A Randomized Trial on Resveratrol Supplement Affecting Lipid Profile and Other Metabolic Markers in Subjects with Dyslipidemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. Anthropometric Analyses
2.4. Determination of Biochemical Parameters
2.5. Cell Culture
2.6. Sample Size Estimation
2.7. Statistical Analysis
3. Results
3.1. Tolerability and Compliance
3.2. Baseline Characteristics and Dietary Monitoring
3.3. Effect of Resveratrol on Lipid Profile in Dyslipidemia
3.4. Effect of Resveratrol on Uric Acid and XO Activity in Dyslipidemia
3.5. Effect of Resveratrol on Other Parameters in Dyslipidemia
3.6. Effect of Resveratrol on Uric Acid and XO In Vitro
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gomez-Delgado, F.; Katsiki, N.; Lopez-Miranda, J.; Perez-Martinez, P. Dietary habits, lipoprotein metabolism and cardiovascular disease: From individual foods to dietary patterns. Crit. Rev. Food Sci. Nutr. 2021, 61, 1651–1669. [Google Scholar] [CrossRef] [PubMed]
- Sharaf El Din, U.A.A.; Salem, M.M.; Abdulazim, D.O. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. J. Adv. Res. 2017, 8, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Guo, X.; Dong, S.; Yu, S.; Chen, Y.; Zhang, N.; Sun, Y. Association between the hypertriglyceridemic waist phenotype and hyperuricemia: A cross-sectional study. Clin. Rheumatol. 2017, 36, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Conen, D.; Wietlisbach, V.; Bovet, P.; Shamlaye, C.; Riesen, W.; Paccaud, F.; Burnier, M. Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country. BMC Public Health 2004, 4, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, M.H.; Lazo, M.; Liu, S.H.; Bonekamp, S.; Hernaez, R.; Clark, J.M. Association between serum uric acid and nonalcoholic fatty liver disease in the US population. J. Formos. Med. Assoc. 2015, 114, 314–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, V.M.F.; Melo, A.C.; Belo, V.S.; Chaves, V.E. Effect of allopurinol and uric acid normalization on serum lipids hyperuricemic subjects: A systematic review with meta-analysis. Clin. Biochem. 2017, 50, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Tavil, Y.; Kaya, M.G.; Oktar, S.O.; Sen, N.; Okyay, K.; Yazici, H.U.; Cengel, A. Uric acid level and its association with carotid intima-media thickness in patients with hypertension. Atherosclerosis 2008, 197, 159–163. [Google Scholar] [CrossRef]
- Choi, H.K.; Curhan, G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation 2007, 116, 894–900. [Google Scholar] [CrossRef] [Green Version]
- Ando, K.; Takahashi, H.; Watanabe, T.; Daidoji, H.; Otaki, Y.; Nishiyama, S.; Arimoto, T.; Shishido, T.; Miyashita, T.; Miyamoto, T.; et al. Impact of Serum Uric Acid Levels on Coronary Plaque Stability Evaluated Using Integrated Backscatter Intravascular Ultrasound in Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2016, 23, 932–939. [Google Scholar] [CrossRef] [Green Version]
- Ekici, B.; Kütük, U.; Alhan, A.; Töre, H.F. The relationship between serum uric acid levels and angiographic severity of coronary heart disease. Kardiol. Pol. 2015, 73, 533–538. [Google Scholar] [CrossRef]
- Bloomgarden, Z.T. Dyslipidemia and the metabolic syndrome. Diabetes Care 2004, 27, 3009–3016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousri, N.A.; Suhre, K.; Yassin, E.; Al-Shakaki, A.; Robay, A.; Elshafei, M.; Chidiac, O.; Hunt, S.C.; Crystal, R.G.; Fakhro, K.A. Metabolic and Metabo-Clinical Signatures of Type 2 Diabetes, Obesity, Retinopathy, and Dyslipidemia. Diabetes 2022, 71, 184–205. [Google Scholar] [CrossRef] [PubMed]
- Ndrepepa, G. Uric acid and cardiovascular disease. Clin. Chim. Acta 2018, 484, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Martins-Santos, M.E.; Chaves, V.E. Uric acid as a modulator of glucose and lipid metabolism. Biochimie 2015, 116, 17–23. [Google Scholar] [CrossRef]
