeter, H.; Keen, C.L. The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo. Free Radic. Biol. Med. 2011, 50, 237–244. [Google Scholar] [CrossRef]
- Ferri, C.; Desideri, G.; Ferri, L.; Proietti, I.; Di Agostino, S.; Martella, L.; Mai, F.; Di Giosia, P.; Grassi, D. Cocoa, blood pressure, and cardiovascular health. J. Agric. Food Chem. 2015, 63, 9901–9909. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, I.; Li, A.; Manson, J.E.; Sesso, H.D.; Wang, L.; Liu, S. Cocoa Flavanol Intake and Biomarkers for Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Nutr. 2016, 146, 2325–2333. [Google Scholar] [CrossRef] [Green Version]
- Rostami, A.; Khalili, M.; Haghighat, N.; Eghtesadi, S.; Shidfar, F.; Heidari, I.; Ebrahimpour-Koujan, S.; Eghtesadi, M. High-cocoa polyphenol-rich chocolate improves blood pressure in patients with diabetes and hypertension. ARYA Atheroscler 2015, 11, 21–29. [Google Scholar]
- Muniyappa, R.; Hall, G.; Kolodziej, T.L.; Karne, R.J.; Crandon, S.K.; Quon, M. Cocoa consumption for 2 wk enhances insulin-mediated vasodilatation without improving blood pressure or insulin resistance in essential hypertension. Am. J. Clin. Nutr. 2008, 88, 1685–1696. [Google Scholar] [CrossRef] [Green Version]
- Halib, H.; Ismail, A.; Yusof, B.-N.M.; Osakabe, N.; Daud, Z.M. Effects of Cocoa Polyphenols and Dark Chocolate on Obese Adults: A Scoping Review. Nutrients 2020, 12, 3695. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and Glycemic Control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.G. Impaired microvascular perfusion: A consequence of vascular dysfunction and a potential cause of insulin resistance in muscle. Am. J. Physiol. Metab. 2008, 295, E732–E750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassi, D.; Desideri, G.; Mai, F.; Martella, L.; De Feo, M.; Soddu, D.; Fellini, E.; Veneri, M.; Stamerra, C.A.; Ferri, C. Cocoa, Glucose Tolerance, and Insulin Signaling: Cardiometabolic Protection. J. Agric. Food Chem. 2015, 63, 9919–9926. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef]
- Grassi, D.; Desideri, G.; Necozione, S.; Lippi, C.; Casale, R.; Properzi, G.; Blumberg, J.B.; Ferri, C. Blood Pressure Is Reduced and Insulin Sensitivity Increased in Glucose-Intolerant, Hypertensive Subjects after 15 Days of Consuming High-Polyphenol Dark Chocolate. J. Nutr. 2008, 138, 1671–1676. [Google Scholar] [CrossRef] [Green Version]
- Grassi, D.; Necozione, S.; Lippi, C.; Croce, G.; Valeri, L.; Pasqualetti, P.; Desideri, G.; Blumberg, J.B.; Ferri, C. Cocoa Reduces Blood Pressure and Insulin Resistance and Improves Endothelium-Dependent Vasodilation in Hypertensives. Hypertension 2005, 46, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Grassi, D.; Lippi, C.; Necozione, S.; Desideri, G.; Ferri, C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am. J. Clin. Nutr. 2005, 81, 611–614. [Google Scholar] [CrossRef] [Green Version]
- Monagas, M.; Khan, N.; Andres-Lacueva, C.; Casas, R.; Urpí-Sardà, M.; Llorach, R.; Lamuela-Raventós, R.M.; Estruch, R. Effect of cocoa powder on the modulation of inflammatory biomarkers in patients at high risk of cardiovascular disease. Am. J. Clin. Nutr. 2009, 90, 1144–1150. [Google Scholar] [CrossRef] [Green Version]
- Sarriá, B.; Martínez-López, S.; Sierra-Cinos, J.L.; García-Diz, L.; Mateos, R.; Bravo, L. Regular consumption of a cocoa product improves the cardiometabolic profile in healthy and moderately hypercholesterolaemic adults. Br. J. Nutr. 2013, 111, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Desideri, G.; Kwik-Uribe, C.; Grassi, D.; Necozione, S.; Ghiadoni, L.; Mastroiacovo, D.; Raffaele, A.; Ferri, L.; Bocale, R.; Lechiara, M.C.; et al. Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment: The Cocoa, Cognition, and Aging (CoCoA) study. Hypertension 2012, 60, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Mastroiacovo, D.; Kwik-Uribe, C.; Grassi, D.; Necozione, S.; Raffaele, A.; Pistacchio, L.; Righetti, R.; Bocale, R.; Lechiara, M.C.; Marini, C.; et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: The Cocoa, Cognition, and Aging (CoCoA) Study—A randomized controlled trial. Am. J. Clin. Nutr. 2014, 101, 538–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallal, G.E. Randomization Generator. 2013, Tufts University. Available online: www.randomization.com (accessed on 5 June 2008).
