Health Benefits of Oily Fish: Illustrated with Blue Shark (Prionace glauca), Shortfin Mako Shark (Isurus oxyrinchus), and Swordfish (Xiphias gladius)
Abstract
:1. Introduction
2. Nutritional Composition
2.1. Moisture Content
2.2. Protein and Amino Acid Profile
Xiphias gladius | Prionace glauca | Isurus oxyrinchus | Reference Daily Intake | Nutritional Declaration | |
---|---|---|---|---|---|
Energy (Kcal) | 107 | 82 | 87 | ||
Protein | 17 | 18.7 | 20.7 | 50 | High content |
Tryptophan † | 0.222 | - | - | 0.41 | |
Threonine † | 0.868 | - | - | 1.63 | |
Isoleucine † | 0.912 | - | - | 1.55 | |
Leucine † | 1.61 | - | - | 3.43 | |
Lysine † | 1.82 | - | - | 3.10 | |
Methionine † | 0.586 | - | - | 1.55 | |
Phenylalanine † | 0.773 | - | - | 1.14 | |
Valine † | 1.02 | - | - | 0.41 | |
Histidine † | 0.583 | ||||
Cystine | 0.212 | - | - | 2.69 | |
Tyrosine | 0.668 | - | - | 1.96 | |
Arginine | 1.18 | - | - | ||
Alanine | 1.2 | - | - | ||
Aspartic acid | 2.03 | - | - | ||
Glutamic acid | 2.96 | - | - | ||
Glycine | 0.95 | - | - | ||
Proline | 0.7 | - | - | ||
Serine | 0.808 | - | - | ||
Total lipids | 4.3 | 4.5 | 4.4 | Low in saturated fat | |
Saturated FAs | 1.15 | 1.57 | 1.27 | ||
Monounsaturated FAs | 1.43 | 1.33 | 1.22 | ||
Polyunsaturated FAs | 1.2 | 1.4 | 1.3 | ||
ω-3 | 0.800 | 0.900 | 0.795 | High content of ω-3-FAs | |
ω-6 | 0.031 | 0.01 | 0.02 | ||
Cholesterol mg/1000 Kcal | 39 | 51 | - | ||
Ratio AGP/AGS | 0.86 | 0.89 | 1,02 | - | |
Carbohydrates | 0 | 0 | 0.21 | ||
Fiber | 0 | 0 | - | ||
Water | 78.7 | 78.5 | 76 | ||
Minerals | |||||
Calcium (mg) | 19 | 34 | 12 | 800 | - |
Iron (mg) | 0.9 | 0.8 | 0.957 | 14 | - |
Iodine (μg) | 17.2 | 0 | - | 150 | - |
Magnesium (mg) | 57 | 49 | 40 | 375 | Font |
Zinc (mg) | 0.4 | 0.4 | 0.358 | 10 | - |
Sodium (mg) | 102 | 79 | 90 | ≤120 | Low content |
Potassium (mg) | 342 | 160 | 167 | 2000 | Font |
Phosphorus (mg) | 506 | 210 | 190 | 700 | High content |
Selenium (μg) | 48.1 | 28 | 28.5 | 55 | High content |
Vitamins | |||||
Thiamine (mg) | 0.05 | 0.04 | 0.03 | 1.1 | - |
Riboflavin (mg) | 0.05 | 0.62 | 0.58 | 1.4 | - |
Niacin equivalents (mg) | 9 | 2.9 | 2.1 | 16 | High content |
Vitamin B6 (mg) | 0.51 | 0.50 | - | 1.4 | Font |
Folates (μg) | 15 | 0 | - | 200 | - |
Vitamin B12 (μg) | 5 | 1.49 | 1.35 | 2.5 | High content |
Vitamin C (mg) | 0 | 0 | 0 | 80 | - |
Vitamin A: Eq. Retinol (μg) | 500 | 70 | 8.36 | 800 | High content |
Vitamin D (μg) | 7.2 | 8 | 8 | 5 | High content |
Vitamin E (mg) | 1 | 0 | 0 | 12 | - |
2.3. Lipid Content: Fatty Acids Profile and ω-3/ω-6 Relation
2.4. Carbohydrates
2.5. Vitamins
2.6. Minerals
3. Health Benefits of Blue Fish: Direct Consumption and By-Product Applications
3.1. Antioxidant and Anti-Inflammatory
3.2. Metabolic Diseases and Weight Control
3.3. Cardiovascular Diseases (CVDs)