- Mandal, A.K.; Mount, D.B. The molecular physiology of uric acid homeostasis. Annu. Rev. Physiol. 2015, 77, 323–345. [Google Scholar] [CrossRef] [PubMed]
- Glantzounis, G.K.; Tsimoyiannis, E.C.; Kappas, A.M.; Galaris, D.A. Uric acid and oxidative stress. Curr. Pharm. Des. 2005, 11, 4145–4151. [Google Scholar] [CrossRef]
- Song, C.; Zhao, X. Uric acid promotes oxidative stress and enhances vascular endothelial cell apoptosis in rats with middle cerebral artery occlusion. Biosci. Rep. 2018, 38, BSR20170939. [Google Scholar] [CrossRef] [Green Version]
- Okafor, O.N.; Farrington, K.; Gorog, D.A. Allopurinol as a therapeutic option in cardiovascular disease. Pharmacol. Ther. 2017, 172, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.S.; Kor, C.T.; Chen, T.Y.; Liu, K.H.; Shih, K.L.; Su, W.W.; Wu, H.M. Relationships between Serum Uric Acid, Malondialdehyde Levels, and Carotid Intima-Media Thickness in the Patients with Metabolic Syndrome. Oxid. Med. Cell. Longev. 2019, 2019, 6859757. [Google Scholar] [CrossRef]
- Lee, T.S.; Lu, T.M.; Chen, C.H.; Guo, B.C.; Hsu, C.P. Hyperuricemia induces endothelial dysfunction and accelerates atherosclerosis by disturbing the asymmetric dimethylarginine/dimethylarginine dimethylaminotransferase 2 pathway. Redox. Biol. 2021, 46, 102108. [Google Scholar] [CrossRef]
- Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents. 2019, 53, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Liu, J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric. 2020, 100, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Szkudelska, K.; Okulicz, M.; Hertig, I.; Szkudelski, T. Resveratrol ameliorates inflammatory and oxidative stress in type 2 diabetic Goto-Kakizaki rats. Biomed. Pharmacother. 2020, 125, 110026. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Chen, J.; Zhang, Y.; Guan, M.; Li, X.; Zhou, Q.; Song, Q.; Qiu, J. Synthesis and assessment of phenylacrylamide derivatives as potential anti-oxidant and anti-inflammatory agents. Eur. J. Med. Chem. 2019, 180, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer 2014, 21, R209–R225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- S., M.; Shaik, A.H.; E., M.P.; Al Omar, S.Y.; Mohammad, A.; Kodidhela, L.D. Combined cardio-protective ability of syringic acid and resveratrol against isoproterenol induced cardio-toxicity in rats via attenuating NF-kB and TNF-α pathways. Sci. Rep. 2020, 10, 3426. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.N.; Hou, C.Y.; Tain, Y.L. Preventive Aspects of Early Resveratrol Supplementation in Cardiovascular and Kidney Disease of Developmental Origins. Int. J. Mol. Sci. 2021, 22, 4210. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L.; Chen, W.; Xu, S.; Feng, X.; Zhang, L. Natural products: The role and mechanism in low-density lipoprotein oxidation and atherosclerosis. Phytother. Res. 2021, 35, 2945–2967. [Google Scholar] [CrossRef]
- Chassot, L.N.; Scolaro, B.; Roschel, G.G.; Cogliati, B.; Cavalcanti, M.F.; Abdalla, D.S.P.; Castro, I.A. Comparison between red wine and isolated trans-resveratrol on the prevention and regression of atherosclerosis in LDLr ((-/-)) mice. J. Nutr. Biochem. 2018, 61, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, Y.; Luo, J.; Jiang, Y.; Zhao, Z.; Chen, Y.; Huang, Q.; Zhang, L.; Wu, T.; Pang, J. Resveratrol, a novel inhibitor of GLUT9, ameliorates liver and kidney injuries in a D-galactose-induced ageing mouse model via the regulation of uric acid metabolism. Food Funct. 2021, 12, 8274–8287. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Yu, J.; Gan, Z.; Wei, W.; Wang, C.; Zhang, L.; Wang, T.; Zhong, X. Resveratrol Attenuates High-Fat Diet Induced Hepatic Lipid Homeostasis Disorder and Decreases m(6)A RNA Methylation. Front. Pharmacol. 2020, 11, 568006. [Google Scholar] [CrossRef]
- Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from clinical studies. Med. Res. Rev. 2019, 39, 1851–1891. [Google Scholar] [CrossRef] [PubMed]
- Haghighatdoost, F.; Hariri, M. Effect of resveratrol on lipid profile: An updated systematic review and meta-analysis on randomized clinical trials. Pharmacol. Res. 2018, 129, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Franssen, R.; Monajemi, H.; Stroes, E.S.; Kastelein, J.J. Obesity and dyslipidemia. Med. Clin. North. Am. 2011, 95, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Zhao, X.L.; Ran, L.; Wan, J.; Wang, X.F.; Qin, Y.; Shu, F.R.; Gao, Y.X.; Yuan, L.J.; Zhang, Q.Y.; et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Digest. Liver. Dis. 2015, 47, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, M.; Qu, S. Harnessing hyperuricemia to atherosclerosis and understanding its mechanistic dependence. Med. Res. Rev. 2021, 41, 616–629. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Montagnana, M.; Luca Salvagno, G.; Targher, G.; Cesare Guidi, G. Epidemiological association between uric acid concentration in plasma, lipoprotein(a), and the traditional lipid profile. Clin. Cardiol. 2010, 33, E76–E80. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Rahman, S.; Islam, S.; Haque, T.; Molla, N.H.; Sumon, A.; Kathak, R.R.; Asaduzzaman, M.; Islam, F.; Mohanto, N.C.; et al. The relationship between serum uric acid and lipid profile in Bangladeshi adults. BMC Cardiovasc. Disor. 2019, 19, 42. [Google Scholar] [CrossRef] [Green Version]
- Simental-Mendøa, L.E.; Guerrero-Romero, F. Effect of resveratrol supplementation on lipid profile in subjects with dyslipidemia: A randomized double-blind, placebo-controlled trial. Nutrition 2019, 58, 7–10. [Google Scholar] [CrossRef]
- Gliemann, L.; Schmidt, J.F.; Olesen, J.; Biensø, R.S.; Peronard, S.L.; Grandjean, S.U.; Mortensen, S.P.; Nyberg, M.; Bangsbo, J.; Pilegaard, H.; et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J. Physiol. 2013, 591, 5047–5059. [Google Scholar] [CrossRef]
- van der Made, S.M.; Plat, J.; Mensink, R.P. Resveratrol does not influence metabolic risk markers related to cardiovascular health in overweight and slightly obese subjects: A randomized, placebo-controlled crossover trial. PLoS ONE 2015, 10, e0118393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, A.; Samadi, M.; Sanginabadi, M.; Gerami, H.; Karimi, S.; Hosseini, S.; Shirzad, N.; Hekmatdoost, A.; Mahdavi-Gorabi, A.; Mohajeri-Tehrani, M.R.; et al. Effect of resveratrol on menstrual cyclicity, hyperandrogenism and metabolic profile in women with PCOS. Clin. Nutr. 2021, 40, 4106–4112. [Google Scholar] [CrossRef] [PubMed]
- Apostolidou, C.; Adamopoulos, K.; Iliadis, S.; Kourtidou-Papadeli, C. Alterations of antioxidant status in asymptomatic hypercholesterolemic individuals after resveratrol intake. Int. J. Food Sci. Nutr. 2015, 67, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Ma, W.; Zheng, Y.; Li, Z.; Li, D.; Zhang, Y.; Li, Y.; Wang, D. Effects of resveratrol on the inflammatory response and renal injury in hyperuricemic rats. Nutr. Res. Pract. 2021, 15, 26–37. [Google Scholar] [CrossRef]
- Shi, Y.W.; Wang, C.P.; Liu, L.; Liu, Y.L.; Wang, X.; Hong, Y.; Li, Z.; Kong, L.D. Antihyperuricemic and nephroprotective effects of resveratrol and its analogues in hyperuricemic mice. Mol. Nutr. Food Res. 2012, 56, 1433–1444. [Google Scholar] [CrossRef]
- Zhang, X.M.; Nie, Q.; Zhang, Z.M.; Zhao, J.; Zhang, F.X.; Wang, C.; Wang, X.; Song, G.Y. Resveratrol affects the expression of uric acid transporter by improving inflammation. Mol. Med. Rep. 2021, 24, 564. [Google Scholar] [CrossRef]