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative Insulin Sensitivity Check Index: A Simple, Accurate Method for Assessing Insulin Sensitivity in Humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Péronnet, F.; Massicotte, D. Table of nonprotein respiratory quotient: An update. Can. J. Sport Sci. 1991, 16, 23–29. [Google Scholar] [PubMed]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. Endocrinol. Metab. 1979, 237, E214. [Google Scholar] [CrossRef] [PubMed]
- Adamson, G.E.; Lazarus, S.A.; Mitchell, A.E.; Prior, R.L.; Cao, G.; Jacobs, P.H.; Kremers, B.G.; Hammerstone, J.F.; Rucker, R.B.; Ritter, K.A.; et al. HPLC Method for the Quantification of Procyanidins in Cocoa and Chocolate Samples and Correlation to Total Antioxidant Capacity. J. Agric. Food Chem. 1999, 47, 4184–4188. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Lawrence Erlbaum Associates Inc.: Mahwah, NJ, USA, 1988. [Google Scholar]
- Båvenholm, P.N.; Pigon, J.; Östenson, C.-G.; Efendic, S. Insulin Sensitivity of Suppression of Endogenous Glucose Production Is the Single Most Important Determinant of Glucose Tolerance. Diabetes 2001, 50, 1449–1454. [Google Scholar] [CrossRef] [Green Version]
- Bokemark, L.; Frödén, A.; Attvall, S.; Wikstrand, J.; Fagerberg, B. The euglycemic hyperinsulinemic clamp examination: Variability and reproducibility. Scand. J. Clin. Lab. Invest. 2000, 60, 27–36. [Google Scholar]
- Lenth, R.V. Java Applets for Power and Sample Size. Available online: http://www.stat.uiowa.edu/~rlenth/Power. (accessed on 13 February 2008).
- Hopkins, W. A Scale of Magnitudes for Effect Statistics. Available online: https://sportscience.sportsci.org/resource/stats/index.html. (accessed on 15 April 2021).
- Henderson, L.; Gregory, J.; Swan, G. The National Diet and Nutrition Survey: Adults Aged 19 to 64 Years; The Stationery Office: London, UK, 2003; Volume 2. [Google Scholar]
- Laakso, M.; Edelman, S.V.; Olefsky, J.M.; Brechtel, G.; Wallace, P.; Baron, A.D. Kinetics of in vivo muscle insulin-mediated glucose uptake in human obesity. Diabetes 1990, 39, 965–974. [Google Scholar] [CrossRef]
- Schroeter, H.; Heiss, C.; Balzer, J.; Kleinbongard, P.; Keen, C.L.; Hollenberg, N.K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H.H.; Kelm, M. Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA 2006, 103, 1024–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balzer, J.; Rassaf, T.; Heiss, C.; Kleinbongard, P.; Lauer, T.; Merx, M.; Heussen, N.; Gross, H.B.; Keen, C.L.; Schroeter, H.; et al. Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trial. J. Am. Coll Cardiol. 2008, 51, 2141–2149. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zimmermann, D.; De Castro, C.A.; Actis-Goretta, L. Dose–response relationship between cocoa flavanols and human endothelial function: A systematic review and meta-analysis of randomized trials. Food Funct. 2019, 10, 6322–6330. [Google Scholar] [CrossRef] [Green Version]
- Phillips, B.; Atherton, P.J.; Varadhan, K.; Limb, M.C.; Williams, J.P.; Smith, K. Acute cocoa flavanol supplementation improves muscle macro- and microvascular but not anabolic responses to amino acids in older men. Appl. Physiol. Nutr. Metab. 2016, 41, 548–556. [Google Scholar] [CrossRef]