3.4. Neurological Disorders
3.5. Bone and Cartilage Degenerative Diseases
4. Importance of Consumption during Different Stages of the Life Cycle
4.1. Risk-Benefit Ratio: Toxicological Assessment
Size/Weight | N | Origin | Year | Avg Hg Level (and Range) (Muscle, mg/kg, w/w) | % Samples < MPL Positive Impact Results | Ref. |
---|---|---|---|---|---|---|
Prionace glauca | ||||||
Large (>195 cm) Small (≤195 cm) | 39 | South Pacific waters (in front of Chile) | 2011 | 0.048 ± 0.03 mg/kg | 100% samples < MPL | [106] |
160 ± 56 cm (74–284 cm) | 40 | Spanish and Portuguese long-line vessels (North-eastern Atlantic, Vigo, Spain) | 2012 and 2013 | 0.52 ± 0.35 mg/kg (0.14–1.71 mg/kg) | 90% < MPL; Lower level than I. oxyrinchus (Avg: 0.74 mg/kg) | [105] |
Isurus oxyrinchus | ||||||
- | 4 | Coast of Santa Catarina State (Brazil) | 2007 | 0.398 ± 0.290 mg/kg (0.086–0.492 mg/kg | 100% < MPL | [114] |
Juvenile | 20 | Isla Magdalena, South of California | 2008 | 0.391 mg/kg (0.012–0.691 mg/kg) | 100% < MPL; liver (0.001 µg/kg) Kidney (0.006 mg/kg); still lower values | [107]. |
Large (>285 cm) Small (≤285 cm) | 69 | South Pacific waters (in front of Chile) | 2011 | 0.034 ± 0.023 mg/kg | 100% < MPL | [106]. |
156 ± 36 cm (99–219 cm) | 48 | North-eastern Atlantic (Spain and Portugal, Vigo, Spain) | 2012 and 2013 | 0.74 ± 0.56 mg/kg (0.12–2.57 mg/kg) | 75% < MPL | [105] |
Xiphias glaudius | ||||||
45.0–278.0 cm (Avg: 136.5 cm) | 176 | Galle, Mutwal (Colombo), Negombo, and Trincomallee areas of Sri Lanka | 2009 (July)–2010 (March) | 0.90 mg/kg (0.18–2.58 mg/kg) | 68% < MPL | [115] |
90–260 cm | 74 | Seychelles EEZ | 2013 (Nov)–2014 (Dec) | 0.63 ± 0.32 mg/kg | 87% < MPL; Gonads still lower values (0.39 ± 0.27 mg/kg) | [116] |
- | 30 | Algerian coast (Mediterranean Sea) | 2015 | 0.56 ± 0.15 mg/kg | 100% < MPL; lower levels than the other fish: Sardina pilchardus (Avg: 0.62 mg/kg, n = 70) | [111]; |
Adults: 102–232 cm | 26 | Catalan coast of Spain (north-western Mediterranean Sea) | 2018 (June–Aug) | 0.66 ± 0.29 mg/kg | 100% < MPL | [112] |
100–200 g | 15 | Purchased in Apulian region (Italy) | 2019 (May–July) | 0.64 mg/kg | 100% < MPL | [117] |
4.2. Recommended Intake per Age Group
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cappello, T.; Giannetto, A.; Parrino, V.; De Marco, G.; Mauceri, A.; Maisano, M. Food safety using NMR-based metabolomics: Assessment of the Atlantic bluefin tuna, Thunnus thynnus, from the Mediterranean Sea. Food Chem. Toxicol. 2018, 115, 391–397. [Google Scholar] [CrossRef] [PubMed]
- IMO. United Nations Convention on the Law of the Sea; IMO: London, UK, 1995. [Google Scholar]
- MAPA Anuario Digital de Estadística. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadistica-digital/powerbi-pesca.aspx (accessed on 13 May 2023).