- Nakagami, Y.; Suzuki, S.; Espinoza, J.L.; Vu, L.; Enomoto, M.; Takasugi, S.; Nakamura, A.; Nakayama, T.; Hanamura, I.; Tani, H.; et al. Immunomodulatory and Metabolic Changes after Gnetin-C Supplementation in Humans. Int. J. Lab. Hematol. 2019, 41, 125. [Google Scholar] [CrossRef] [Green Version]
- Konno, H.; Kanai, Y.; Katagiri, M.; Watanabe, T.; Mori, A.; Ikuta, T.; Tani, H.; Fukushima, S.; Tatefuji, T.; Shirasawa, T. Melinjo (Gnetum gnemon L.) Seed Extract Decreases Serum Uric Acid Levels in Nonobese Japanese Males: A Randomized Controlled Study. Evid-Based Compl. Alt. 2013, 2013, 589169. [Google Scholar] [CrossRef] [Green Version]
- Bo, S.; Ponzo, V.; Ciccone, G.; Evangelista, A.; Saba, F.; Goitre, I.; Procopio, M.; Pagano, G.F.; Cassader, M.; Gambino, R. Six months of resveratrol supplementation has no measurable effect in type 2 diabetic patients. A randomized, double blind, placebo-controlled trial. Pharmacol. Res. 2016, 111, 896–905. [Google Scholar] [CrossRef]
- Bo, S.; Ciccone, G.; Castiglione, A.; Gambino, R.; De Michieli, F.; Villois, P.; Durazzo, M.; Cavallo-Perin, P.; Cassader, M. Anti-inflammatory and antioxidant effects of resveratrol in healthy smokers a randomized, double-blind, placebo-controlled, cross-over trial. Curr. Med. Chem. 2013, 20, 1323–1331. [Google Scholar] [CrossRef]
- Macedo, R.C.; Vieira, A.; Marin, D.P.; Otton, R. Effects of chronic resveratrol supplementation in military firefighters undergo a physical fitness test—a placebo-controlled, double blind study. Chem. Biol. Interact. 2015, 227, 89–95. [Google Scholar] [CrossRef]
- Masuoka, N. Stilbene compounds are specific inhibitors of the superoxide anion generation catalyzed by xanthine oxidase. Food Chem. X 2021, 12, 100146. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Nie, Y.; Chang, Y.; Zeng, S.; Liang, C.; Zheng, X.; Xiao, D.; Zhan, S.; Zheng, Q. Protective effects of Rhizoma smilacis glabrae extracts on potassium oxonate- and monosodium urate-induced hyperuricemia and gout in mice. Phytomedicine 2019, 59, 152772. [Google Scholar] [CrossRef] [PubMed]
- Kroon, P.A.; Iyer, A.; Chunduri, P.; Chan, V.; Brown, L. The Cardiovascular Nutrapharmacology of Resveratrol: Pharmacokinetics, Molecular Mechanisms and Therapeutic Potential. Curr. Med. Chem. 2010, 17, 2442–2455. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wong, K.; Giles, A.; Jiang, J.; Lee, J.W.; Adams, A.C.; Kharitonenkov, A.; Yang, Q.; Gao, B.; Guarente, L.; et al. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology 2014, 146, 539–549.e7. [Google Scholar] [CrossRef] [PubMed]
- Rafiei, H.; Omidian, K.; Bandy, B. Dietary Polyphenols Protect Against Oleic Acid-Induced Steatosis in an in Vitro Model of NAFLD by Modulating Lipid Metabolism and Improving Mitochondrial Function. Nutrients 2019, 11, 541. [Google Scholar] [CrossRef] [Green Version]
- Movahed, A.; Raj, P.; Nabipour, I.; Mahmoodi, M.; Ostovar, A.; Kalantarhormozi, M.; Netticadan, T. Efficacy and Safety of Resveratrol in Type 1 Diabetes Patients: A Two-Month Preliminary Exploratory Trial. Nutrients 2020, 12, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chachay, V.S.; Macdonald, G.A.; Martin, J.H.; Whitehead, J.P.; O’Moore-Sullivan, T.M.; Lee, P.; Franklin, M.; Klein, K.; Taylor, P.J.; Ferguson, M.; et al. Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2014, 12, 2092–2103.e6. [Google Scholar] [CrossRef] [Green Version]
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E., Jr.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004, 32, 1377–1382. [Google Scholar] [CrossRef]
Placebo (n = 43) | 100 mg/d RSV (n = 41) | 300 mg/d RSV (n = 43) | 600 mg/d RSV (n = 41) | p b | |
---|---|---|---|---|---|
Age, years | 61.30 ± 8.96 | 59.49 ± 8.70 | 61.14 ± 9.19 | 60.80 ± 8.32 | 0.947 |
