Application of a Two-Dimensional Mapping-Based Visualization Technique: Nutrient-Value-Based Food Grouping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Tables of Food Composition in Japan, 2020 (Eighth Revised Edition)
2.2. Data Imputation
2.3. Missing Values
2.4. Mapping
2.5. Food Classification
3. Results
4. Discussion
4.1. Discussion
4.2. Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 7 June 2023).
- Herforth, A.; Arimond, M.; Álvarez-Sánchez, C.; Coates, J.; Christianson, K.; Muehlhoff, E. A Global Review of Food-Based Dietary Guidelines. Adv. Nutr. 2019, 10, 590–605. [Google Scholar] [CrossRef] [PubMed]
- Yoshiike, N.; Hayashi, F.; Takemi, Y.; Mizoguchi, K.; Seino, F. A New Food Guide in Japan: The Japanese Food Guide Spinning Top. Nutr. Rev. 2007, 65, 149–154. [Google Scholar] [CrossRef]
- Murphy, S.P.; Barr, S.I. Food guides reflect similarities and differences in dietary guidance in three countries (Japan, Canada, and the United States). Nutr. Rev. 2007, 65, 141–148. [Google Scholar] [CrossRef]
- Elmadfa, I.; Meyer, A.L. Importance of food composition data to nutrition and public health. Eur. J. Clin. Nutr. 2010, 64 (Suppl. S3), S4–S7. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T. Research on Formulation and Application of “Standard Tables of Food Composition in Japan”. Jpn. J. Nutr. Diet. 2011, 69, 214–228. [Google Scholar] [CrossRef]
- Standard Tables of Food Composition in Japan–2020–(Eighth Rivised Edition); Report of the Subdivision on Resources; The Council for Science and Technology, Ministry of Education, Culture, Sports, Science and Technology: Tokyo, Japan, 2020.
- Watanabe, T. Food Composition Tables of Japan and the Nutrient Table/Database. J. Nutr. Sci. Vitaminol. 2015, 61, S25–S27. [Google Scholar] [CrossRef]
- Q&A about Standard Tables of Food Composition in Japan. Available online: https://www.mext.go.jp/a_menu/syokuhinseibun/__icsFiles/afieldfile/2019/01/15/1357804_001.pdf (accessed on 15 June 2023).
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Balakrishna, Y.; Manda, S.; Mwambi, H.; van Graan, A. Identifying Nutrient Patterns in South African Foods to Support National Nutrition Guidelines and Policies. Nutrients 2021, 13, 3194. [Google Scholar] [CrossRef]
- Prado, S.B.R.D.; Giuntini, E.B.; Grande, F.; Menezes, E.W.D. Techniques to evaluate changes in the nutritional profile of food products. J. Food Compos. Anal. 2016, 53, 1–6. [Google Scholar] [CrossRef]
- Li, Y.; Bahadur, R.; Ahuja, J.; Pehrsson, P.; Harnly, J. Macro-and micronutrients in raw plant foods: The similarities of foods and implication for dietary diversification. J. Food Compos. Anal. 2021, 102, 103993. [Google Scholar] [CrossRef]
- van der Maaten, L.; Hinton, G. Viualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Lunterova, A.; Spetko, O.; Palamas, G. Explorative Visualization of Food Data to Raise Awareness of Nutritional Value. In HCI International 2019—Late Breaking Papers; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 180–191. [Google Scholar] [CrossRef]
- Overview of the Dietary Reference Intakes for Japanese. 2020. Available online: https://www.mhlw.go.jp/content/10900000/000862500.pdf (accessed on 7 June 2023).
