The Physiological Requirements of and Nutritional Recommendations for Equestrian Riders
Abstract
:1. Introduction
- Describe the pertinent rider physiology of equestrian disciplines to estimate energy expenditure and the contribution of energy systems to equestrian performance.
- Provide nutrition and hydration recommendations/guidelines for competition and training for equestrian athletes.
- Highlight the practical challenges of the equestrian environment.
- Provide example scenarios to help contextualise points one, two, and three.
2. Physiological Requirements of Equestrian Sports
2.1. Physiological Demands of Equestrian Sports
2.2. Impact of Environments
2.3. Body Composition
2.4. Assistive Technologies
3. Nutritional Recommendations for Equestrian Sports
3.1. Macronutrient Recommendations
3.2. Carbohydrate
3.3. Protein
3.4. Fat
3.5. Hydration Recommendations
3.6. Under-Fuelling and Disordered Eating
3.7. Micronutrient Recommendations
3.7.1. Iron
3.7.2. Vitamin D
3.7.3. Calcium
3.8. Alcohol and Equestrian Sport
4. Practical Challenges of the Equestrian Environment
4.1. Competitive Challenges
4.2. Personal and Professional Challenges
4.3. Injury and Concussion
4.4. Female Participation
5. Example Scenarios
5.1. Show Jumping
5.2. Polo
5.3. Eventing
6. Future Directions
- In order to maximise the efficacy of the nutritional recommendations above, we need to assess the gastrointestinal symptoms experienced by equestrian athletes and develop gut training strategies at an individual level.
- Studies are required to assess the effects of nutritional interventions to support equestrian athletes’ performance and wellbeing in training and competition.
- This may also comprise a wider dietary and physiological assessment.
- Commonly used, evidence-based supplements matching assessed or perceived physiological event demands may present an appropriate starting point for interventions.
- Given the relative paucity of evidence for best practices, an integrated approach between performance personnel supporting equestrian athletes is required. Some challenges faced by equestrian athletes are best addressed by a range of practitioners, as opposed to a single point of ownership. Having the professional and intellectual humility to accept and encourage this will hopefully lead to better outcomes for all stakeholders.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millet, G.P.; Brocherie, F.; Burtscher, J. Olympic Sports Science—Bibliometric Analysis of All Summer and Winter Olympic Sports Research. Front. Sports Act. Living 2021, 3, 772140. [Google Scholar] [CrossRef]
- Kusma, M.; Jung, J.; Dienst, M.; Goedde, S.; Kohn, D.; Seil, R. Arthroscopic Treatment of an Avulsion Fracture of the Ligamentum Teres of the Hip in an 18-Year-Old Horse Rider. Arthrosc. J. Arthrosc. Relat. Surg. 2004, 20, 64–66. [Google Scholar] [CrossRef]
- McCrory, P.; Turner, M. Equestrian Injuries. Med. Sport Sci. 2005, 48, 8–17. [Google Scholar] [CrossRef]
- Lloyd, R.G. Riding and Other Equestrian Injuries: Considerable Severity. Br. J. Sports Med. 1987, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Paix, B.R. Rider Injury Rates and Emergency Medical Services at Equestrian Events. Br. J. Sports Med. 1999, 33, 46. [Google Scholar] [CrossRef] [PubMed]
- González, M.E.; Šarabon, N. Shock Attenuation and Electromyographic Activity of Advanced and Novice Equestrian Riders’ Trunk. Appl. Sci. 2021, 11, 2304. [Google Scholar] [CrossRef]
- Wilkins, C. Dynamic Technique Analysis of the Female Equestrian Rider. Ph.D. Thesis, University of the West of England, Bristol, UK, 2021. [Google Scholar]
- Fédération Equestre Interationale. FEI Facts and Figures. Available online: https://inside.fei.org/fei/about-fei/publications/fei-annual-report/2021/feifactsandfigures/ (accessed on 30 October 2023).
- Dumbell, L.C. Profiles of British Equestrian Olympians: Evaluating Histori Cal, Socio-Cultural and Sporting Influences and How They Could Inform Equestrianism in the Future. Ph.D. Thesis, Hartpury University, Bristol, UK, 2022. [Google Scholar]
- De Haan, D.; Dumbell, L.C. Equestrian Sport at the Olympic Games from 1900 to 1948. Int. J. Hist. Sport 2016, 33, 648–665. [Google Scholar] [CrossRef]
- Devienne, M.-F.; Guezennec, C.-Y. Energy Expenditure of Horse Riding. Eur. J. Appl. Physiol. 2000, 82, 499–503. [Google Scholar] [CrossRef]
- Hanousek, K.; Salavati, M.; Dunkel, B. The Impact of Horse Age, Sex, and Number of Riders on Horse Performance in British Eventing Horse Trials. J. Equine Vet. Sci. 2020, 94, 103250. [Google Scholar] [CrossRef]
- Whitaker, T.; Hill, J. A Study of Scoring Patterns at National Level Eventing Competitions in the UK. Equine Comp. Exerc. Physiol. 2005, 2, 171–183. [Google Scholar] [CrossRef]
- Williams, J.; Tabor, G. Rider Impacts on Equitation. Appl. Anim. Behav. Sci. 2017, 190, 28–42. [Google Scholar] [CrossRef]
- Bye, T.L.; Chadwick, G. Physical Fitness Habits and Perceptions of Equestrian Riders. Comp. Exerc. Physiol. 2018, 14, 183–188. [Google Scholar] [CrossRef]
- Gay, E.V.M.J.L. Physique Related Perceptions and Biological Correlates of Eating Disorder Risk among Female Collegiate Equestrians. J. Athl. Enhanc. 2013, 2:2. [Google Scholar] [CrossRef]
- Torres-McGehee, T.M.; Monsma, E.V.; Gay, J.L.; Minton, D.M.; Mady-Foster, A.N. Prevalence of Eating Disorder Risk and Body Image Distortion Among National Collegiate Athletic Association Division I Varsity Equestrian Athletes. J. Athl. Train. 2011, 46, 431–437. [Google Scholar] [CrossRef]
- Mountjoy, M.; Ackerman, K.E.; Bailey, D.M.; Burke, L.M.; Constantini, N.; Hackney, A.C.; Heikura, I.A.; Melin, A.; Pensgaard, A.M.; Stellingwerff, T.; et al. 2023 International Olympic Committee’s (IOC) Consensus Statement on Relative Energy Deficiency in Sport (REDs). Br. J. Sports Med. 2023, 57, 1073–1097. [Google Scholar] [CrossRef] [PubMed]
- McGuane, T.; Shannon, S.; Sharp, L.-A.; Dempster, M.; Breslin, G. “You Wanna Ride, Then You Waste”: The Psychological Impact of Wasting in National Hunt Jockeys. Sport Psychol. 2019, 33, 129–136. [Google Scholar] [CrossRef]
- Ackerman, K.E.; Stellingwerff, T.; Elliott-Sale, K.J.; Baltzell, A.; Cain, M.; Goucher, K.; Fleshman, L.; Mountjoy, M.L. #REDS (Relative Energy Deficiency in Sport): Time for a Revolution in Sports Culture and Systems to Improve Athlete Health and Performance. Brit. J. Sport Med. 2020, 54, 369. [Google Scholar] [CrossRef]
- Douglas, J.L.; Price, M.; Peters, D.M. A Systematic Review of Physical Fitness, Physiological Demands and Biomechanical Performance in Equestrian Athletes. Comp. Exerc. Physiol. 2012, 8, 53–62. [Google Scholar] [CrossRef]
- Roberts, M.; Shearman, J.; Marlin, D. A Comparison of the Metabolic Cost of the Three Phases of the One-Day Event in Female Collegiate Riders. Comp. Exerc. Physiol. 2009, 6, 129–135. [Google Scholar] [CrossRef]
- Pritchard, A.; Barthel, S.; Ferguson, D. Cardiorespiratory Responses Reach Vigorous-intensity Levels during Simulated Gameplay of Arena Polo. Transl. Sports Med. 2020, 40, 131–136. [Google Scholar] [CrossRef]
- Cullen, S.; O’Loughlin, G.; McGoldrick, A.; Smyth, B.; May, G.; Warrington, G.D. Physiological Demands of Flat Horse Racing Jockeys. J. Strength Cond. Res. 2015, 29, 3060–3066. [Google Scholar] [CrossRef] [PubMed]
- Legg, K.; Cochrane, D.; Gee, E.; Macdermid, P.; Rogers, C. Physiological Demands and Muscle Activity of Jockeys in Trial and Race Riding. Animals 2022, 12, 2351. [Google Scholar] [CrossRef] [PubMed]