- Chamorro, F.; Carpena, M.; Pereira, A.G.; Echave, J.; Prieto, M.A. Oily Fish as a Source of Bioactive Compounds in the Diet. Biol. Life Sci. Forum 2022, 12, 33. [Google Scholar]
- Emmanuelle, T.; Lessa, R.; Santana, F.M. Current knowledge on biology, fishing and conservation of the blue shark (Prionace glauca). Neotrop. Biol. Conserv. 2021, 16, 71–88. [Google Scholar] [CrossRef]
- Rodriguez, M. Hydrodynamic Characteristics of the Shortfin Mako Shark (Isurus oxyrinchus) for Two Caudal Fin Morphologies; Coastal Carolina University: Conway, SC, USA, 2021. [Google Scholar]
- Baba, N.; Agmour, I.; El, Y.; Achtaich, N. The Tide Effects on Bioeconomic Model of Sardina pilchardus, Engraulis encrasicolus and Xiphias gladius in Atlantic Moroccan Zone. Earth Syst. Environ. 2022, 6, 295–305. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Paszczyk, B.; Nowosad, J.; Łuczyński, M.J. Mercury, fatty acids content and lipid quality indexes in muscles of freshwater and marine fish on the polish market. Risk assessment of fish consumption. Int. J. Environ. Res. Public Health 2017, 14, 1120. [Google Scholar] [CrossRef] [PubMed]
- Weichselbaum, E.; Coe, S.; Buttriss, J.; Stanner, S. Fish in the diet: A review. Nutr. Bull. 2013, 38, 128–177. [Google Scholar] [CrossRef]
- Sevillano-Morales, J.S.; Cejudo-Gómez, M.; Ramírez-Ojeda, A.M.; Martos, F.C.; Moreno-Rojas, R. Risk profile of methylmercury in seafood. Curr. Opin. Food Sci. 2016, 6, 53–60. [Google Scholar] [CrossRef]
- Bushkin-Bedient, S.; Carpenter, D.O. Benefits versus Risks Associated with Consumption of Fish and Other Seafood. Rev. Environ. Health 2010, 25, 161–191. [Google Scholar] [CrossRef]
- FAO. Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption. January 2010; FAO: Rome, Italy, 2011; Volume 978, ISBN 9789251069998. [Google Scholar]
- Matos, J.; Lourenço, H.M.; Brito, P.; Maulvault, A.L.; Martins, L.L.; Afonso, C. Influence of bioaccessibility of total mercury, methyl-mercury and selenium on the risk/benefit associated to the consumption of raw and cooked blue shark (Prionace glauca). Environ. Res. 2015, 143, 123–129. [Google Scholar] [CrossRef]
- Cardoso, C.; Afonso, C.; Lourenço, H.; Nunes, M.L. Seafood consumption health concerns: The assessment of methylmercury, selenium, and eicosapentaenoic þ docosahexaenoic fatty acids intake. Food Control 2013, 34, 581–588. [Google Scholar] [CrossRef]
- Teresa, M.; Ballesteros, L.; García, B.; Navarro, I.; Izquierdo, S.; García, P.; José, M.; Muñoz, G. Evaluation of blood mercury and serum selenium levels in the pregnant population of the Community of Madrid, Spain. J. Trace Elem. Med. Biol. 2020, 57, 60–67. [Google Scholar] [CrossRef]
- Chan, C.Y.; Tran, N.; Pethiyagoda, S.; Crissman, C.C.; Sulser, T.B.; Phillips, M.J. Prospects and challenges of fish for food security in Africa. Glob. Food Sec. 2019, 20, 17–25. [Google Scholar] [CrossRef]
- Venugopal, V. Nutrients and Nutraceuticals from Seafood; Springer: Cham, Switzerland, 2019; ISBN 9783319545288. [Google Scholar]
- Mohanty, B.P.; Mahanty, A.; Ganguly, S.; Mitra, T.; Karunakaran, D.; Anandan, R. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2019, 293, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Olmedo, P.; Hernández, A.F.; Pla, A.; Femia, P.; Navas-Acien, A.; Gil, F. Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury–selenium balance. Food Chem. Toxicol. 2013, 62, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Erkan, N.; Can Tunçelli, İ.; Özden, Ö.; Üren, S. Nutritional Composition and heavy Metal Concentrations in Sardinella maderensis (Lowe, 1838) obtained from the Mauritanian fisheries. J. Appl. Ichthyol. 2020, 36, 906–911. [Google Scholar] [CrossRef]