- Sergi, D.; Naumovski, N.N.; Heilbronn, L.H.K.; Abeywardena, M.; O’Callaghan, N.; Lionetti, L.; Luscombe-Marsh, N.L.-M. Mitochondrial (Dys)function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet. Front. Physiol. 2019, 10, 532. [Google Scholar] [CrossRef]
- Mellor, D.D.; Amund, D.; Georgousopoulou, E.; Naumovski, N. Sugar and cocoa: Sweet synergy or bitter antagonisms. Formulating cocoa and chocolate products for health: A narrative review. Int. J. Food Sci. Technol. 2017, 53, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Hücking, K.; Watanabe, R.M.; Stefanovski, D.; Bergman, R.N. OGTT-derived Measures of Insulin Sensitivity Are Confounded by Factors Other than Insulin Sensitivity Itself. Obesity 2008, 16, 1938–1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, B.; Hemmingsen, B.; Metzendorf, M.-I.; Takwoingi, Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst. Rev. 2018, 2018, CD012661. [Google Scholar] [CrossRef]
- Meyer, C.; Pimenta, W.; Woerle, H.J.; Van Haeften, T.; Szoke, E.; Mitrakou, A.; Gerich, J. Different Mechanisms for Impaired Fasting Glucose and Impaired Postprandial Glucose Tolerance in Humans. Diabetes Care 2006, 29, 1909–1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Writing committee; Unwin, N.; Shaw, J.; Zimmet, P.; Alberti, K.G.M.M. Impaired glucose tolerance and impaired fasting glycaemia: The current status on definition and intervention. Diabet. Med. 2002, 19, 708–723. [Google Scholar] [CrossRef]
- Mellor, D.; Sathyapalan, T.; Kilpatrick, E.S.; Beckett, S.; Atkin, S.L. High-cocoa polyphenol-rich chocolate improves HDL cholesterol in Type 2 diabetes patients. Diabet. Med. 2010, 27, 1318–1321. [Google Scholar] [CrossRef]
- Stote, K.S.; A Clevidence, B.; A Novotny, J.; Henderson, T.R.; Radecki, S.V.; Baer, D.J. Effect of cocoa and green tea on biomarkers of glucose regulation, oxidative stress, inflammation and hemostasis in obese adults at risk for insulin resistance. Eur. J. Clin. Nutr. 2012, 66, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- De Paoli, M.; Zakharia, A.; Werstuck, G.H. The Role of Estrogen in Insulin Resistance: A Review of Clinical and Preclinical Data. Am. J. Pathol. 2021, 191, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association and National Institute of Diabetes and Digestive and Kidney Diseases. Prevention or Delay of Type 2 Diabetes. Diabetes Care 2004, 27 (Suppl. 1), 47–54. [Google Scholar] [CrossRef] [Green Version]
- Vogiatzoglou, A.; Mulligan, A.A.; Lentjes, M.; Luben, R.; Spencer, J.P.E.; Schroeter, H.; Khaw, K.-T.; Kuhnle, G.G.C. Flavonoid Intake in European Adults (18 to 64 Years). PLoS ONE 2015, 10, e0128132. [Google Scholar] [CrossRef] [PubMed]
HFC (n = 16) | LFC (n = 16) | |
---|---|---|
Mean Age (years) | 31.9 (11.20) | 34.8 (9.13) |
Mean BMI (kg/m2) | 30.6 (2.52) | 31.7 (2.17) |
Median HOMA-IR | 2.25 [1.77–3.81] | 2.25 [1.78–3.67] |
Mean QUICKI | 0.334 (0.017) | 0.336 (0.016) |
HFC | LFC | |||
---|---|---|---|---|
PRE | POST | PRE | POST | |