- Best, R.; Standing, R. External Loading Characteristics of Polo Ponies and Corresponding Player Heart Rate Responses in 16-Goal Polo. J. Equine Vet. Sci. 2021, 98, 103368. [Google Scholar] [CrossRef] [PubMed]
- Wright, L.R.; Peters, M.D. A Heart Rate Analysis of the Cardiovascular Demands of Elite Level Competitive Polo. Int. J. Perform. Anal. Sport 2017, 8, 76–81. [Google Scholar] [CrossRef]
- Douglas, J. Physiological Demands of Eventing and Performance Related Fitness in Female Horse Riders. Ph.D. Thesis, University of Worcester, Worcester, UK, 2017. [Google Scholar]
- Williams, J.M.; Douglas, J.; Davies, E.; Bloom, F.; Castejon-Riber, C. Performance Demands in the Endurance Rider. Comp. Exerc. Physiol. 2021, 17, 199–217. [Google Scholar] [CrossRef]
- Konttinen, T.; Häkkinen, K.; Kyröläinen, H. Cardiopulmonary Loading in Motocross Riding. J. Sports Sci. 2007, 25, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Boushel, R. Muscle Metaboreflex Control of the Circulation during Exercise. Acta Physiol. 2010, 199, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L.; Sirvent, P.; Py, G.; Koralsztein, J.-P.; Mercier, J. The Concept of Maximal Lactate Steady State: A Bridge between Biochemistry, Physiology and Sport Science. Sports Med. 2003, 33, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A.; Arevalo, J.A.; Osmond, A.D.; Leija, R.G.; Curl, C.C.; Tovar, A.P. Lactate in Contemporary Biology: A Phoenix Risen. J. Physiol. 2022, 600, 1229–1251. [Google Scholar] [CrossRef]
- Standing, R.; Best, R. Strength and Reaction Time Capabilities of New Zealand Polo Players and Their Association with Polo Playing Handicap. J. Funct. Morphol. Kinesiol. 2019, 4, 48. [Google Scholar] [CrossRef]
- Hobbs, S.J.; Baxter, J.; Broom, L.; Rossell, L.-A.; Sinclair, J.; Clayton, H.M. Posture, Flexibility and Grip Strength in Horse Riders. J. Hum. Kinet. 2014, 42, 113–125. [Google Scholar] [CrossRef]
- Eisersiö, M.; Roepstorff, L.; Weishaupt, M.A.; Egenvall, A. Movements of the Horse’s Mouth in Relation to Horse-rider Kinematic Variables. Vet. J. 2013, 198, e33–e38. [Google Scholar] [CrossRef]
- Clayton, H.M.; Smith, B.; Egenvall, A. Rein Tension in Novice Riders When Riding a Horse Simulator. Comp. Exerc. Physiol. 2017, 13, 237–242. [Google Scholar] [CrossRef]
- González, M.E.; Šarabon, N. Muscle Modes of the Equestrian Rider at Walk, Rising Trot and Canter. PLoS ONE 2020, 15, e0237727. [Google Scholar] [CrossRef]
- Guillaume, J.F.; Laroche, D.; Babault, N. Kinematics and Electromyographic Activity of Horse Riders during Various Cross-Country Jumps in Equestrian. Sport Biomech. 2021, 20, 680–692. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H.M.; Hobbs, S.-J. The Role of Biomechanical Analysis of Horse and Rider in Equitation Science. Appl. Anim. Behav. Sci. 2017, 190, 123–132. [Google Scholar] [CrossRef]
- Symes, D.; Ellis, R. A Preliminary Study into Rider Asymmetry within Equitation. Vet. J. 2009, 181, 34–37. [Google Scholar] [CrossRef]
- Ford, P.; Croix, M.D.S.; Lloyd, R.; Meyers, R.; Moosavi, M.; Oliver, J.; Till, K.; Williams, C. The Long-Term Athlete Development Model: Physiological Evidence and Application. J. Sports Sci. 2011, 29, 389–402. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L. The Youth Physical Development Model: A New Approach to Long-Term Athletic Development. Strength Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef]
- Keener, M.M.; Tumlin, K.I.; Dlugonski, D. Self-Reported Physical Activity and Perception of Athleticism in American Equestrian Athletes. J. Phys. Act. Health 2023, 20, 169–179. [Google Scholar] [CrossRef]
- Best, R.; Payton, S.; Spears, I.; Riera, F.; Berger, N. Topical and Ingested Cooling Methodologies for Endurance Exercise Performance in the Heat. Sports 2018, 6, 11. [Google Scholar] [CrossRef]
- Jeffries, O.; Waldron, M. The Effects of Menthol on Exercise Performance and Thermal Sensation: A Meta-Analysis. J. Sci. Med. Sport 2019, 22, 707–715. [Google Scholar] [CrossRef]
- Singh, G.; Bennett, K.; Taylor, L.; Stevens, C. Core Body Temperature Responses during Competitive Sporting Events: A Narrative Review. Biol. Sport 2023, 40, 1003–1017. [Google Scholar] [CrossRef] [PubMed]
- Périard, J.D.; Eijsvogels, T.M.H.; Daanen, H.A.M. Exercise under Heat Stress: Thermoregulation, Hydration, Performance Implications, and Mitigation Strategies. Physiol. Rev. 2021, 101, 1873–1979. [Google Scholar] [CrossRef] [PubMed]
- Mazalan, N.S.; Landers, G.J.; Wallman, K.E.; Ecker, U. A Combination of Ice Ingestion and Head Cooling Enhances Cognitive Performance during Endurance Exercise in the Heat. J. Sport Sci. Med. 2021, 21, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Mazalan, N.S.; Landers, G.J.; Wallman, K.E.; Ecker, U. Ice Ingestion Maintains Cognitive Performance during a Repeated Sprint Performance in The Heat. J. Sport Sci. Med. 2022, 21, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Gaoua, N.; Racinais, S.; Grantham, J.; Massioui, F.E. Alterations in Cognitive Performance during Passive Hyperthermia Are Task Dependent. Int. J. Hyperth. 2011, 27, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.; Valdebran, M.; Terrero, D.; Amber, K.T.; Kelly, K.M. Solar Ultraviolet Exposure in Individuals Who Perform Outdoor Sport Activities. Sports Med. Open 2020, 6, 42. [Google Scholar] [CrossRef]
- Otani, H.; Kaya, M.; Tamaki, A.; Watson, P.; Maughan, R.J. Effects of Solar Radiation on Endurance Exercise Capacity in a Hot Environment. Eur. J. Appl. Physiol. 2016, 116, 769–779. [Google Scholar] [CrossRef]
- Potter, A.W.; Blanchard, L.A.; Friedl, K.E.; Cadarette, B.S.; Hoyt, R.W. Mathematical Prediction of Core Body Temperature from Environment, Activity, and Clothing_ The Heat Strain Decision Aid (HSDA). J. Therm. Biol. 2017, 64, 78–85. [Google Scholar] [CrossRef]
- Domenico, I.D.; Hoffmann, S.M.; Collins, P.K. The Role of Sports Clothing in Thermoregulation, Comfort, and Performance During Exercise in the Heat: A Narrative Review. Sports Med. Open 2022, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Nakao, K.; Bakri, I.; Tochihara, Y. Body Regional Influences of L-Menthol Application on the Alleviation of Heat Strain While Wearing Firefighter’s Protective Clothing. Eur. J. Appl. Physiol. 2012, 112, 2171–2183. [Google Scholar] [CrossRef]
- Ashworth, E.T.; Cotter, J.D.; Kilding, A.E. Impact of Elevated Core Temperature on Cognition in Hot Environments within a Military Context. Eur. J. Appl. Physiol. 2021, 121, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.D.; Kim, C.-H.; Bellar, D.M.; Ryan, E.J.; Seo, Y.; Muller, S.M.; Glickman, E.L. Effect of Cold Acclimatization on Exercise Economy in the Cold. Eur. J. Appl. Physiol. 2012, 112, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Tipton, M.J.; Wakabayashi, H.; Barwood, M.J.; Eglin, C.M.; Mekjavic, I.B.; Taylor, N.A.S. Habituation of the Metabolic and Ventilatory Responses to Cold-Water Immersion in Humans. J. Therm. Biol. 2013, 38, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Tipton, M.J. Environmental Extremes: Origins, Consequences and Amelioration in Humans. Exp. Physiol. 2016, 101, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.M.; Bailey, S.P.; Roelands, B.; Buono, M.J.; Meeusen, R. Cold Acclimation and Cognitive Performance: A Review. Auton. Neurosci. Basic. Clin. 2017, 208, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Yurkevicius, B.R.; Alba, B.K.; Seeley, A.D.; Castellani, J.W. Human Cold Habituation: Physiology, Timeline, and Modifiers. Temperature 2022, 9, 122–157. [Google Scholar] [CrossRef]