- Mesa, M.D.; Gil, F.; Olmedo, P.; Angel, G. Nutritional Importance of Selected Fresh Fishes, Shrimps and Mollusks to Meet Compliance with Nutritional Guidelines of n-3 LC-PUFA Intake in Spain. Nutrients 2021, 13, 465. [Google Scholar] [CrossRef]
- Alhassan, A.; Young, J.; Lean, M.E.J.; Lara, J. Consumption of fish and vascular risk factors: A systematic review and meta-analysis of intervention studies. Atherosclerosis 2017, 266, 87–94. [Google Scholar] [CrossRef]
- Kim, K.Y.; Park, J.S. Impact of fish consumption by subjects with prediabetes on the metabolic risk factors: Using data in the 2015 (6th) Korea National Health and Nutrition Examination Surveys. Nutr. Res. Pract. 2018, 12, 233–242. [Google Scholar] [CrossRef]
- Ruxton, C.H.S. The benefits of fish consumption. Nutr. Bull. 2011, 36, 6–19. [Google Scholar] [CrossRef]
- Cobas, N.; Piñeiro-Lago, L.; Gómez-Limia, L.; Franco, I.; Martínez, S. Vitamin retention during the canning of swordfish (Xiphias gladius) with different filling media. J. Food Sci. 2021, 86, 1704–1713. [Google Scholar] [CrossRef]
- Smida, M.A.B.; Marzouk, B.; Cafsi, M. El The composition of fatty acids in the tissues of Tunisian swordfish (Xiphias gladius). Food Chem. 2009, 115, 522–528. [Google Scholar] [CrossRef]
- Hermida Trastoy, A. Guía de las Cualidades Nutricionales de los Productos Procedentes de la Pesca Extractiva y de la Acuicultura: Binomio Riesgo-Beneficio; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2012; p. 64.
- Kemp, D.C.; Kwon, J.Y. Fish and shellfish-derived anti-inflammatory protein products: Properties and mechanisms. Molecules 2021, 26, 3225. [Google Scholar] [CrossRef] [PubMed]
- Wergedahl, H.; Liaset, B.; Gudbrandsen, O.A.; Lied, E.; Espe, M.; Muna, Z.; Mørk, S.; Berge, R.K. Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers Acyl-CoA:cholesterol acyltransferase activity in liver of Zucker rats. J. Nutr. 2004, 134, 1320–1327. [Google Scholar] [CrossRef]
- Qian, Z.J.; Je, J.Y.; Kim, S.K. Antihypertensive effect of angiotensin I converting enzyme-inhibitory peptide from hydrolysates of bigeye tuna dark muscle, Thunnus obesus. J. Agric. Food Chem. 2007, 55, 8398–8403. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, P.; Kizhakkethil, B.P.; George, J.C.; Aliyamveetil Abubacker, Z.; Ninan, G.; Chandragiri Nagarajarao, R. Antioxidant Peptides from Dark Meat of Yellowfin Tuna (Thunnus albacares): Process Optimization and Characterization. Waste Biomass Valorization 2021, 12, 1845–1860. [Google Scholar] [CrossRef]
- Chiesa, G.; Busnelli, M.; Manzini, S.; Parolini, C. Nutraceuticals and bioactive components from fish for dyslipidemia and cardiovascular risk reduction. Mar. Drugs 2016, 14, 113. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Kashyap, S.; Calvez, J.; Devi, S.; Azzout-Marniche, D.; Tomé, D.; Kurpad, A.V.; Gaudichon, C. Evaluation of Protein Quality in Humans and Insights on Stable Isotope Approaches to Measure Digestibility—A Review. Adv. Nutr. 2021, 13, 1131–1143. [Google Scholar] [CrossRef]
- López, M.M.S.; Kizlansky, A.; López, L.B. Evaluación de la calidad de las proteínas en los alimentos calculando el escore de aminoácidos corregido por digestibilidad. Nutr. Hosp. 2006, 21, 47–51. [Google Scholar]
- Centre for Genomic Pathogen Surveillance. Dietary Protein Quality Evaluation in Human Nutrition; Report of an FAO Expert Consultation; FAO: Rome, Italy, 2020; ISBN 978-92-5-107417-6. [Google Scholar]
- Vijaykrishnaraj, M.; Prabhasankar, P. Marine protein hydrolysates: Their present and future perspectives in food chemistry—A review. RSC Adv. 2015, 5, 34864–34877. [Google Scholar] [CrossRef]
- FDA. Daily Value and Percent Daily Value: Changes on the New Nutrition and Supplement Facts Labels Daily Value vs. % Daily Value; FDA: Silver Spring, MD, USA, 2022; pp. 1–6.