Body Weight (kg) | 85.45 (8.18) | 85.74 (8.86) | 85.73 (8.07) | 86.59 (8.33) |
FFM (kg) | 37.17 (3.78) | 37.05 (4.46) | 37.24 (3.21) | 37.80 (3.06) |
# Gynoid Fat (%) | 52.7 | 53.4 | 54.4 | 52.5 |
[50.0–54.9] | [49.4–55.5] | [49.7–55.4] | [48.0–55.5] | |
# Android Fat (%) | 56.0 | 55.6 | 55.2 | 54.4 * |
[52.6–58.5] | [53.4–58.8] | [50.5–58.1] | [49.6–58.4] | |
# Fasting Insulin (pmol·L−1) | 39.9 | 49.8 | 37.8 | 31.8 |
[26.4–57.6] | [34.7–67.4] | [28.5–67.4] | [20.1–79.2] | |
M Value (µmol·kg−1·min−1) | 31.0 (7.87) | 31.6 (6.93) | 32.0 (9.54) | 30.3 (7.83) |
REE: Fasted (kJ/day) | 7104 (776) | 7033 (1015) | 6979 (691) | 7050 (625) |
REE: End of the Clamp (kJ/day) | 7104 (612) | 7050 (896) | 7183 (652) | 7100 (873) |
HFC | LFC | |||
---|---|---|---|---|
PRE | Week 3 | PRE | Week 3 | |
Protein (g) | 76.1 | 70.4 | 68.9 | 73.3 |
[65.5–82.2] | [58.8–78.2] | [61.4–77.0] | [66.9–83.4] | |
Fat (g) | 76.1 | 69.8 | 75.5 | 74.4 |
[61.3–90.6] | [58.4–78.0] | [54.3–85.5] | [66.5–87.4] | |
CHO (g) | 221.6 | 209.2 | 229.0 | 224.6 |
[180.6–257.3] | [205.7–230.3] | [178.5–289.1] | [200.4–259.4] | |
Total sugars (g) | 89.8 | 77.9 | 95.8 | 83.6 |
[60.1–101.8] | [69.1–97.2] | [61.2–117.1] | [64.8–97.6] | |
Alcohol (g) | 7.5 [0–12.0] | 1.0 [0–12.0] | 0 [0–7.0] | 7.0 [0.5–16.0] |
Total energy (E) (kJ) | 7401 | 7368 | 8050 | 7803 |
[7037–8803] | [6711–8694] | [6648–8903] | [7393–8828] | |
% of E derived from protein | 16.1 | 16.1 | 15.3 | 16.1 |
[15.0–18.2] | [14.2–17.6] | [13.0–17.5] | [13.8–17.3] | |
% E from fat | 39.9 | 36.4 | 37.1 | 35.3 |
[32.6–41.4] | [32.6–38.5] | [32.9–42.6] | [32.0–40.6] | |
% E from CHO | 42.3 | 44.3 | 44.2 | 43.2 |
[38.0–46.8] | [40.7–49.1] | [39.5–52.0] | [40.0–49.0] | |
% E from sugars | 17.0 | 17.8 | 18.9 | 16.5 |
[14.1–20.9] | [15.9–20.2] | [15.8–21.4] | [12.6–20.1] | |
% E from alcohol | 2.9 [0–4.6] | 0.5 [0–5.1] | 0 [0–2.2] | 2.4 [0.3–7.2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpson, E.J.; Mendis, B.; Dunlop, M.; Schroeter, H.; Kwik-Uribe, C.; Macdonald, I.A. Cocoa Flavanol Supplementation and the Effect on Insulin Resistance in Females Who Are Overweight or Obese: A Randomized, Placebo-Controlled Trial. Nutrients 2023, 15, 565. https://doi.org/10.3390/nu15030565
Simpson EJ, Mendis B, Dunlop M, Schroeter H, Kwik-Uribe C, Macdonald IA. Cocoa Flavanol Supplementation and the Effect on Insulin Resistance in Females Who Are Overweight or Obese: A Randomized, Placebo-Controlled Trial. Nutrients. 2023; 15(3):565. https://doi.org/10.3390/nu15030565
Chicago/Turabian StyleSimpson, Elizabeth J., Buddhike Mendis, Mandy Dunlop, Hagen Schroeter, Catherine Kwik-Uribe, and Ian A. Macdonald. 2023. "Cocoa Flavanol Supplementation and the Effect on Insulin Resistance in Females Who Are Overweight or Obese: A Randomized, Placebo-Controlled Trial" Nutrients 15, no. 3: 565. https://doi.org/10.3390/nu15030565
APA StyleSimpson, E. J., Mendis, B., Dunlop, M., Schroeter, H., Kwik-Uribe, C., & Macdonald, I. A. (2023). Cocoa Flavanol Supplementation and the Effect on Insulin Resistance in Females Who Are Overweight or Obese: A Randomized, Placebo-Controlled Trial. Nutrients, 15(3), 565. https://doi.org/10.3390/nu15030565