- Grocott, M.P.W.; Levett, D.Z.H.; Ward, S.A. Exercise Physiology: Exercise Performance at Altitude. Curr. Opin. Physiol. 2019, 10, 210–218. [Google Scholar] [CrossRef]
- Stellingwerff, T.; Peeling, P.; Garvican-Lewis, L.A.; Hall, R.; Koivisto, A.E.; Heikura, I.A.; Burke, L.M. Nutrition and Altitude: Strategies to Enhance Adaptation, Improve Performance and Maintain Health: A Narrative Review. Sports Med. 2019, 49, 169–184. [Google Scholar] [CrossRef]
- Sim, M.; Garvican-Lewis, L.A.; Cox, G.R.; Govus, A.; McKay, A.K.A.; Stellingwerff, T.; Peeling, P. Iron Considerations for the Athlete: A Narrative Review. Eur. J. Appl. Physiol. 2019, 119, 1463–1478. [Google Scholar] [CrossRef] [PubMed]
- Jonvik, K.L.; King, M.; Rollo, I.; Stellingwerff, T.; Pitsiladis, Y. New Opportunities to Advance the Field of Sports Nutrition. Front. Sports Act. Living 2022, 4, 852230. [Google Scholar] [CrossRef]
- Meyers, M.C.; Sterling, J.C. Physical, Hematological, and Exercise Response of Collegiate Female Equestrian Athletes. J. Sports Med. Phys. Fit. 2000, 40, 131–138. [Google Scholar]
- Meyers, M.C. Effect of Equitation Training on Health and Physical Fitness of College Females. Eur. J. Appl. Physiol. 2006, 98, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Demarie, S.D.; Galvani, C.; Donatucci, B.; Gianfelici, A. A Pilot Study on Italian Eventing Prospective Olympic Horse Riders Physiological, Anthropometrical, Functional and Asymmetry Assessment. Cent. Eur. J. Sport Sci. Med. 2022, 37, 77–88. [Google Scholar] [CrossRef]
- Dyson, S.; Ellis, A.D.; Mackechnie-Guire, R.; Douglas, J.; Bondi, A.; Harris, P. The Influence of Rider:Horse Bodyweight Ratio and Rider-horse-saddle Fit on Equine Gait and Behaviour: A Pilot Study. Equine Vet. Educ. 2020, 32, 527–539. [Google Scholar] [CrossRef]
- Roost, L.; Ellis, A.D.; Morris, C.; Bondi, A.; Gandy, E.A.; Harris, P.; Dyson, S. The Effects of Rider Size and Saddle Fit for Horse and Rider on Forces and Pressure Distribution under Saddles: A Pilot Study. Equine Vet. Educ. 2020, 32, 151–161. [Google Scholar] [CrossRef]
- Williams, J.; Marlin, D. Foreword–Emerging Issues in Equestrian Practice. Comp. Exerc. Physiol. 2020, 16, 1–4. [Google Scholar] [CrossRef]
- Dolan, E.; O’Connor, H.; McGoldrick, A.; O’Loughlin, G.; Lyons, D.; Warrington, G. Nutritional, Lifestyle, and Weight Control Practices of Professional Jockeys. J. Sports Sci. 2011, 29, 791–799. [Google Scholar] [CrossRef]
- Wilson, G.; Drust, B.; Morton, J.P.; Close, G.L. Weight-Making Strategies in Professional Jockeys: Implications for Physical and Mental Health and Well-Being. Sports Med. 2014, 44, 785–796. [Google Scholar] [CrossRef]
- Ryan, K.; Brodine, J. Weight-Making Practices Among Jockeys: An Update and Review of the Emergent Scientific Literature. Open Access J. Sports Med. 2021, 12, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Cosoli, G.; Spinsante, S.; Scalise, L. Wrist-Worn and Chest-Strap Wearable Devices: Systematic Review on Accuracy and Metrological Characteristics. Measurement 2020, 159, 107789. [Google Scholar] [CrossRef]
- Bassett, D.R.; Howley, E.T. Limiting Factors for Maximum Oxygen Uptake and Determinants of Endurance Performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Sylta, Ø.; Tønnessen, E.; Seiler, S. From Heart-Rate Data to Training Quantification: A Comparison of 3 Methods of Training-Intensity Analysis. Int. J. Sports Physiol. Perform. 2014, 9, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Seiler, K.S.; Kjerland, G.Ø. Quantifying Training Intensity Distribution in Elite Endurance Athletes: Is There Evidence for an “Optimal” Distribution? Scand. J. Med. Sci. Sports 2006, 16, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Hyttinen, A.-M.; Ahtiainen, J.P.; Häkkinen, K. Oxygen Uptake, Heart Rate and Blood Lactate Levels in Female Horseback Riders during the Obstacle Test Track. Int. J. Perform. Anal. Spor 2020, 20, 584–595. [Google Scholar] [CrossRef]
- Alonso, J.G. Hyperthermia Impairs Brain, Heart and Muscle Function in Exercising Humans. Sports Med. 2007, 37, 371–373. [Google Scholar] [CrossRef]
- Hall, M.M.; Rajasekaran, S.; Thomsen, T.W.; Peterson, A.R. Lactate: Friend or Foe. PM&R 2016, 8, S8–S15. [Google Scholar] [CrossRef]
- Herman, L.; Foster, C.; Maher, M.; Mikat, R.; Porcari, J. Validity and Reliability of the Session RPE Method for Monitoring Exercise Training Intensity. S. Afr. J. Sports Med. 2006, 18, 14–17. [Google Scholar] [CrossRef]
- Dawes, H.N.; Barker, K.L.; Cockburn, J.; Roach, N.; Scott, O.; Wade, D. Borg’s Rating of Perceived Exertion Scales: Do the Verbal Anchors Mean the Same for Different Clinical Groups? Arch. Phys. Med. Rehabil. 2005, 86, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Mahon, A.D.; Gay, J.A.; Stolen, K.Q. Differentiated Ratings of Perceived Exertion at Ventilatory Threshold in Children and Adults. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109. [Google Scholar] [CrossRef] [PubMed]
- McLaren, S.J.; Graham, M.; Spears, I.R.; Weston, M. The Sensitivity of Differential Ratings of Perceived Exertion as Measures of Internal Load. Int. J. Sports Physiol. Perform. 2016, 11, 404–406. [Google Scholar] [CrossRef]
- McLaren, S.J.; Smith, A.; Bartlett, J.D.; Spears, I.R.; Weston, M. Differential Training Loads and Individual Fitness Responses to Pre-Season in Professional Rugby Union Players. J. Sports Sci. 2018, 9, 2438–2446. [Google Scholar] [CrossRef] [PubMed]
- Weston, M.; Siegler, J.; Bahnert, A.; McBrien, J.; Lovell, R. The Application of Differential Ratings of Perceived Exertion to Australian Football League Matches. J. Sci. Med. Sport 2014, 18, 704–708. [Google Scholar] [CrossRef]
- Best, R.; Standing, R. The Spatiotemporal Characteristics of 0–24-Goal Polo. Animals 2019, 9, 446. [Google Scholar] [CrossRef]
- Best, R. Within and Between-Tournament Variability in Equestrian Polo. J. Equine Vet. Sci. 2022, 119, 104144. [Google Scholar] [CrossRef]
- Munsters, C.C.B.M.; van den Broek, J.; Welling, E.; van Weeren, R.; van Oldruitenborgh-Oosterbaan, M.M.S. A Prospective Study on a Cohort of Horses and Ponies Selected for Participation in the European Eventing Championship: Reasons for Withdrawal and Predictive Value of Fitness Tests. BMC Vet. Res. 2013, 9, 182. [Google Scholar] [CrossRef]
- Kingston, J.K.; Soppet, G.M.; Rogers, C.W.; Firth, E.C. Use of a Global Positioning and Heart Rate Monitoring System to Assess Training Load in a Group of Thoroughbred Racehorses. Equine Vet. J. 2006, 38, 106–109. [Google Scholar] [CrossRef]
- Bye, T.L.; Lewis, V. Saddle and Stirrup Forces of Equestrian Riders in Sitting Trot, Rising Trot, and Trot without Stirrups on a Riding Simulator. Comp. Exerc. Physiol. 2019, 16, 75–85. [Google Scholar] [CrossRef]
- Wilkins, C.A.; Nankervis, K.; Protheroe, L.; Draper, S.B. Static Pelvic Posture Is Not Related to Dynamic Pelvic Tilt or Competition Level in Dressage Riders. Sports Biomech. 2023, 22, 1290–1302. [Google Scholar] [CrossRef] [PubMed]
- Close, G.L.; Kasper, A.M.; Walsh, N.P.; Maughan, R.J. “Food First but Not Always Food Only”: Recommendations for Using Dietary Supplements in Sport. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Sport. Australian Institute of Sport (AIS) Position Statement: Supplements and Sports Foods in High Performance Sport 2022. Available online: https://www.ais.gov.au/__data/assets/pdf_file/0014/1000841/Position-Statement-Supplements-and-Sports-Foods.pdf (accessed on 30 October 2023).