Sex, M/F, n | 13/30 | 11/30 | 14/29 | 13/28 | 0.945 |
Weight, kg | 60.13 ± 9.25 | 61.21 ± 8.32 | 59.48 ± 7.22 | 61.69 ± 9.21 | 0.627 |
Current smoking, n (%) | 2 (4.7) | 2 (4.9) | 1 (2.3) | 2 (4.9) | 0.920 |
Physical activities, MET-min/week | 3363.34 ± 2292.33 | 3675.63 ± 2335.91 | 3530.37 ± 3327.86 | 3521.72 ± 2436.81 | 0.961 |
BMI, kg/m2 | 22.81 ± 4.33 | 23.72 ± 2.55 | 23.04 ± 1.95 | 24.16 ± 3.04 | 0.174 |
WC, cm | 83.53 ± 8.34 | 85.18 ± 8.12 | 83.74 ± 6.83 | 86.22 ± 8.70 | 0.373 |
HC, cm | 95.60 ± 4.95 | 96.72 ± 6.49 | 95.62 ± 4.51 | 96.98 ± 6.59 | 0.567 |
WHR, % | 0.87 ± 0.07 | 0.88 ± 0.05 | 0.88 ± 0.05 | 0.89 ± 0.06 | 0.647 |
SBP, mmHg | 119.07 ± 15.74 | 122.02 ± 18.19 | 124.93 ± 17.55 | 124.99 ± 15.58 | 0.313 |
DBP, mmHg | 74.11 ± 9.84 | 74.24 ± 11.38 | 74.78 ± 9.38 | 76.83 ± 9.56 | 0.585 |
HR, bpm | 78.41 ± 9.98 | 77.12 ± 11.32 | 75.86 ± 10.24 | 79.17 ± 9.79 | 0.474 |
TC, mmol/L | 6.23 ± 0.87 | 6.28 ± 0.98 | 6.46 ± 1.08 | 6.29 ± 0.99 | 0.716 |
LDL cholesterol, mmol/L | 4.04 ± 0.87 | 4.05 ± 1.00 | 4.25 ± 1.12 | 4.03 ± 0.95 | 0.692 |
HDL cholesterol, mmol/L | 1.50 ± 0.41 | 1.38 ± 0.35 | 1.41 ± 0.43 | 1.39 ± 0.43 | 0.498 |
Triglyceride, mmol/L | 1.75 ± 0.94 | 2.20 ± 1.08 | 2.01 ± 1.15 | 2.27 ± 1.33 | 0.159 |
ApoA1, g/L | 1.64 ± 0.29 | 1.56 ± 0.28 | 1.58 ± 0.30 | 1.57 ± 0.29 | 0.621 |
ApoB, g/L | 1.26 ± 0.21 | 1.31 ± 0.25 | 1.38 ± 0.27 | 1.31 ± 0.20 | 0.125 |
ApoA1/apoB | 1.33 ± 0.33 | 1.26 ± 0.41 | 1.18 ± 0.29 | 1.22 ± 0.26 | 0.219 |
Uric acid, μmol/L | 355.09 ± 75.99 | 343.68 ± 91.58 | 378.37 ± 102.62 | 376.37 ± 95.94 | 0.246 |
Glucose, mmol/L | 5.57 ± 0.90 | 5.73 ± 1.20 | 5.72 ± 0.91 | 5.70 ± 0.85 | 0.846 |
Insulin, μU/mL | 10.70 ± 6.15 | 12.63 ± 10.90 | 10.13 ± 6.07 | 11.40 ± 6.37 | 0.474 |
HOMA-IR | 2.73 ± 1.82 | 3.47 ± 4.04 | 2.63 ± 1.84 | 2.95 ± 1.96 | 0.452 |
SOD, U/mL | 163.39 ± 15.26 | 164.28 ± 13.35 | 158.97 ± 13.05 | 165.82 ± 17.07 | 0.174 |
MDA, ng/mL | 5.94 ± 2.15 | 5.82 ± 1.75 | 5.71 ± 1.85 | 6.08 ± 1.83 | 0.831 |
Allantoin, μmol/L | 24.24 ± 15.93 | 22.23 ± 11.59 | 23.94 ± 15.37 | 26.04 ± 17.05 | 0.726 |
GST, ng/mL | 0.65 ± 0.24 | 0.67 ± 0.26 | 0.61 ± 0.22 | 0.63 ± 0.22 | 0.736 |
GSH, μg/mL | 50.26 ± 23.16 | 48.05 ± 18.92 | 52.11 ± 19.98 | 50.99 ± 21.72 | 0.842 |
GSH-Px, U/mL | 192.56 ± 120.16 | 176.14 ± 67.16 | 190.67 ± 72.48 | 187.31 ± 80.59 | 0.832 |
Urine 8-iso-PGF2α, pg/mg creatinine | 0.40 ± 0.35 | 0.38 ± 0.31 | 0.35 ± 0.29 | 0.38 ± 0.29 | 0.890 |
Urine 8-OHdG, pg/mg creatinine | 92.07 ± 88.36 | 82.44 ± 58.75 | 80.45 ± 75.10 | 78.64 ± 55.93 | 0.824 |
Placebo (n = 43) | 100 mg/d RSV (n = 41) | 300 mg/d RSV (n = 43) | 600 mg/d RSV (n = 41) | p b | |
---|---|---|---|---|---|
Total energy, kcal/day | |||||
Baseline | 1707.31 ± 426.51 | 1664.53 ± 349.31 | 1608.03 ± 385.70 | 1688.25 ± 519.33 | 0.724 |
8 weeks | 1694.26 ± 409.49 | 1745.70 ± 390.77 | 1602.58 ± 384.07 | 1696.12 ± 419.87 | 0.425 |
Protein, g/day | |||||
Baseline | 77.87 ± 28.69 | 68.09 ± 25.46 | 66.82 ± 20.29 | 72.58 ± 28.71 | 0.195 |
8 weeks | 77.74 ± 26.11 | 76.60 ± 21.19 | 69.04 ± 29.65 | 73.14 ± 24.64 | 0.396 |
Fat, g/day | |||||
Baseline | 75.14 ± 23.37 | 69.10 ± 25.00 | 64.28 ± 20.75 | 67.51 ± 20.87 | 0.159 |
8 weeks | 72.98 ± 21.26 | 75.38 ± 22.33 | 65.54 ± 19.81 | 74.16 ± 19.13 | 0.124 |
Carbohydrate, g/day | |||||
Baseline | 179.16 ± 56.29 | 198.48 ± 100.37 | 190.73 ± 68.89 | 210.64 ± 106.46 | 0.388 |
8 weeks | 187.52 ± 58.83 | 205.04 ± 84.67 | 193.21 ± 66.95 | 198.30 ± 67.68 | 0.700 |
Dietary fiber, g/day | |||||
Baseline | 13.43 ± 8.07 | 10.66 ± 6.75 | 12.02 ± 8.48 | 12.65 ± 7.32 | 0.410 |
8 weeks | 14.44 ± 10.62 | 12.22 ± 6.80 | 11.75 ± 11.22 | 11.96 ± 5.73 | 0.481 |
Cholesterol, mg/day | |||||
Baseline | 454.50 ± 196.67 | 439.27 ± 233.49 | 404.69 ± 206.33 | 452.78 ± 215.25 | 0.681 |
8 weeks | 516.51 ± 211.21 | 502.36 ± 192.82 | 428.11 ± 211.86 | 461.86 ± 186.21 | 0.170 |