- Uenishi, K. Dietary Reference Intakes 2020. J. Cookey Sci. Jpn 2020, 53, 153–156. [Google Scholar] [CrossRef]
- Joyce, J.M. Kullback-Leibler Divergence. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 720–722. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, F.; Tao, P. t-Distributed Stochastic Neighbor Embedding Method with the Least Information Loss for Macromolecular Simulations. J. Chem. Theory Comput. 2018, 14, 5499–5510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 218. [Google Scholar] [CrossRef]
- Abu Alfeilat, H.A.; Hassanat, A.B.A.; Lasassmeh, O.; Tarawneh, A.S.; Alhasanat, M.B.; Eyal Salman, H.S.; Prasath, V.B.S. Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review. Big Data 2019, 7, 221–248. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.K.; Inoue, M. Green tea and cancer and cardiometabolic diseases: A review of the current epidemiological evidence. Eur. J. Clin. Nutr. 2021, 75, 865–876. [Google Scholar] [CrossRef]
- Cabrera, C.; Artacho, R.; Giménez, R. Beneficial effects of green tea—A review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef]
- Montagna, M.T.; Diella, G.; Triggiano, F.; Caponio, G.R.; De Giglio, O.; Caggiano, G.; Di Ciaula, A.; Portincasa, P. Chocolate, “Food of the Gods”: History, Science, and Human Health. Int. J. Environ. Res. Public Health 2019, 16, 4960. [Google Scholar] [CrossRef]
- Magrone, T.; Russo, M.A.; Jirillo, E. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications. Front. Immunol. 2017, 8, 677. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Gan, L.; Yu, K.; Männistö, S.; Huang, J.; Albanes, D. Relationship between chocolate consumption and overall and cause-specific mortality, systematic review and updated meta-analysis. Eur. J. Epidemiol. 2022, 37, 321–333. [Google Scholar] [CrossRef]
- Ding, E.L.; Hutfless, S.M.; Ding, X.; Girotra, S. Chocolate and prevention of cardiovascular disease: A systematic review. Nutr. Metab. 2006, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Latif, R. Chocolate/cocoa and human health: A review. Neth. J. Med. 2013, 71, 63–68. [Google Scholar]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017, 54, 858–870. [Google Scholar] [CrossRef]
- Mudryj, A.N.; Yu, N.; Aukema, H.M. Nutritional and health benefits of pulses. Appl. Physiol. Nutr. Metab. 2014, 39, 1197–1204. [Google Scholar] [CrossRef]
- Thompson, F.E.; Willis, G.B.; Thompson, O.M.; Yaroch, A.L. The meaning of ‘fruits’ and ‘vegetables’. Public. Health Nutr. 2011, 14, 1222–1228. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef]
- Moore, T.J.; Conlin, P.R.; Ard, J.; Svetkey, L.P. DASH (Dietary Approaches to Stop Hypertension) diet is effective treatment for stage 1 isolated systolic hypertension. Hypertension 2001, 38, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Sasazuki, S.; Shimazu, T.; Sawada, N.; Yamaji, T.; Iwasaki, M.; Mizoue, T.; Tsugane, S. Association of dietary diversity with total mortality and major causes of mortality in the Japanese population: JPHC study. Eur. J. Clin. Nutr. 2020, 74, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Kurotani, K.; Akter, S.; Kashino, I.; Goto, A.; Mizoue, T.; Noda, M.; Sasazuki, S.; Sawada, N.; Tsugane, S. Quality of diet and mortality among Japanese men and women: Japan Public Health Center based prospective study. BMJ 2016, 352, i1209. [Google Scholar] [CrossRef] [PubMed]
Food Group | Number of Foods | ||
---|---|---|---|
Before Data Imputation | After Data Imputation | ||
All Data | Complete Values | /100 kcal | |
1 Cereals | 205 | 145 | 189 |
2 Potatoes and starches | 70 | 37 | 60 |
3 Sugars and sweeteners | 30 | 0 | 17 |
4 Pulses | 108 | 74 | 105 |
5 Nuts and seeds | 46 | 38 | 46 |
6 Vegetables | 401 | 246 | 381 |
7 Fruits | 183 | 79 | 145 |
8 Mushrooms | 55 | 44 | 55 |
9 Algae | 57 | 39 | 56 |
10 Fish, mollusks, and crustaceans | 453 | 377 | 453 |
11 Meat | 310 | 289 | 310 |
12 Eggs | 23 | 22 | 23 |
13 Milk and milk products | 59 | 43 | 58 |