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Castell, L.M.; Casa, D.J.; Close, G.L.; Costa, R.J.S.; Desbrow, B.; Halson, S.L.; Lis, D.M.; Melin, A.K.; Peeling, P.; et al. International Association of Athletics Federations Consensus Statement 2019: Nutrition for Athletics. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Impey, S.G.; Hearris, M.A.; Hammond, K.M.; Bartlett, J.D.; Louis, J.; Close, G.L.; Morton, J.P. Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis. Sports Med. 2018, 48, 1031–1048. [Google Scholar] [CrossRef]
- Clark, A.; Mach, N. Exercise-Induced Stress Behavior, Gut- Microbiota-Brain Axis and Diet: A Systematic Review for Athletes. J. Int. Soc. Sports Nutr. 2016, 13, 43. [Google Scholar] [CrossRef]
- Tait, C.; Sayuk, G.S. The Brain-Gut-Microbiotal Axis: A Framework for Understanding Functional GI Illness and Their Therapeutic Interventions. Eur. J. Intern. Med. 2021, 84, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Training the Gut for Athletes. Sports Med. 2017, 47, 101–110. [Google Scholar] [CrossRef]
- Best, R.; McDonald, K.; Hurst, P.; Pickering, C. Can Taste Be Ergogenic? Eur. J. Nutr. 2021, 60, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Stellingwerff, T.; Cox, G.R. Systematic Review: Carbohydrate Supplementation on Exercise Performance or Capacity of Varying Durations 1. Appl. Physiol. Nutr. Metab. 2014, 39, 998–1011. [Google Scholar] [CrossRef]
- Rollo, I.; Gonzalez, J.T.; Fuchs, C.J.; van Loon, L.J.C.; Williams, C. Primary, Secondary, and Tertiary Effects of Carbohydrate Ingestion During Exercise. Sports Med. 2020, 50, 1863–1871. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.M.; Jeukendrup, A.E. The Effect of Carbohydrate Mouth Rinse on 1-h Cycle Time Trial Performance. Med. Sci. Sports Exerc. 2004, 36, 2107–2111. [Google Scholar] [CrossRef]
- Gant, N.; Stinear, C.M.; Byblow, W.D. Carbohydrate in the Mouth Immediately Facilitates Motor Output. Brain Res. 2010, 1350, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Best, R.; Crosby, S.; Berger, N.; McDonald, K. The Effect of Isolated and Combined Application of Menthol and Carbohydrate Mouth Rinses on 40 Km Time Trial Performance, Physiological and Perceptual Measures in the Heat. Nutrients 2021, 13, 4309. [Google Scholar] [CrossRef] [PubMed]
- Urdampilleta, A.; Arribalzaga, S.; Viribay, A.; Castañeda-Babarro, A.; Seco-Calvo, J.; Mielgo-Ayuso, J. Effects of 120 vs. 60 and 90 g/h Carbohydrate Intake during a Trail Marathon on Neuromuscular Function and High Intensity Run Capacity Recovery. Nutrients 2020, 12, 2094. [Google Scholar] [CrossRef] [PubMed]
- Viribay, A.; Arribalzaga, S.; Mielgo-Ayuso, J.; Castañeda-Babarro, A.; Seco-Calvo, J.; Urdampilleta, A. Effects of 120 g/h of Carbohydrates Intake during a Mountain Marathon on Exercise-Induced Muscle Damage in Elite Runners. Nutrients 2020, 12, 1367. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.J.S.; Snipe, R.M.J.; Kitic, C.M.; Gibson, P.R. Systematic Review: Exercise-Induced Gastrointestinal Syndrome-Implications for Health and Intestinal Disease. Aliment. Pharmacol. Ther. 2017, 46, 246–265. [Google Scholar] [CrossRef]
- King, A.J. Liver and Muscle Glycogen Oxidation and Performance with Dose Variation of Glucose–Fructose Ingestion during Prolonged (3 h) Exercise. Eur. J. Appl. Physiol. 2019, 119, 1157–1169. [Google Scholar] [CrossRef]
- Rowe, J.T.; King, R.F.G.J.; King, A.J.; Morrison, D.J.; Preston, T.; Wilson, O.J.; O’Hara, J.P. Glucose and Fructose Hydrogel Enhances Running Performance, Exogenous Carbohydrate Oxidation, and Gastrointestinal Tolerance. Med. Sci. Sports Exerc. 2021, 54, 129–140. [Google Scholar] [CrossRef]
- Reinhard, C.; Galloway, S.D.R. Carbohydrate Intake Practices and Determinants of Food Choices During Training in Recreational, Amateur, and Professional Endurance Athletes: A Survey Analysis. Front. Nutr. 2022, 9, 862396. [Google Scholar] [CrossRef] [PubMed]
- Berger, N.J.A.; Best, R.; Best, A.W.; Lane, A.M.; Millet, G.Y.; Barwood, M.; Marcora, S.; Wilson, P.; Bearden, S. Limits of Ultra: Towards an Interdisciplinary Understanding of Ultra-Endurance Running Performance. Sports Med. 2023, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wolframm, I.A.; Micklewright, D. Effects of Trait Anxiety and Direction of Pre-Competitive Arousal on Performance in the Equestrian Disciplines of Dressage, Showjumping and Eventing. Comp. Exerc. Physiol. 2010, 7, 185–191. [Google Scholar] [CrossRef]
- Beauchamp, M.R.; Whinton, L.C. Self-Efficacy and Other-Efficacy in Dyadic Performance: Riding as One in Equestrian Eventing. J. Sport Exerc. Psychol. 2005, 27, 245–252. [Google Scholar] [CrossRef]
- Burke, L.M.; Kiens, B.; Ivy, J.L. Carbohydrates and Fat for Training and Recovery. J. Sports Sci. 2004, 22, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for Training and Competition. J. Sport Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L.; Res, P.T.; Sprague, R.C.; Widzer, M.O. Effect of a Carbohydrate-Protein Supplement on Endurance Performance during Exercise of Varying Intensity. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 382–395. [Google Scholar] [CrossRef]
- Kashima, H.; Harada, N.; Miyamoto, K.; Fujimoto, M.; Fujita, C.; Endo, M.Y.; Kobayashi, T.; Miura, A.; Fukuba, Y. Timing of Postexercise Carbohydrate-Protein Supplementation: Roles of Gastrointestinal Blood Flow and Mucosal Cell Damage on Gastric Emptying in Humans. J. Appl. Physiol. 2017, 123, 606–613. [Google Scholar] [CrossRef]
- McCartney, D.; Desbrow, B.; Irwin, C. Post-Exercise Ingestion of Carbohydrate, Protein and Water: A Systematic Review and Meta-Analysis for Effects on Subsequent Athletic Performance. Sports Med. 2018, 48, 379–408. [Google Scholar] [CrossRef]
- USDA. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; Institute of Medicine of the National Academies, National Academies Press: Washington, DC, USA, 2005. [CrossRef]
- Burkhart, S.J.; Pelly, F.E. Dietary Intake of Athletes Seeking Nutrition Advice at a Major International Competition. Nutrients 2016, 8, 638. [Google Scholar] [CrossRef]
- Jang, L.-G.; Choi, G.; Kim, S.-W.; Kim, B.-Y.; Lee, S.; Park, H. The Combination of Sport and Sport-Specific Diet Is Associated with Characteristics of Gut Microbiota: An Observational Study. J. Int. Soc. Sports Nutr. 2019, 16, 21. [Google Scholar] [CrossRef]
- Hughes, R.L.; Holscher, H.D. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv. Nutr. 2021, 12, 2190–2215. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Jeukendrup, A.E.; Jones, A.M.; Mooses, M. Contemporary Nutrition Strategies to Optimize Performance in Distance Runners and Race Walkers. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.B. “I Think I’m Gonna Hurl”: A Narrative Review of the Causes of Nausea and Vomiting in Sport. Sports 2019, 7, 162. [Google Scholar] [CrossRef]
- Merrells, R.J.; Cripps, A.J.; Chivers, P.T.; Fournier, P.A. Role of Lactic Acidosis as a Mediator of Sprint-mediated Nausea. Physiol. Rep. 2019, 7, e14283. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Moore, D.R.; Tang, J.E. A Critical Examination of Dietary Protein Requirements, Benefits, and Excesses in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, S58–S76. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M.; Loon, L.J.C.V. Dietary Protein for Athletes: From Requirements to Optimum Adaptation. J. Sports Sci. 2011, 29, S29–S38. [Google Scholar] [CrossRef]
- Breen, L.; Churchward-Venne, T.A. Leucine: A Nutrient ‘Trigger’ for Muscle Anabolism, but What More? J. Physiol. 2012, 590, 2065–2066. [Google Scholar] [CrossRef]