Vitamin A, μg retinol equivalent/day | |||||
Baseline | 752.88 ± 343.70 | 712.75 ± 485.53 | 658.63 ± 356.38 | 692.70 ± 350.01 | 0.722 |
8 weeks | 779.78 ± 428.21 | 749.09 ± 354.98 | 686.08 ± 358.88 | 788.16 ± 511.28 | 0.667 |
Vitamin E, mg/day | |||||
Baseline | 23.61 ± 9.83 | 20.00 ± 6.04 | 20.92 ± 8.03 | 22.71 ± 7.28 | 0.149 |
8 weeks | 23.46 ± 12.88 | 22.39 ± 9.22 | 21.04 ± 8.62 | 24.00 ± 8.84 | 0.546 |
Vitamin C, mg/day | |||||
Baseline | 101.93 ± 63.72 | 102.51 ± 50.53 | 105.31 ± 50.39 | 101.54 ± 53.61 | 0.989 |
8 weeks | 105.55 ± 79.54 | 108.31 ± 51.23 | 102.75 ± 49.95 | 103.31 ± 55.10 | 0.974 |
Resveratrol, mg/day | |||||
Baseline | 11.48 ± 8.75 | 10.55 ± 7.00 | 10.76 ± 5.27 | 10.53 ± 6.07 | 0.912 |
8 weeks | 11.61 ± 9.16 | 11.13 ± 6.19 | 10.39 ± 6.59 | 11.81 ± 8.32 | 0.834 |
Placebo (n = 43) | 100 mg/d RSV (n = 41) | 300 mg/d RSV (n = 43) | 600 mg/d RSV (n = 41) | p b | p Trend | |
---|---|---|---|---|---|---|
TC, mmol/L | ||||||
Baseline | 6.23 ± 0.87 | 6.28 ± 0.98 | 6.46 ± 1.08 | 6.29 ± 0.99 | 0.716 | |
4 weeks | 6.14 ± 0.93 | 6.27 ± 0.89 | 6.43 ± 1.19 | 6.44 ± 1.14 | ||
8 weeks | 6.16 ± 1.02 | 6.34 ± 0.98 | 6.52 ± 1.25 | 6.43 ± 1.30 | ||
4 weeks change | −0.09 ± 0.56 | −0.01 ± 0.50 | −0.03 ± 0.79 | 0.15 ± 0.74 | 0.392 | 0.125 |
8 weeks change | −0.07 ± 0.67 | 0.06 ± 0.85 | 0.06 ± 0.86 | 0.15 ± 0.69 | 0.636 | 0.224 |
LDL cholesterol, mmol/L | ||||||
Baseline | 4.04 ± 0.87 | 4.05 ± 1.00 | 4.25 ± 1.12 | 4.03 ± 0.95 | 0.692 | |
4 weeks | 4.04 ± 0.93 | 3.98 ± 0.95 | 4.20 ± 1.22 | 4.28 ± 1.16 | ||
8 weeks | 3.98 ± 0.94 | 4.02 ± 0.97 | 4.27 ± 1.27 | 4.24 ± 1.25 | ||
4 weeks change | 0.00 ± 0.54 | −0.08 ± 0.56 | −0.05 ± 0.77 | 0.26 ± 0.74 | 0.091 | 0.081 |
8 weeks change | −0.06 ± 0.64 | −0.03 ± 0.85 | 0.02 ± 0.88 | 0.22 ± 0.74 | 0.380 | 0.107 |
HDL cholesterol, mmol/L | ||||||
Baseline | 1.50 ± 0.41 | 1.38 ± 0.35 | 1.41 ± 0.43 | 1.39 ± 0.43 | 0.498 | |
4 weeks | 1.52 ± 0.42 | 1.33 ± 0.32 | 1.37 ± 0.40 | 1.35 ± 0.38 | ||
8 weeks | 1.52 ± 0.43 | 1.37 ± 0.35 | 1.40 ± 0.40 | 1.36 ± 0.39 | ||
4 weeks change | 0.02 ± 0.19 | −0.05 ± 0.19 | −0.04 ± 0.13 | −0.04 ± 0.12 | 0.189 | 0.150 |
8 weeks change | 0.02 ± 0.17 | −0.01 ± 0.19 | −0.01 ± 0.15 | −0.03 ± 0.16 | 0.586 | 0.193 |
Triglyceride, mmol/L | ||||||
Baseline | 1.75 ± 0.94 | 2.20 ± 1.08 | 2.01 ± 1.15 | 2.27 ± 1.33 | 0.159 | |
4 weeks | 1.61 ± 0.88 | 2.41 ± 1.41 | 2.21 ± 1.31 | 2.32 ± 1.50 | ||
8 weeks | 1.77 ± 1.06 | 2.32 ± 1.31 | 2.22 ± 1.20 | 2.30 ± 1.58 | ||
4 weeks change | −0.14 ± 0.59 | 0.21 ± 0.96 | 0.20 ± 0.68 | 0.05 ± 0.55 | 0.084 | 0.731 |
8 weeks change | 0.02 ± 0.86 | 0.12 ± 0.91 | 0.21 ± 0.70 | 0.03 ± 0.85 | 0.719 | 0.848 |
ApoA1, g/L | ||||||
Baseline | 1.64 ± 0.29 | 1.56 ± 0.28 | 1.58 ± 0.30 | 1.57 ± 0.29 | 0.621 | |
4 weeks | 1.60 ± 0.26 | 1.52 ± 0.26 | 1.56 ± 0.28 | 1.53 ± 0.26 | ||
8 weeks | 1.61 ± 0.26 | 1.56 ± 0.29 | 1.59 ± 0.27 | 1.54 ± 0.26 | ||
4 weeks change | −0.04 ± 0.19 | −0.04 ± 0.13 | −0.03 ± 0.11 | −0.04 ± 0.10 | 0.937 | 0.821 |
8 weeks change | −0.03 ± 0.20 | 0.00 ± 0.14 | 0.00 ± 0.12 | −0.04 ± 0.11 | 0.440 | 0.897 |
ApoB, g/L | ||||||
Baseline | 1.26 ± 0.21 | 1.31 ± 0.25 | 1.38 ± 0.27 | 1.31 ± 0.20 | 0.125 | |
4 weeks | 1.24 ± 0.22 | 1.30 ± 0.22 | 1.37 ± 0.30 | 1.37 ± 0.26 | ||
8 weeks | 1.25 ± 0.23 | 1.31 ± 0.23 | 1.41 ± 0.33 | 1.38 ± 0.28 | ||
4 weeks change | − 0.02 ± 0.14 | −0.01 ± 0.14 | −0.01 ± 0.21 | 0.06 ± 0.18 | 0.106 | 0.043 |
8 weeks change | 0.00 ± 0.14 | 0.00 ± 0.20 | 0.03 ± 0.25 | 0.07 ± 0.16 | 0.278 | 0.062 |
ApoA1/apoB | ||||||
Baseline | 1.33 ± 0.33 | 1.26 ± 0.41 | 1.18 ± 0.29 | 1.22 ± 0.26 | 0.219 | |
4 weeks | 1.32 ± 0.32 | 1.22 ± 0.32 | 1.18 ± 0.32 | 1.14 ± 0.25 | ||
8 weeks | 1.32 ± 0.33 | 1.24 ± 0.36 | 1.19 ± 0.35 | 1.15 ± 0.24 | ||
4 weeks change | 0.00 ± 0.16 | −0.03 ± 0.21 | 0.00 ± 0.20 | −0.08 ± 0.17 | 0.165 | 0.130 |