- Holt, L.E.; Snyderman, S.E. Protein and Amino Acid Requirements of Infants and Children. Nutr. Abstr. Rev. 2007, 35, 1–13. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for protein. EFSA J. 2014, 12, 3759. [Google Scholar] [CrossRef]
- Guo, Q.; Li, T.; Qu, Y.; Liang, M.; Ha, Y.; Zhang, Y.; Wang, Q. New research development on trans fatty acids in food: Biological effects, analytical methods, formation mechanism, and mitigating measures. Prog. Lipid Res. 2023, 89, 101199. [Google Scholar] [CrossRef]
- Holeček, M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement Milan. Nutrients 2020, 12, 848. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched chain amino acids: Beyond nutrition metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef] [PubMed]
- Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M.S.; Bjørklund, G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019, 59, 72–88. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAO/INFOODS Food Composition Table for Western Africa (2019) FAO/INFOODS Food Composition Table for Western Africa (2019); FAO: Rome, Italy, 2020. [Google Scholar]
- EFSA Scientific Committee. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 3982. [Google Scholar] [CrossRef]
- Truzzi, C.; Annibaldi, A.; Illuminati, S.; Antonucci, M.; Api, M.; Scarponi, G.; Lombardo, F.; Pignalosa, P.; Carnevali, O. Characterization of the Fatty Acid Composition in Cultivated Atlantic Bluefin Tuna (Thunnus thynnus L.) Muscle by Gas Chromatography-Mass Spectrometry. Anal. Lett. 2018, 51, 2981–2993. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to docosahexaenoic acid (DHA) and maintenance of normal (fasting) blood concentrations of triglycerides (ID 533, 691, 3150), protection of blood lipids from oxidative damage (ID 630), contr. EFSA J. 2010, 8, 1734. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and brain, eye and nerve development (ID 501, 513, 540), maintenance of normal brain function (ID 497, 501, 510, 513, 519, 521, 53. EFSA J. 2011, 9, 2078. [Google Scholar] [CrossRef]
- Vlieg, P.; Murray, T.; Body, D. Nutritional Data on Six Oceanic Pelagic Fih Species from New Zeland Waters. J. Food Compos. Anal. 1993, 6, 45–54. [Google Scholar] [CrossRef]
- Goltzman, D. Functions of vitamin D in bone. Histochem. Cell Biol. 2018, 149, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Cantorna, M.T.; Snyder, L.; Arora, J. Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef] [PubMed]
- Quintaes, K.D.; Diez-Garcia, R.W. The importance of minerals in the human diet. In Handbook of Mineral Elements in Food; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1–21. [Google Scholar] [CrossRef]
- Romani, A.M.P. Magnesium in Health and Disease; Springer: Dordrecht, The Netherlands, 2013; Volume 13, ISBN 9789400775008. [Google Scholar]
- Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Impact of Diseases Linked to Its Deficiency. Nutrients 2021, 13, 1136. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M. Selenium–fascinating microelement, properties and sources in food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef]
- Gać, P.; Czerwińska, K.; Macek, P.; Jaremków, A.; Mazur, G.; Pawlas, K.; Poręba, R. The importance of selenium and zinc deficiency in cardiovascular disorders. Environ. Toxicol. Pharmacol. 2021, 82, 103553. [Google Scholar] [CrossRef] [PubMed]
- Ralston, N.V.C.; Raymond, L.J. Selenium status and intake influences mercury exposure risk assessments. In Selenium in the Environment and Human Health; Taylor and Francis Group: London, UK, 2014; pp. 203–205. ISBN 978-1-138-00017-9. [Google Scholar]