- Churchward-Venne, T.A.; Burd, N.A.; Mitchell, C.J.; West, D.W.D.; Philp, A.; Marcotte, G.R.; Baker, S.K.; Baar, K.; Phillips, S.M. Supplementation of a Suboptimal Protein Dose with Leucine or Essential Amino Acids: Effects on Myofibrillar Protein Synthesis at Rest and Following Resistance Exercise in Men. J. Physiol. 2012, 590, 2751–2765. [Google Scholar] [CrossRef]
- Mettler, S.; Mitchell, N.; Tipton, K.D. Increased Protein Intake Reduces Lean Body Mass Loss during Weight Loss in Athletes. Med. Sci. Sports Exerc. 2010, 42, 326–337. [Google Scholar] [CrossRef]
- Tipton, K.D. Nutritional Support for Exercise-Induced Injuries. Sports Med. 2015, 45, 93–104. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Loprinzi, P.D.; Murphy, C.H.; Phillips, S.M. Per Meal Dose and Frequency of Protein Consumption Is Associated with Lean Mass and Muscle Performance. Clin. Nutr. 2016, 35, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Longland, T.M.; Oikawa, S.Y.; Mitchell, C.J.; Devries, M.C.; Phillips, S.M. Higher Compared with Lower Dietary Protein during an Energy Deficit Combined with Intense Exercise Promotes Greater Lean Mass Gain and Fat Mass Loss: A Randomized Trial. Am. J. Clin. Nutr. 2016, 103, 738–746. [Google Scholar] [CrossRef]
- Phillips, S.M. A Brief Review of Higher Dietary Protein Diets in Weight Loss: A Focus on Athletes. Sports Med. 2014, 44, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Res, P.T.; Groen, B.; Pennings, B.; Beelen, M.; Wallis, G.A.; Gijsen, A.P.; Senden, J.M.G.; Loon, L.J.C.V. Protein Ingestion before Sleep Improves Postexercise Overnight Recovery. Med. Sci. Sports Exerc. 2012, 44, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein Ingestion to Stimulate Myofibrillar Protein Synthesis Requires Greater Relative Protein Intakes in Healthy Older Versus Younger Men. J. Gerontol. Ser. Biol. Sci. Med. Sci. 2014, 70, 57–62. [Google Scholar] [CrossRef]
- Witard, O.; Wardle, S.; Macnaughton, L.; Hodgson, A.; Tipton, K. Protein Considerations for Optimising Skeletal Muscle Mass in Healthy Young and Older Adults. Nutrients 2016, 8, 181. [Google Scholar] [CrossRef]
- Lim, M.T.; Pan, B.J.; Toh, D.W.K.; Sutanto, C.N.; Kim, J.E. Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 661. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef]
- Hackney, A.C. Menstrual Cycle Hormonal Changes and Energy Substrate Metabolism in Exercising Women: A Perspective. Int. J. Environ. Res. Public Health 2021, 18, 10024. [Google Scholar] [CrossRef]
- Heikura, I.A.; Stellingwerff, T.; Areta, J.L. Low Energy Availability in Female Athletes: From the Lab to the Field. Eur. J. Sport Sci. 2021, 22, 709–719. [Google Scholar] [CrossRef]
- Wohlgemuth, K.J.; Arieta, L.R.; Brewer, G.J.; Hoselton, A.L.; Gould, L.M.; Smith-Ryan, A.E. Sex Differences and Considerations for Female Specific Nutritional Strategies: A Narrative Review. J. Int. Soc. Sport Nutr. 2021, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Aragon, A.A.; Schoenfeld, B.J.; Wildman, R.; Kleiner, S.; VanDusseldorp, T.; Taylor, L.; Earnest, C.P.; Arciero, P.J.; Wilborn, C.; Kalman, D.S.; et al. International Society of Sports Nutrition Position Stand: Diets and Body Composition. J. Int. Soc. Sports Nutr. 2017, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Abdelhamid, A.S.; Jimoh, O.F.; Bunn, D.; Skeaff, C.M. Effects of Total Fat Intake on Body Fatness in Adults. Cochrane Database Syst. Rev. 2020, 2020, cd013636. [Google Scholar] [CrossRef]
- Lennerz, B.S.; Mey, J.T.; Henn, O.H.; Ludwig, D.S. Behavioral Characteristics and Self-Reported Health Status among 2029 Adults Consuming a “Carnivore Diet”. Curr. Dev. Nutr. 2021, 5, nzab133. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Noakes, T.; Phinney, S.D. Rethinking Fat as a Fuel for Endurance Exercise. Eur. J. Sport Sci. 2015, 15, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M. Re-Examining High-Fat Diets for Sports Performance: Did We Call the ‘Nail in the Coffin’ Too Soon? Sports Med. 2015, 45, 33–49. [Google Scholar] [CrossRef]
- Burke, L.M.; Hawley, J.A. Swifter, Higher, Stronger: What’s on the Menu? Science 2018, 362, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Ross, M.L.; Garvican-Lewis, L.A.; Welvaert, M.; Heikura, I.A.; Forbes, S.G.; Mirtschin, J.G.; Cato, L.E.; Strobel, N.; Sharma, A.P.; et al. Low Carbohydrate, High Fat Diet Impairs Exercise Economy and Negates the Performance Benefit from Intensified Training in Elite Race Walkers. J. Physiol. 2017, 15, 3–23. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Ross, M.L.R.; Tee, N.; Sharma, A.P.; Leckey, J.J.; Burke, L.M. Adherence to a Ketogenic Low-Carbohydrate, High-Fat Diet Is Associated with Diminished Training Quality in Elite Racewalkers. Int. J. Sports Physiol. Perform. 2023, 18, 686–694. [Google Scholar] [CrossRef]
- Leckey, J.J.; Hoffman, N.J.; Parr, E.B.; Devlin, B.L.; Trewin, A.J.; Stepto, N.K.; Morton, J.P.; Burke, L.M.; Hawley, J.A. High Dietary Fat Intake Increases Fat Oxidation and Reduces Skeletal Muscle Mitochondrial Respiration in Trained Humans. FASEB J. 2006, 32, 2979–2991. [Google Scholar] [CrossRef]
- Hammond, K.M.; Impey, S.G.; Currell, K.; Mitchell, N.; Shepherd, S.O.; Jeromson, S.; Hawley, J.A.; Close, G.L.; Hamilton, D.L.; Sharples, A.P.; et al. Postexercise High-Fat Feeding Supresses p70S6K1 Activity in Human Skeletal Muscle. Med. Sci. Sports Exerc. 2016, 48, 2108–2117. [Google Scholar] [CrossRef]
- Yeo, W.K.; Carey, A.L.; Burke, L.; Spriet, L.L.; Hawley, J.A. Fat Adaptation in Well-Trained Athletes: Effects on Cell Metabolism. Appl. Physiol. Nutr. Metab. 2011, 36, 12–22. [Google Scholar] [CrossRef]
- Davies, E.; McConn-Palfreyman, W.; Parker, J.K.; Cameron, L.J.; Williams, J.M. Is Injury an Occupational Hazard for Horseracing Staff? Int. J. Environ. Res. Public. Health 2022, 19, 2054. [Google Scholar] [CrossRef]
- Waldman, H.S.; Shepherd, B.D.; Egan, B.; McAllister, M.J. Exogenous Ketone Salts Do Not Improve Cognitive Performance During a Dual-Stress Challenge. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Quinones, M.D.; Lemon, P.W.R. Ketone Ester Supplementation Improves Some Aspects of Cognitive Function during a Simulated Soccer Match after Induced Mental Fatigue. Nutrients 2022, 14, 4376. [Google Scholar] [CrossRef] [PubMed]
- Jensen, N.J.; Wodschow, H.Z.; Nilsson, M.; Rungby, J. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 8767. [Google Scholar] [CrossRef]
- Morris, G.; Maes, M.; Berk, M.; Carvalho, A.F.; Puri, B.K. Nutritional Ketosis as an Intervention to Relieve Astrogliosis: Possible Therapeutic Applications in the Treatment of Neurodegenerative and Neuroprogressive Disorders. Eur. Psychiatry 2020, 63, e8. [Google Scholar] [CrossRef]
- Maughan, R.J.; Watson, P.; Cordery, P.A.; Walsh, N.P.; Oliver, S.J.; Dolci, A.; Rodriguez-Sanchez, N.; Galloway, S.D. A Randomized Trial to Assess the Potential of Different Beverages to Affect Hydration Status: Development of a Beverage Hydration Index 1. Am. J. Clin. Nutr. 2016, 103, 717–723. [Google Scholar] [CrossRef]
- Rowlands, D.S.; Kopetschny, B.H.; Badenhorst, C.E. The Hydrating Effects of Hypertonic, Isotonic and Hypotonic Sports Drinks and Waters on Central Hydration During Continuous Exercise: A Systematic Meta-Analysis and Perspective. Sports Med. 2022, 52, 349–375. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Maresh, C.M.; Castellani, J.W.; Bergeron, M.F.; Kenefick, R.W.; LaGasse, K.E.; Riebe, D. Urinary Indices of Hydration Status. Int. J. Sport Nutr. 1994, 4, 265–279. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Martin, D.G.; Yoshihara, A.; Casa, D.J. Comparison between Digital and Paper Urine Color to Assess Hydration Status. Eur. J. Nutr. 2023, 62, 1915–1919. [Google Scholar] [CrossRef]