8 weeks change | 0.00 ± 0.17 | −0.01 ± 0.27 | 0.01 ± 0.25 | −0.08 ± 0.15 | 0.256 | 0.164 |
Placebo (n = 43) | 100 mg/d RSV (n = 41) | 300 mg/d RSV (n = 43) | 600 mg/d RSV (n = 41) | p | p Trend | |
---|---|---|---|---|---|---|
Uric acid, μmol/L | ||||||
Baseline | 355.09 ± 75.99 | 343.68 ± 91.58 | 378.37 ± 102.62 | 376.37 ± 95.94 | 0.246 | |
4 weeks | 361.69 ± 72.29 | 349.24 ± 77.27 | 362.51 ± 93.51 b | 358.44 ± 87.31 | ||
8 weeks | 363.28 ± 79.49 | 346.63 ± 90.58 | 354.77 ± 89.00 b | 352.00 ± 87.52 b | ||
4 weeks change | 6.59 ± 43.45 | 5.56 ± 76.15 | −15.86 ± 44.40 | −17.93 ± 63.42 | 0.091 | 0.019 |
8 weeks change | 8.19 ± 44.60 | 2.95 ± 47.16 | −23.60 ± 61.53 c | −24.37 ± 64.24 c | 0.008 | 0.001 |
XO activity, U/mL | ||||||
Baseline | 0.47 ± 0.28 | 0.58 ± 0.38 | 0.56 ± 0.37 | 0.58 ± 0.32 | 0.436 | |
4 weeks | 0.53 ± 0.34 | 0.62 ± 0.43 | 0.58 ± 0.33 | 0.50 ± 0.27 | ||
8 weeks | 0.51 ± 0.35 | 0.56 ± 0.42 | 0.53 ± 0.33 | 0.49 ± 0.26 | ||
4 weeks change | 0.06 ± 0.22 | 0.04 ± 0.32 | 0.02 ± 0.34 | −0.07 ± 0.32 | 0.195 | 0.045 |
8 weeks change | 0.03 ± 0.20 | −0.01 ± 0.30 | −0.03 ± 0.32 | −0.09 ± 0.29 d | 0.258 | 0.048 |
Placebo (n = 43) | 100 mg/d RSV (n = 41) | 300 mg/d RSV (n = 43) | 600 mg/d RSV (n = 41) | p b | p Trend | |
---|---|---|---|---|---|---|
Glucose, mmol/L | ||||||
Baseline | 5.57 ± 0.90 | 5.73 ± 1.20 | 5.72 ± 0.91 | 5.70 ± 0.85 | 0.846 | |
4 weeks | 5.54 ± 0.70 | 5.80 ± 1.08 | 5.77 ± 0.79 | 5.77 ± 0.98 | ||
8 weeks | 5.62 ± 0.73 | 5.64 ± 1.14 | 5.76 ± 0.79 | 5.88 ± 1.04 | ||
4 weeks change | −0.03 ± 0.50 | 0.06 ± 0.57 | 0.05 ± 0.39 | 0.08 ± 0.65 | 0.808 | 0.424 |
8 weeks change | 0.05 ± 0.35 | −0.10 ± 0.61 | 0.03 ± 0.54 | 0.19 ± 0.64 | 0.138 | 0.160 |
Insulin, μU/mL | ||||||
Baseline | 10.70 ± 6.15 | 12.63 ± 10.90 | 10.13 ± 6.07 | 11.40 ± 6.37 | 0.474 | |
4 weeks | 10.04 ± 5.61 | 11.75 ± 7.25 | 10.36 ± 6.62 | 11.50 ± 6.63 | ||
8 weeks | 9.86 ± 6.73 | 11.25 ± 6.52 | 10.40 ± 5.95 | 12.45 ± 8.68 | ||
4 weeks change | −0.66 ± 3.87 | −0.88 ± 6.26 | 0.24 ± 4.05 | 0.10 ± 4.00 | 0.616 | 0.288 |
8 weeks change | −0.84 ± 4.88 | −1.38 ± 9.92 | 0.27 ± 4.02 | 1.05 ± 8.30 | 0.409 | 0.139 |
HOMA-IR | ||||||
Baseline | 2.73 ± 1.82 | 3.47 ± 4.04 | 2.63 ± 1.84 | 2.95 ± 1.96 | 0.452 | |
4 weeks | 2.53 ± 1.52 | 3.13 ± 2.33 | 2.71 ± 1.84 | 3.03 ± 2.00 | ||
8 weeks | 2.51 ± 1.78 | 2.92 ± 1.97 | 2.71 ± 1.66 | 3.38 ± 2.90 | ||
4 weeks change | −0.20 ± 1.10 | −0.34 ± 2.27 | 0.08 ± 1.22 | 0.08 ± 1.38 | 0.523 | 0.241 |
8 weeks change | −0.22 ± 1.28 | −0.55 ± 3.74 | 0.08 ± 1.34 | 0.43 ± 2.71 | 0.315 | 0.131 |
Placebo (n = 43) | 100 mg/d RSV (n = 41) | 300 mg/d RSV (n = 43) | 600 mg/d RSV (n = 41) | p b | p Trend | |
---|---|---|---|---|---|---|
SOD, U/mL | ||||||
Baseline | 163.39 ± 15.26 | 164.28 ± 13.35 | 158.97 ± 13.05 | 165.82 ± 17.07 | 0.174 | |
4 weeks | 158.21 ± 12.80 c | 157.77 ± 17.24 c | 157.06 ± 12.77 | 158.72 ± 13.92 c | ||
8 weeks | 160.92 ± 12.56 | 162.22 ± 16.22 | 159.49 ± 13.13 | 162.92 ± 13.25 | ||
4 weeks change | −5.18 ± 11.22 | −6.51 ± 18.82 | −1.91 ± 12.48 | −7.09 ± 11.87 | 0.320 | 0.905 |
8 weeks change | −2.47 ± 13.49 | −2.06 ± 19.63 | 0.53 ± 12.08 | −2.90 ± 10.52 | 0.688 | 0.896 |
MDA, ng/mL | ||||||
Baseline | 5.94 ± 2.15 | 5.82 ± 1.75 | 5.71 ± 1.85 | 6.08 ± 1.83 | 0.831 | |
4 weeks | 4.05 ± 1.91 | 4.00 ± 0.81 | 3.64 ± 0.94 | 3.80 ± 0.97 | ||
8 weeks | 3.61 ± 1.33 | 3.71 ± 1.41 | 3.67 ± 1.25 | 3.40 ± 1.11 | ||
4 weeks change | −1.89 ± 2.88 | −1.82 ± 1.89 | −2.07 ± 1.83 | −2.27 ± 1.91 | 0.783 | 0.354 |
8 weeks change | −2.33 ± 2.31 | −2.12 ± 2.09 | −2.04 ± 2.44 | −2.68 ± 2.36 | 0.585 | 0.542 |
Allantoin, μmol/L | ||||||
Baseline | 24.24 ± 15.93 | 22.23 ± 11.59 | 23.94 ± 15.37 | 26.04 ± 17.05 | 0.726 | |
4 weeks | 22.87 ± 12.90 | 20.82 ± 12.44 | 20.94 ± 12.00 | 26.20 ± 27.83 | ||