- Ralston, N.V.C.; Blackwell, J.L.; Raymond, L.J. Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biol. Trace Elem. Res. 2007, 119, 255–268. [Google Scholar] [CrossRef]
- Gochfeld, M.; Burger, J. Mercury interactions with selenium and sulfur and the relevance of the Se:Hg molar ratio to fish consumption advice. Environ. Sci. Pollut. Res. 2021, 28, 18407–18420. [Google Scholar] [CrossRef]
- Cabañero, A.I.; Madrid, Y.; Cámara, C. Mercury-selenium species ratio in representative fish samples and their bioaccessibility by an in vitro digestion method. Biol. Trace Elem. Res. 2007, 119, 195–211. [Google Scholar] [CrossRef]
- Li, X.; Yin, D.; Yin, J.; Chen, Q.; Wang, R. Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure. Food Chem. Toxicol. 2014, 72, 169–177. [Google Scholar] [CrossRef]
- Moura, F.A.; Goulart, M.O.F. Chapter 7—Inflammatory Bowel Diseases: The Crosslink Between Risk Factors and Antioxidant Therapy. In Gastrointestinal Tissue: Oxidative Stress and Dietary Antioxidants; Gracia-Sancho, J., Salvadó, J.B.T.-G.T., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 99–112. ISBN 978-0-12-805377-5. [Google Scholar]
- Jimenez-Lopez, C.; Fraga-Corral, M.; Carpena, M.; García-Oliveira, P.; Echave, J.; Pereira, A.G.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food Funct. 2020, 11, 4853–4877. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-H.; Kwon, N.; Yoon, S.R.; Kim, O.Y. Serum Phospholipid Docosahexaenoic Acid Is Inversely Associated with Arterial Stiffness in Metabolically Healthy Men. Clin. Nutr. Res. 2016, 5, 190. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res. 2008, 57, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Mozaffarian, D. Omega-3 Fatty Acids, Mercury, and Selenium in Fish and the Risk of Cardiovascular Diseases. Curr. Atheroscler. Rep. 2010, 12, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Katrenčíková, B.; Vaváková, M.; Paduchová, Z.; Nagyová, Z.; Garaiova, I.; Muchová, J.; Ďuračková, Z.; Trebatická, J. Oxidative stress markers and antioxidant enzymes in children and adolescents with depressive disorder and impact of omega-3 fatty acids in randomised clinical trial. Antioxidants 2021, 10, 1256. [Google Scholar] [CrossRef] [PubMed]
- Novoa-Carballal, R.; Pérez-Martín, R.; Blanco, M.; Sotelo, C.G.; Fassini, D.; Nunes, C.; Coimbra, M.A.; Silva, T.H.; Reis, R.L.; Vázquez, J.A. By-products of Scyliorhinus canicula, Prionace glauca and Raja clavata: A valuable source of predominantly 6S sulfated chondroitin sulfate. Carbohydr. Polym. 2017, 157, 31–37. [Google Scholar] [CrossRef]
- Martel-Pelletier, J.; Farran, A.; Montell, E.; Vergés, J.; Pelletier, J.-P. Discrepancies in composition and biological effects of different formulations of chondroitin sulfate. Molecules 2015, 20, 4277–4289. [Google Scholar] [CrossRef]
- Tully, S.E.; Rawat, M.; Hsieh-Wilson, L.C. Discovery of a TNF-α Antagonist Using Chondroitin Sulfate Microarrays. J. Am. Chem. Soc. 2006, 128, 7740–7741. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, S.; Chen, T.; Han, X.; Yang, X.; Quan, Z.; Yuan, Y.; Li, J.; Deng, K.; Li, T.; et al. Preparation and Evaluation of the Curative Effect of Blue Shark (Prionace glauca) Skin Collagen Composite Gel in a Rat Oral Ulcers Model. J. Biomater. Tissue Eng. 2021, 11, 1924–1931. [Google Scholar] [CrossRef]