- Feng, Y.; Fang, G.; Qu, C.; Cui, S.; Geng, X.; Gao, D.; Qin, F.; Zhao, J. Validation of Urine Colour L*a*b* for Assessing Hydration amongst Athletes. Front. Nutr. 2022, 9, 997189. [Google Scholar] [CrossRef]
- Marlin, D.J. Acclimation and Acclimatisation of the Equine Athlete. Int. J. Sports Med. 1998, 19, S164–S166. [Google Scholar] [CrossRef] [PubMed]
- Marlin, D. Heat, Humidity and Horse Welfare in the Olympic Games: Learning from History. Vet. J. 2009, 182, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Barwood, M.J.; Goodall, S.; Bateman, J. The Effect of Hot and Cold Drinks on Thermoregulation, Perception, and Performance: The Role of the Gut in Thermoreception. Eur. J. Appl. Physiol. 2018, 118, 2643–2654. [Google Scholar] [CrossRef] [PubMed]
- Jay, O.; Morris, N.B. Does Cold Water or Ice Slurry Ingestion During Exercise Elicit a Net Body Cooling Effect in the Heat? Sports Med. 2018, 48, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Douzi, W.; Dugué, B.; Vinches, L.; Sayed, C.A.; Hallé, S.; Bosquet, L.; Dupuy, O. Cooling during Exercise Enhances Performances, but the Cooled Body Areas Matter: A Systematic Review with Meta-analyses. Scand. J. Med. Sci. Sports 2019, 29, 1660–1676. [Google Scholar] [CrossRef]
- Barwood, M.J.; Gibson, O.R.; Gillis, D.J.; Jeffries, O.; Morris, N.B.; Pearce, J.; Ross, M.L.; Stevens, C.; Rinaldi, K.; Kounalakis, S.N.; et al. Menthol as an Ergogenic Aid for the Tokyo 2021 Olympic Games: An Expert-Led Consensus Statement Using the Modified Delphi Method. Sports Med. 2020, 50, 1709–1727. [Google Scholar] [CrossRef]
- Stevens, C.J.; Best, R. Menthol: A Fresh Ergogenic Aid for Athletic Performance. Sports Med. 2017, 47, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Riera, F.; Trong, T.T.; Sinnapah, S.; Hue, O. Physical and Perceptual Cooling with Beverages to Increase Cycle Performance in a Tropical Climate. PLoS ONE 2014, 9, e103718. [Google Scholar] [CrossRef]
- Forino, S.; Cameron, L.; Stones, N.; Freeman, M. Potential Impacts of Body Image Perception in Female Equestrians. J. Equine Vet. Sci. 2021, 107, 103776. [Google Scholar] [CrossRef]
- Forino, S.; Cameron, L.; Stones, N.; Freeman, M. Equestrian Coach and Dressage Judge Perceptions of the Ideal Body Shape of Female Horse Riders When Sitting on Horses of Different Builds; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Burke, L.M. Nutritional Approaches to Counter Performance Constraints in High-level Sports Competition. Exp. Physiol. 2021, 106, 2304–2323. [Google Scholar] [CrossRef]
- DellaValle, D.M. Iron Supplementation for Female Athletes: Effects on Iron Status and Performance Outcomes. Curr. Sports Med. Rep. 2013, 12, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.-R.; Low, M.; Thompson, J.; Farrell, A.; De-Regil, L.-M. Iron Supplementation Benefits Physical Performance in Women of Reproductive Age: A Systematic Review and Meta-Analysis. J. Nutr. 2014, 144, 906–914. [Google Scholar] [CrossRef]
- Pedlar, C.R.; Brugnara, C.; Bruinvels, G.; Burden, R. Iron Balance and Iron Supplementation for the Female Athlete: A Practical Approach. Eur. J. Sport Sci. 2018, 18, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Fensham, N.C.; Govus, A.D.; Peeling, P.; Burke, L.M.; McKay, A.K.A. Factors Influencing the Hepcidin Response to Exercise: An Individual Participant Data Meta-Analysis. Sports Med. 2023, 53, 1931–1949. [Google Scholar] [CrossRef]
- Peeling, P.; McKay, A. Iron Regulation and Absorption in Athletes: Contemporary Thinking and Recommendations. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 551–566. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Pyne, D.B.; Burke, L.M.; Peeling, P. Iron Metabolism: Interactions with Energy and Carbohydrate Availability. Nutrients 2020, 12, 3692. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.; Dawson, B.; Landers, G.; Swinkels, D.W.; Tjalsma, H.; Yeap, B.B.; Trinder, D.; Peeling, P. Oral Contraception Does Not Alter Typical Post-Exercise Interleukin-6 and Hepcidin Levels in Females. J. Sci. Med. Sport 2015, 18, 8–12. [Google Scholar] [CrossRef]
- Cowell, B.S.; Rosenbloom, C.A.; Skinner, R.; Summers, S.H. Policies on Screening Female Athletes for Iron Deficiency in NCAA Division I-A Institutions. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 277–285. [Google Scholar] [CrossRef]
- Mwangi, M.N.; Oonincx, D.G.A.B.; Stouten, T.; Veenenbos, M.; Melse-Boonstra, A.; Dicke, M.; Loon, J.J.A. van Insects as Sources of Iron and Zinc in Human Nutrition. Nutr. Res. Rev. 2018, 31, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Denny, A.; Aisbitt, B.; Lunn, J. Mycoprotein and Health. Nutr. Bull. 2008, 33, 298–310. [Google Scholar] [CrossRef]
- Larson-Meyer, D.E. Nutritional Supplements in Sport, Exercise and Health, An A–Z Guide; Routledge: London, UK, 2015; pp. 261–265. [Google Scholar]
- Pojednic, R.M.; Ceglia, L. The Emerging Biomolecular Role of Vitamin D in Skeletal Muscle. Exerc. Sport Sci. Rev. 2014, 42, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Krzywanski, J.; Mikulski, T.; Krysztofiak, H.; Mlynczak, M.; Gaczynska, E.; Ziemba, A. Seasonal Vitamin D Status in Polish Elite Athletes in Relation to Sun Exposure and Oral Supplementation. PLoS ONE 2016, 11, e0164395. [Google Scholar] [CrossRef]
- Hollabaugh, W.L.; Meirick, P.J.; Matarazzo, C.P.; Burston, A.M.; Camery, M.E.; Ferrill-Moseley, K.A.; Bley, J.A.; Pennings, J.S.; Fitch, R.W.; Tanner, S.B.; et al. Evaluation of a Vitamin D Screening and Treatment Protocol Using a Seasonal Calculator in Athletes. Curr. Sports Med. Rep. 2022, 21, 53–62. [Google Scholar] [CrossRef]
- Rawson, E.S.; Miles, M.P.; Larson-Meyer, D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 188–199. [Google Scholar] [CrossRef]
- Crescioli, C. Vitamin D, Exercise, and Immune Health in Athletes: A Narrative Review. Front. Immunol. 2022, 13, 954994. [Google Scholar] [CrossRef]
- Eleni, A.; Panagiotis, P. A Systematic Review and Meta-Analysis of Vitamin D and Calcium in Preventing Osteoporotic Fractures. Clin. Rheumatol. 2020, 39, 3571–3579. [Google Scholar] [CrossRef] [PubMed]
- Jaworeck, S.; Kriwy, P. It’s Sunny, Be Healthy? An International Comparison of the Influence of Sun Exposure and Latitude Lines on Self-Rated Health. Int. J. Environ. Res. Public. Health 2021, 18, 4101. [Google Scholar] [CrossRef]
- Guyton, K.; Houchen-Wise, E.; Peck, E.; Mayberry, J. Equestrian Injury Is Costly, Disabling, and Frequently Preventable: The Imperative for Improved Safety Awareness. Am. Surg. 2013, 79, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Cominacini, M.; Fumaneri, A.; Ballerini, L.; Braggio, M.; Valenti, M.T.; Carbonare, L.D. Unraveling the Connection: Visceral Adipose Tissue and Vitamin D Levels in Obesity. Nutrients 2023, 15, 4259. [Google Scholar] [CrossRef] [PubMed]
- Farrell, S.W.; Meyer, K.J.; Leonard, D.; Shuval, K.; Barlow, C.E.; Pavlovic, A.; DeFina, L.; Haskell, W.L. Physical Activity, Adiposity, and Serum Vitamin D Levels in Healthy Women: The Cooper Center Longitudinal Study. J. Women’s Health 2022, 31, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC Consensus Statement: Beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S). Br. J. Sprts Med. 2014, 48, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.X.; Sun, L.; Lim, S.L.; Li, J.; Kennedy, B.K.; Maier, A.B.; Feng, L. Adequacy of Nutrient Intake and Malnutrition Risk in Older Adults: Findings from the Diet and Healthy Aging Cohort Study. Nutrients 2023, 15, 3446. [Google Scholar] [CrossRef]
- Nichols, Q.Z.; Ramadoss, R.; Stanzione, J.R.; Volpe, S.L. Micronutrient Supplement Intakes among Collegiate and Masters Athletes: A Cross-Sectional Study. Front. Sports Act. Living 2023, 5, 854442. [Google Scholar] [CrossRef]