8 weeks | 20.73 ± 10.51 | 24.12 ± 17.24 | 22.16 ± 13.20 | 23.08 ± 19.54 | ||
4 weeks change | −1.38 ± 17.71 | −1.41 ± 15.78 | −3.01 ± 18.69 | 0.16 ± 27.40 | 0.917 | 0.831 |
8 weeks change | −3.52 ± 15.50 | 1.90 ± 20.00 | −1.79 ± 20.24 | −2.96 ± 19.21 | 0.557 | 0.877 |
GST, ng/mL | ||||||
Baseline | 0.65 ± 0.24 | 0.67 ± 0.26 | 0.61 ± 0.22 | 0.63 ± 0.22 | 0.736 | |
4 weeks | 0.57 ± 0.23 | 0.61 ± 0.25 | 0.54 ± 0.22 | 0.58 ± 0.25 | ||
8 weeks | 0.58 ± 0.23 | 0.63 ± 0.25 | 0.55 ± 0.23 | 0.59 ± 0.24 | ||
4 weeks change | −0.07 ± 0.11 | −0.06 ± 0.12 | −0.07 ± 0.12 | −0.05 ± 0.19 | 0.871 | 0.654 |
8 weeks change | −0.07 ± 0.13 | −0.04 ± 0.15 | −0.06 ± 0.13 | −0.04 ± 0.18 | 0.784 | 0.601 |
GSH, μg/mL | ||||||
Baseline | 50.26 ± 23.16 | 48.05 ± 18.92 | 52.11 ± 19.98 | 50.99 ± 21.72 | 0.842 | |
4 weeks | 57.69 ± 24.13 | 53.63 ± 21.65 | 60.31 ± 26.16 | 57.51 ± 23.75 | ||
8 weeks | 56.66 ± 24.93 | 50.53 ± 22.13 | 59.45 ± 26.37 | 55.37 ± 24.03 | ||
4 weeks change | 7.43 ± 14.25 | 5.57 ± 11.62 | 8.20 ± 14.68 | 6.52 ± 17.17 | 0.858 | 0.992 |
8 weeks change | 6.40 ± 14.55 | 2.48 ± 12.37 | 7.34 ± 14.75 | 4.38 ± 15.17 | 0.411 | 0.904 |
GSH-Px, U/mL | ||||||
Baseline | 192.56 ± 120.16 | 176.14 ± 67.16 | 190.67 ± 72.48 | 187.31 ± 80.59 | 0.832 | |
4 weeks | 212.38 ± 89.94 | 196.45 ± 78.67 | 236.16 ± 131.33 | 212.00 ± 90.24 | ||
8 weeks | 208.06 ± 102.03 | 190.10 ± 84.22 | 207.52 ± 85.12 | 203.77 ± 88.29 | ||
4 weeks change | 19.82 ± 89.52 | 20.31 ± 43.82 | 45.49 ± 82.45 | 24.69 ± 66.48 | 0.319 | 0.431 |
8 weeks change | 15.51 ± 57.16 | 13.96 ± 52.13 | 16.85 ± 67.68 | 16.46 ± 57.34 | 0.996 | 0.888 |
Urine 8-iso-PGF2α, pg/mg creatinine | ||||||
Baseline | 0.40 ± 0.35 | 0.38 ± 0.31 | 0.35 ± 0.29 | 0.38 ± 0.29 | 0.890 | |
4 weeks | 0.30 ± 0.21 | 0.23 ± 0.16 | 0.28 ± 0.26 | 0.25 ± 0.19 | ||
8 weeks | 0.24 ± 0.13 | 0.24 ± 0.15 | 0.25 ± 0.23 | 0.22 ± 0.17 | ||
4 weeks change | −0.11 ± 0.34 | −0.14 ± 0.32 | −0.07 ± 0.29 | −0.12 ± 0.31 | 0.720 | 0.915 |
8 weeks change | −0.16 ± 0.32 | −0.14 ± 0.30 | −0.10 ± 0.33 | −0.16 ± 0.27 | 0.819 | 0.873 |
Urine 8-OHdG, pg/mg creatinine | ||||||
Baseline | 92.07 ± 88.36 | 82.44 ± 58.75 | 80.45 ± 75.10 | 78.64 ± 55.93 | 0.824 | |
4 weeks | 62.68 ± 33.14 | 52.52 ± 27.75 | 63.17 ± 44.95 | 58.21 ± 31.04 | ||
8 weeks | 51.39 ± 22.45 | 52.64 ± 30.26 | 53.16 ± 36.32 | 48.71 ± 24.93 | ||
4 weeks change | −29.40 ± 78.14 | −29.93 ± 54.98 | −17.28 ± 69.38 | −20.43 ± 61.23 | 0.763 | 0.392 |
8 weeks change | −40.68 ± 77.93 | −29.81 ± 52.87 | −27.29 ± 78.45 | −29.94 ± 54.24 | 0.799 | 0.455 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zeng, Y.; Pan, Z.; Jin, Y.; Li, Q.; Pang, J.; Wang, X.; Chen, Y.; Yang, Y.; Ling, W. A Randomized Trial on Resveratrol Supplement Affecting Lipid Profile and Other Metabolic Markers in Subjects with Dyslipidemia. Nutrients 2023, 15, 492. https://doi.org/10.3390/nu15030492
Zhou Y, Zeng Y, Pan Z, Jin Y, Li Q, Pang J, Wang X, Chen Y, Yang Y, Ling W. A Randomized Trial on Resveratrol Supplement Affecting Lipid Profile and Other Metabolic Markers in Subjects with Dyslipidemia. Nutrients. 2023; 15(3):492. https://doi.org/10.3390/nu15030492
Chicago/Turabian StyleZhou, Yuqing, Yupeng Zeng, Zhijun Pan, Yufeng Jin, Qing Li, Juan Pang, Xin Wang, Yu Chen, Yan Yang, and Wenhua Ling. 2023. "A Randomized Trial on Resveratrol Supplement Affecting Lipid Profile and Other Metabolic Markers in Subjects with Dyslipidemia" Nutrients 15, no. 3: 492. https://doi.org/10.3390/nu15030492
APA StyleZhou, Y., Zeng, Y., Pan, Z., Jin, Y., Li, Q., Pang, J., Wang, X., Chen, Y., Yang, Y., & Ling, W. (2023). A Randomized Trial on Resveratrol Supplement Affecting Lipid Profile and Other Metabolic Markers in Subjects with Dyslipidemia. Nutrients, 15(3), 492. https://doi.org/10.3390/nu15030492