- Marushka, L.; Batal, M.; David, W.; Schwartz, H.; Ing, A.; Fediuk, K.; Sharp, D.; Black, A.; Tikhonov, C.; Chan, H.M. Association between fish consumption, dietary omega-3 fatty acids and persistent organic pollutants intake, and type 2 diabetes in 18 First Nations in Ontario, Canada. Environ. Res. 2017, 156, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-A.; Lee, J.; Kang, D.; Shin, S. Oily Fish Consumption and the Risk of Dyslipidemia in Korean Adults: A Prospective Cohort Study Based on the Health Examinees Gem (HEXA-G) Study. Nutrients 2019, 11, 2506. [Google Scholar] [CrossRef] [PubMed]
- Kosti, R.I.; Kasdagli, M.I.; Kyrozis, A.; Orsini, N.; Lagiou, P.; Taiganidou, F.; Naska, A. Fish intake, n-3 fatty acid body status, and risk of cognitive decline: A systematic review and a dose–response meta-analysis of observational and experimental studies. Nutr. Rev. 2021, 80, 1445–1458. [Google Scholar] [CrossRef] [PubMed]
- Arnoldussen, I.; Kiliaan, A. Impact of DHA on Metabolic Diseases from Womb to Tomb. Mar. Drugs 2014, 12, 6190–6212. [Google Scholar] [CrossRef] [PubMed]
- Tørris, C.; Småstuen, M.C.; Molin, M. Nutrients in fish and possible associations with cardiovascular disease risk factors in metabolic syndrome. Nutrients 2018, 10, 952. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Cardiovascular Diseases (CVDs); WHO: Geneva, Switzerland, 2021.
- Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Zito, M.C.; Guarnieri, L.; et al. The anti-inflammatory and antioxidant properties of n-3 PUFAs: Their role in cardiovascular protection. Biomedicines 2020, 8, 306. [Google Scholar] [CrossRef] [PubMed]
- Heine-Bröring, R.C.; Brouwer, I.A.; Proença, R.V.; Van Rooij, F.J.A.; Hofman, A.; Oudkerk, M.; Witteman, J.C.M.; Geleijnse, J.M. Intake of fish and marine n-3 fatty acids in relation to coronary calcification: The Rotterdam Study. Am. J. Clin. Nutr. 2010, 91, 1317–1323. [Google Scholar] [CrossRef]
- Raatz, S.K.; Silverstein, J.T.; Jahns, L.; Sr, M.J.P. Issues of Fish Consumption for Cardiovascular Disease Risk Reduction. Nutrients 2013, 5, 1081–1097. [Google Scholar] [CrossRef]
- Zhang, B.; Xiong, K.; Cai, J.; Ma, A. Fish consumption and coronary heart disease: A meta-analysis. Nutrients 2020, 12, 2278. [Google Scholar] [CrossRef]
- Yu, T.; Xu, B.; Bao, M.; Gao, Y.; Zhang, Q.; Zhang, X.; Liu, R. Identification of potential biomarkers and pathways associated with carotid atherosclerotic plaques in type 2 diabetes mellitus: A transcriptomics study. Front. Endocrinol. 2022, 13, 981100. [Google Scholar] [CrossRef]
- Din, J.N.; Harding, S.A.; Valerio, C.J.; Sarma, J.; Lyall, K.; Riemersma, R.A.; Newby, D.E.; Flapan, A.D. Dietary intervention with oil rich fish reduces platelet-monocyte aggregation in man. Atherosclerosis 2008, 197, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Vuholm, S.; Rantanen, J.M.; Teisen, M.N.; Stark, K.D.; Mølgaard, C.; Christensen, J.H.; Lauritzen, L.; Damsgaard, C.T. Effects of oily fish intake on cardiometabolic markers in healthy 8- to 9-y-old children: The FiSK Junior randomized trial. Am. J. Clin. Nutr. 2019, 110, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Rimm, E.B.; Appel, L.J.; Chiuve, S.E.; Djoussé, L.; Engler, M.B.; Kris-Etherton, P.M.; Mozaffarian, D.; Siscovick, D.S.; Lichtenstein, A.H. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation 2018, 138, e35–e47. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Yehuda, S.; Rabinovitz, S.; Carasso, R.L.; Mostofsky, D.I. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 2002, 23, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Farooqui, A.A.; Siddiqi, N.J.; Alhomida, A.S.; Ong, W.Y. Effects of docosahexaenoic acid on neurotransmission. Biomol. Ther. 2012, 20, 152–157. [Google Scholar] [CrossRef]