- Han, D.; Fang, X.; Su, D.; Huang, L.; He, M.; Zhao, D.; Zou, Y.; Zhang, R. Dietary Calcium Intake and the Risk of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 19046. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Alexander, D.D.; Boushey, C.J.; Dawson-Hughes, B.; Lappe, J.M.; LeBoff, M.S.; Liu, S.; Looker, A.C.; Wallace, T.C.; Wang, D.D. Calcium plus Vitamin D Supplementation and Risk of Fractures: An Updated Meta-Analysis from the National Osteoporosis Foundation. Osteoporos. Int. 2016, 27, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Harwood, R.H.; Sahota, O.; Gaynor, K.; Masud, T.; Hosking, D.J.; Study, N.N. of F. (NONOF) A Randomised, Controlled Comparison of Different Calcium and Vitamin D Supplementation Regimens in Elderly Women after Hip Fracture: The Nottingham Neck of Femur (NONOF) Study. Age Ageing 2004, 33, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Ball, C.G.; Ball, J.E.; Kirkpatrick, A.W.; Mulloy, R.H. Equestrian Injuries: Incidence, Injury Patterns, and Risk Factors for 10 Years of Major Traumatic Injuries. Am. J. Surg. 2007, 193, 636–640. [Google Scholar] [CrossRef]
- Carmichael, S.P.; Davenport, D.L.; Kearney, P.A.; Bernard, A.C. On and off the Horse: Mechanisms and Patterns of Injury in Mounted and Unmounted Equestrians. Injury 2014, 45, 1479–1483. [Google Scholar] [CrossRef]
- CDC. Alcohol Use and Horseback-Riding-Associated Fatalities—North Carolina, 1979–1989. MMWR Morb. Mortal. Wkly. Rep. 1992, 41, 335–342. [Google Scholar]
- Vella, L.D.; Cameron-Smith, D. Alcohol, Athletic Performance and Recovery. Nutrients 2010, 2, 781–789. [Google Scholar] [CrossRef]
- Barnes, M.J. Alcohol: Impact on Sports Performance and Recovery in Male Athletes. Sports Med. 2014, 44, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Yoda, T.; Crawshaw, L.I.; Nakamura, M.; Saito, K.; Konishi, A.; Nagashima, K.; Uchida, S.; Kanosue, K. Effects of Alcohol on Thermoregulation during Mild Heat Exposure in Humans. Alcohol 2005, 36, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Desbrow, B.; Cecchin, D.; Jones, A.; Grant, G.; Irwin, C.; Leveritt, M. Manipulations to the Alcohol and Sodium Content of Beer for Postexercise Rehydration. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 262–270. [Google Scholar] [CrossRef]
- Desbrow, B.; Cecchin, D.; Jones, A.; Irwin, C.; Leveritt, M. Further Manipulations to the Alcohol and Sodium Content of Beer for Post Exercise Rehydration. Med. Sci. Sports Exerc. 2014, 46, 397–398. [Google Scholar] [CrossRef]
- Lewis, V.; Kennerley, R. A Preliminary Study to Investigate the Prevalence of Pain in Elite Dressage Riders during Competition in the United Kingdom. Comp. Exerc. Physiol. 2017, 13, 259–263. [Google Scholar] [CrossRef]
- Lewis, V.; Nicol, Z.; Dumbell, L.; Cameron, L. A Study Investigating Prevalence of Pain in UK Horse Riders over Thirty-Five Years Old. Int. J. Equine Sci. 2023, 2, 9–18. [Google Scholar]
- Dunne, D.M.; Lefevre, C.; Cunniffe, B.; Tod, D.; Close, G.L.; Morton, J.P.; Murphy, R. Performance Nutrition in the Digital Era—An Exploratory Study into the Use of Social Media by Sports Nutritionists. J. Sports Sci. 2019, 37, 2467–2474. [Google Scholar] [CrossRef]
- Dunne, D.M.; Lefevre-Lewis, C.; Cunniffe, B.; Impey, S.G.; Tod, D.; Close, G.L.; Morton, J.P.; Murphy, R. Athlete Experiences of Communication Strategies in Applied Sports Nutrition and Future Considerations for Mobile App Supportive Solutions. Front. Sports Act. Living 2022, 4, 911412. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.H.; Carmody, S.; Walker, L.J.; Ahmad, I. The Need for Speed! 10 Ways That WhatsApp and Instant Messaging Can Enhance Communication (and Clinical Care) in Sport and Exercise Medicine. Br. J. Sports Med. 2020, 54, 1128–1129. [Google Scholar] [CrossRef] [PubMed]
- Lamperd, W.; Clarke, D.; Wolframm, I.; Williams, J. What Makes an Elite Equestrian Rider? Comp. Exerc. Physiol. 2016, 12, 105–118. [Google Scholar] [CrossRef]
- Best, R. The Player–Pony Dyad in Polo: Lessons from Other Sports and Future Directions. Anim. Front. 2022, 12, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawi, M.; Zheng, L.; Best, R. Explicit and Computational Fluid Dynamics Analysis of a Novel Polo Helmet Design: A Parametric Study. J. Eng. Sci. Med. Diagn. Ther. 2024, 7, 021009. [Google Scholar] [CrossRef]
- Jones, A.R.; Smith, A.; Christey, G. Equine-Related Injuries Requiring Hospitalisation in the Midland Region of New Zealand: A Continuous Five-Year Review. N. Z. Méd. J. 2018, 131, 50–58. [Google Scholar] [PubMed]
- Glace, B.W.; Kremenic, I.J.; Hogan, D.E.; Kwiecien, S.Y. Incidence of Concussions and Helmet Use in Equestrians. J. Sci. Med. Sport 2023, 26, 93–97. [Google Scholar] [CrossRef]
- Frankenfield, D. Energy Expenditure and Protein Requirements After Traumatic Injury. Nutr. Clin. Pract. 2006, 21, 430–437. [Google Scholar] [CrossRef]
- Waters, R.L.; Campbell, J.; Perry, J. Energy Cost of Three-Point Crutch Ambulation in Fracture Patients. J. Orthop. Trauma 1987, 1, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.; Lee-Barthel, A.; Ross, M.L.; Wang, B.; Baar, K. Vitamin C–Enriched Gelatin Supplementation before Intermittent Activity Augments Collagen Synthesis. Am. J. Clin. Nutr. 2017, 105, 136–143. [Google Scholar] [CrossRef]
- Levine, M.; Violet, P.-C. Breaking down, Starting up: Can a Vitamin C–Enriched Gelatin Supplement before Exercise Increase Collagen Synthesis? 1. Am. J. Clin. Nutr. 2017, 105, 5–7. [Google Scholar] [CrossRef]
- DePhillipo, N.N.; Aman, Z.S.; Kennedy, M.I.; Begley, J.P.; Moatshe, G.; LaPrade, R.F. Efficacy of Vitamin C Supplementation on Collagen Synthesis and Oxidative Stress After Musculoskeletal Injuries: A Systematic Review. Orthop. J. Sports Med. 2018, 6, 2325967118804544. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Adanty, K.; Post, A.; Hoshizaki, T.B.; Clissold, J.; McGoldrick, A.; Hill, J.; Annaidh, A.N.; Gilchrist, M.D. Proposed Injury Thresholds for Concussion in Equestrian Sports. J. Sci. Med. Sport 2020, 23, 222–236. [Google Scholar] [CrossRef] [PubMed]
- Prien, A.; Grafe, A.; Rössler, R.; Junge, A.; Verhagen, E. Epidemiology of Head Injuries Focusing on Concussions in Team Contact Sports: A Systematic Review. Sports Med. 2018, 48, 953–969. [Google Scholar] [CrossRef] [PubMed]
- Barrett, E.C.; McBurney, M.I.; Ciappio, E.D. ω-3 Fatty Acid Supplementation as a Potential Therapeutic Aid for the Recovery from Mild Traumatic Brain Injury/Concussion12. Adv. Nutr. 2014, 5, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Barringer, N.; Conkright, W. Omega-3 Fatty Acid Ingestion as a TBI Prophylactic. J. Spec. Oper. Med. 2012, 12, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.C.; Cordingley, D.M.; Cornish, S.M.; Gualano, B.; Roschel, H.; Ostojic, S.M.; Rawson, E.S.; Roy, B.D.; Prokopidis, K.; Giannos, P.; et al. Effects of Creatine Supplementation on Brain Function and Health. Nutrients 2022, 14, 921. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition Position Stand: Safety and Efficacy of Creatine Supplementation in Exercise, Sport, and Medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef]
- Philpott, J.D.; Witard, O.C.; Galloway, S.D.R. Applications of Omega-3 Polyunsaturated Fatty Acid Supplementation for Sport Performance. Res. Sports Med. 2019, 27, 219–237. [Google Scholar] [CrossRef]
- Sport and Recreation Alliance. UK Concussion Guidelines for (Non-Elite) Grassroots Sport 2023. Available online: https://www.sportandrecreation.org.uk/policy/research-publications/concussion-guidelines (accessed on 30 October 2023).