14 Fats and oils | 34 | 28 | 31 |
15 Confectionaries | 185 | 105 | 176 |
16 Beverages | 61 | 12 | 23 |
17 Seasonings and spices | 148 | 41 | 93 |
Total | 2428 | 1619 | 2221 |
Nutrient/Energy | Number of Foods | Percentage of Missing Values (%) | Selected in This Work | ||
---|---|---|---|---|---|
Energy | 2429 | 0 | ✓ | ||
Water | 2429 | 0 | ✓ | ||
Protein | 2427 | 0 | ✓ | ||
Dietary Fats | Fat | 2427 | 0 | ✓ | |
Saturated fatty acid | 1787 | 26 | ✓ | ||
n-6 PUFA | 1777 | 27 | ✓ | ||
n-3 PUFA | 1783 | 27 | ✓ | ||
Carbohydrates | Carbohydrate | 2428 | 0 | ✓ | |
Dietary fiber | 2321 | 4 | ✓ | ||
Vitamins | Fat-soluble | Vitamin A | 2405 | 1 | ✓ |
Vitamin D | 2340 | 4 | ✓ | ||
Vitamin E | 2320 | 4 | ✓ | ||
Vitamin K | 2242 | 8 | ✓ | ||
Water-Soluble | Vitamin B1 | 2421 | 0 | ✓ | |
Vitamin B2 | 2424 | 0 | ✓ | ||
Niacin equivalent | 2428 | 0 | ✓ | ||
Vitamin B6 | 2387 | 2 | ✓ | ||
Vitamin B12 | 2341 | 4 | ✓ | ||
Folic acid | 2402 | 1 | ✓ | ||
Pantothenic acid | 2390 | 2 | ✓ | ||
Biotin | 1242 | 49 | |||
Vitamin C | 2398 | 1 | ✓ | ||
Minerals | Macro | Sodium | 2425 | 0 | ✓ |
Potassium | 2426 | 0 | ✓ | ||
Calcium | 2426 | 0 | ✓ | ||
Magnesium | 2418 | 0 | ✓ | ||
Phosphorus | 2426 | 0 | ✓ | ||
Micro | Iron | 2426 | 0 | ✓ | |
Zinc | 2415 | 1 | ✓ | ||
Copper | 2415 | 1 | ✓ | ||
Manganese | 2280 | 6 | ✓ | ||
Iodine | 1238 | 49 | |||
Selenium | 1249 | 49 | |||
Chromium | 1248 | 49 | |||
Molybdenum | 1238 | 49 |
Predictive Food Group | MR (%) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |||
Actual food group | 1 | 178 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 6 |
2 | 1 | 56 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 7 | |
3 | 0 | 2 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 24 | |
4 | 0 | 0 | 0 | 101 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 4 | |
5 | 1 | 2 | 0 | 1 | 38 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 17 | |
6 | 2 | 5 | 0 | 1 | 0 | 366 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | |
7 | 1 | 4 | 1 | 0 | 2 | 3 | 130 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 10 | |
8 | 1 | 0 | 0 | 0 | 0 | 6 | 1 | 45 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 18 | |
9 | 0 | 2 | 0 | 0 | 0 | 6 | 0 | 2 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | |
10 | 2 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 443 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | |
11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 298 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 0 | 0 | 1 | 0 | 0 | 4 | |
13 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 45 | 1 | 6 | 0 | 0 | 22 | |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 29 | 0 | 0 | 0 | 6 | |
15 | 6 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 163 | 0 | 0 | 7 | |
16 | 0 | 0 | 0 | 1 | 0 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 | 1 | 48 | |
17 | 2 | 0 | 0 | 2 | 0 | 7 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 75 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wakayama, R.; Takasugi, S.; Honda, K.; Kanaya, S. Application of a Two-Dimensional Mapping-Based Visualization Technique: Nutrient-Value-Based Food Grouping. Nutrients 2023, 15, 5006. https://doi.org/10.3390/nu15235006
Wakayama R, Takasugi S, Honda K, Kanaya S. Application of a Two-Dimensional Mapping-Based Visualization Technique: Nutrient-Value-Based Food Grouping. Nutrients. 2023; 15(23):5006. https://doi.org/10.3390/nu15235006
Chicago/Turabian StyleWakayama, Ryota, Satoshi Takasugi, Keiko Honda, and Shigehiko Kanaya. 2023. "Application of a Two-Dimensional Mapping-Based Visualization Technique: Nutrient-Value-Based Food Grouping" Nutrients 15, no. 23: 5006. https://doi.org/10.3390/nu15235006
APA StyleWakayama, R., Takasugi, S., Honda, K., & Kanaya, S. (2023). Application of a Two-Dimensional Mapping-Based Visualization Technique: Nutrient-Value-Based Food Grouping. Nutrients, 15(23), 5006. https://doi.org/10.3390/nu15235006