- Hagstrom, A.D.; Yuwono, N.; Warton, K.; Ford, C.E. Sex Bias in Cohorts Included in Sports Medicine Research. Sports Med. 2021, 51, 1799–1804. [Google Scholar] [CrossRef] [PubMed]
- Burbage, J.; Cameron, L. An Investigation into the Prevalence and Impact of Breast Pain, Bra Issues and Breast Size on Female Horse Riders. J. Sports Sci. 2017, 35, 1091–1097. [Google Scholar] [CrossRef]
- Cameron, L.J.; Burbage, J.; Lewis, V.; Dumbell, L.; Billingsley, E.; Young, K.; King-Urbin, C.; Goater, F. Breast Biomechanics, Exercise Induced Breast Pain (Mastalgia), Breast Support Condition and Its Impact on Riding Position in Female Equestrians. Comp. Exerc. Physiol. 2021, 18, 9–19. [Google Scholar] [CrossRef]
- Temm, D.A.; Standing, R.J.; Best, R. Training, Wellbeing and Recovery Load Monitoring in Female Youth Athletes. Int. J. Environ. Res. Public Health 2022, 19, 11463. [Google Scholar] [CrossRef] [PubMed]
- Meignié, A.; Duclos, M.; Carling, C.; Orhant, E.; Provost, P.; Toussaint, J.-F.; Antero, J. The Effects of Menstrual Cycle Phase on Elite Athlete Performance: A Critical and Systematic Review. Front. Physiol. 2021, 12, 654585. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Sygo, J.; Morton, J.P. Fuelling the Female Athlete: Carbohydrate and Protein Recommendations. Eur. J. Sport Sci. 2022, 22, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Best, R. Player Heart Rate Responses and Pony External Load Measures during 16-Goal Polo. Data 2020, 5, 34. [Google Scholar] [CrossRef]
- Rogers, C.W.; Firth, E.C. Musculoskeletal Responses of 2-Year-Old Thoroughbred Horses to Early Training. 2. Measurement Error and Effect of Training Stage on the Relationship between Objective and Subjective Criteria of Training Workload. N. Z. Vet. J. 2004, 52, 272–279. [Google Scholar] [CrossRef]
- Harris, S.E. Horse Gaits, Balance and Movement; Howell Book House: New York, NY, USA, 1993; ISBN 0-87605-955-8. [Google Scholar]
- Kiely, M.A.; Warrington, G.D.; Mcgoldrick, A.; O’Loughlin, G.; Cullen, S. Physiological Demands of Daily Riding Gaits in Jockeys. J. Sports Med. Phys. Fit. 2019, 59, 394–398. [Google Scholar] [CrossRef]
- Best, R.; Standing, R. Distance, Speed and High Intensity Characteristics of 0 to 24-Goal, Mixed and Women’s Polo. Data 2019, 4, 95. [Google Scholar] [CrossRef]
- Chanda, M.; Srikuea, R.; Cherdchutam, W.; Chairoungdua, A.; Piyachaturawat, P. Modulating Effects of Exercise Training Regimen on Skeletal Muscle Properties in Female Polo Ponies. BMC Vet. Res. 2016, 12, 245. [Google Scholar] [CrossRef]
- De Oliveira, L.F.; Dolan, E.; Swinton, P.A.; Durkalec-Michalski, K.; Artioli, G.G.; McNaughton, L.R.; Saunders, B. Extracellular Buffering Supplements to Improve Exercise Capacity and Performance: A Comprehensive Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 505–526. [Google Scholar] [CrossRef] [PubMed]
- Shannon, O.M.; Allen, J.D.; Bescos, R.; Burke, L.; Clifford, T.; Easton, C.; Gonzalez, J.T.; Jones, A.M.; Jonvik, K.L.; Larsen, F.J.; et al. Dietary Inorganic Nitrate as an Ergogenic Aid: An Expert Consensus Derived via the Modified Delphi Technique. Sports Med. 2022, 52, 2537–2558. [Google Scholar] [CrossRef] [PubMed]
- Viribay, A.; Fernández-Landa, J.; Castañeda-Babarro, A.; Collado, P.S.; Fernández-Lázaro, D.; Mielgo-Ayuso, J. Effects of Citrulline Supplementation on Different Aerobic Exercise Performance Outcomes: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 3479. [Google Scholar] [CrossRef]
- Périard, J.D.; Eijsvogels, T.; Daanen, H.A.M.; Racinais, S. Hydration for the Tokyo Olympics: To Thirst or Not to Thirst? Br. J. Sports Med. 2021, 55, 410–411. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, D.R.; McCutcheon, L.J.; Byrd, S.K.; Brown, W.S.; Bayly, W.M.; Brengelmann, G.L.; Gollnick, P.D. Dissipation of Metabolic Heat in the Horse during Exercise. J. Appl. Physiol. 1993, 74, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Geor, R.J.; McCutcheon, L.J.; Ecker, G.L.; Lindinger, M.I. Heat Storage in Horses during Submaximal Exercise before and after Humid Heat Acclimation. J. Appl. Physiol. 2000, 89, 2283–2293. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Wilson, A.M. Grip and Limb Force Limits to Turning Performance in Competition Horses. Proc. R. Soc. B Biol. Sci. 2010, 278, 2105–2111. [Google Scholar] [CrossRef]
- Klous, L.; Siegers, E.; van den Broek, J.; Folkerts, M.; Gerrett, N.; van Oldruitenborgh-Oosterbaan, M.S.; Munsters, C. Effects of Pre-Cooling on Thermophysiological Responses in Elite Eventing Horses. Animals 2020, 10, 1664. [Google Scholar] [CrossRef]
- Ranchordas, M.K.; Dawson, J.T.; Russell, M. Practical Nutritional Recovery Strategies for Elite Soccer Players When Limited Time Separates Repeated Matches. J. Int. Soc. Sports Nutr. 2017, 14, 35. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Pérez-Idárraga, A.; Odriozola-Martínez, A.; Kreider, R.B. The 4R’s Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates. Int. J. Environ. Res. Public Health 2021, 18, 103. [Google Scholar] [CrossRef]
- Balsom, P.; Wood, K.; Olsson, P.; Ekblom, B. Carbohydrate Intake and Multiple Sprint Sports: With Special Reference to Football (Soccer). Int. J. Sports Med. 1999, 20, 48–52. [Google Scholar] [CrossRef]
Riding Volume | Intake (g/kg/day) | Scenario |
---|---|---|
Low | 3–5 | Recreational riding or low-energy-related tasks, e.g., lunging. Active recovery or off-horse training days |
Moderate | 5–7 | One or more horses in light- to medium-ridden work. Flat work and short-duration technical sessions. |
High | 7–10 | Multiple horses in medium-to-heavy work. Higher skill and discipline-specific sessions e.g., stick and ball or show jumping. |
Very High | ≥10 | Multiple horses in heavy work and/or full competitive load, likely competing across multiple classes, days, or extended periods, e.g., endurance, eventing. |
Additional Context | Where higher intakes are required, multiple forms and sources of carbohydrate are likely optimal and better tolerated. | Gut training is recommended in training to assess and establish tolerance for intake circa and during competition. |
Timing | Pre-Event (−1 to −4 h) | Circa-Event | Between Rounds/Immediately Post (≤1 h) | Post-Competition (≥1 h) 1 |
---|---|---|---|---|
Dose | 30–60 g/h | Mouth rinse/<30 g | 30 g–60 g/h | 1–2 g/kg |
Event example | Arrival at ground; horse unboxed and yarded | Post-human warm-up prior to mounting | As per timing and as required and tolerated | Close to competition preferred; combine with hydration and protein intake; increase consumption as tolerated |
Rationale | Adequate fuelling for the event demands GI comfort Practical timing alongside horse management | Stimulates oral CHO receptors and associated brain regions | Increased exogenous CHO oxidation, partial sparing effect | Increased rate of glycogen resynthesis; convenient co-ingestion with other recovery fundamentals |
Beverage | BHI | Energy (kcal/100 mL) | CHO (g/100 mL) | PRO (g/100 mL) | FAT (g/100 mL) |
---|---|---|---|---|---|
Water | 1.0 | 0 | 0 | 0 | 0 |
Cola | 1.4 | 42 | 10.6 | 0 | 0 |
Sports Drink | 1.0 | 16 | 3.9 | 0 | 0 |
ORS * | 1.5 | 8 | 1.8 | 0 | 0.1 |
Coffee | 0.9 | 0.4 | 0.1 | 0 | 0 |
Full fat milk | 1.4 | 64 | 4.7 | 3.2 | 3.6 |
Skimmed milk | 1.5 | 35 | 5.0 | 3.4 | 0.1 |
Energy Expenditure (kcal/h) | |||||
---|---|---|---|---|---|
Gait | Typical Speeds (km/h) | Energy Expenditure (METS) | 60 kg Athlete | 70 kg Athlete | 80 kg Athlete |
Walk | 7 | 3.4 | 204 | 238 | 272 |
Trot | 13 | 6.2 | 372 | 434 | 496 |
Canter | 16–27 | 7.7 | 462 | 539 | 616 |
Suspended Canter 1 | as above | 10.65 | 639 | 746 | 852 |
Gallop | ≥40 | 9.4 | 564 | 658 | 752 |
Show jumping | N/A | 11.04 | 662 | 773 | 883 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Best, R.; Williams, J.M.; Pearce, J. The Physiological Requirements of and Nutritional Recommendations for Equestrian Riders. Nutrients 2023, 15, 4977. https://doi.org/10.3390/nu15234977
Best R, Williams JM, Pearce J. The Physiological Requirements of and Nutritional Recommendations for Equestrian Riders. Nutrients. 2023; 15(23):4977. https://doi.org/10.3390/nu15234977
Chicago/Turabian StyleBest, Russ, Jane M. Williams, and Jeni Pearce. 2023. "The Physiological Requirements of and Nutritional Recommendations for Equestrian Riders" Nutrients 15, no. 23: 4977. https://doi.org/10.3390/nu15234977
APA StyleBest, R., Williams, J. M., & Pearce, J. (2023). The Physiological Requirements of and Nutritional Recommendations for Equestrian Riders. Nutrients, 15(23), 4977. https://doi.org/10.3390/nu15234977