- Husted, K.S.; Bouzinova, E.V. The importance of n-6/n-3 fatty acids ratio in the major depressive disorder. Medicina 2016, 52, 139–147. [Google Scholar] [CrossRef]
- Trebatická, J.; Hradečná, Z.; Surovcová, A.; Katrenčíková, B.; Gushina, I.; Waczulíková, I.; Sušienková, K.; Garaiova, I.; Šuba, J.; Ďuračková, Z. Omega-3 fatty-acids modulate symptoms of depressive disorder, serum levels of omega-3 fatty acids and omega-6/omega-3 ratio in children. A randomized, double-blind and controlled trial. Psychiatry Res. 2020, 287, 112911. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury. EFSA J. 2014, 12, 3761. [Google Scholar] [CrossRef]
- Higashi, K.; Takeuchi, Y.; Mukuno, A.; Tomitori, H.; Miya, M.; Linhardt, R.J.; Toida, T. Composition of Glycosaminoglycans in Elasmobranchs including Several Deep-Sea Sharks: Identification of Chondroitin/Dermatan Sulfate from the Dried Fins of Isurus oxyrinchus and Prionace glauca. PLoS ONE 2015, 10, e0120860. [Google Scholar] [CrossRef]
- Diogo, G.S.; Carneiro, F.; Freitas-Ribeiro, S.; Sotelo, C.G.; Pérez-Martín, R.I.; Pirraco, R.P.; Reis, R.L.; Silva, T.H. Prionace glauca skin collagen bioengineered constructs as a promising approach to trigger cartilage regeneration. Mater. Sci. Eng. C 2021, 120, 111587. [Google Scholar] [CrossRef] [PubMed]
- Boutinguiza, M.; Pou, J.; Comesaña, R.; Lusquiños, F.; de Carlos, A.; León, B. Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C 2012, 32, 478–486. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on risk assessment of parasites in fishery products. EFSA J. 2010, 8, 1543. [Google Scholar] [CrossRef]
- Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; Nebbia, C.S.; Nielsen, E.; et al. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, 6113. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016, 14, e04501. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, J.; Zhang, W.; Suo, Y.; Zhao, J.; Lin, X.; Cui, L.; Li, B.; Hu, H.; Chen, C.; et al. Selenium modulated gut flora and promoted decomposition of methylmercury in methylmercury-poisoned rats. Ecotoxicol. Environ. Saf. 2019, 185, 109720. [Google Scholar] [CrossRef] [PubMed]
- Maage, A.; Nilsen, B.M.; Julshamn, K.; Frøyland, L. Total Mercury, Methylmercury, Inorganic Arsenic and Other Elements in Meat from Minke Whale (Balaenoptera acutorostrata) from the North East Atlantic Ocean. Bull. Environ. Contam. Toxicol. 2017, 99, 161–166. [Google Scholar] [CrossRef]
- Sulimanec Grgec, A.; Kljaković-Gašpić, Z.; Orct, T.; Tičina, V.; Sekovanić, A.; Jurasović, J.; Piasek, M. Mercury and selenium in fish from the eastern part of the Adriatic Sea: A risk-benefit assessment in vulnerable population groups. Chemosphere 2020, 261, 127742. [Google Scholar] [CrossRef]
- The Commission of the European Communities. COMMISSION REGULATION (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2017, 49, 1–28. [Google Scholar]
- Storelli, A.; Barone, G.; Garofalo, R.; Busco, A.; Storelli, M.M. Determination of Mercury, Methylmercury and Selenium Concentrations in Elasmobranch Meat: Fish Consumption Safety. Int. J. Environ. Res. Public Health 2022, 19, 788. [Google Scholar] [CrossRef]
- Biton-Porsmoguer, S.; Daniela, B.; Boudouresque, C.F.; Dekeyser, I.; Bouchoucha, M.; Marco-Miralles, F.; Lebreton, B.; Guillou, G.; Harmelin-Vivien, M. Mercury in blue shark (Prionace glauca) and shortfin mako (Isurus oxyrinchus) from north-eastern Atlantic: Implication for fishery management. Mar. Pollut. Bull. 2018, 127, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Abarca, N.L. Heavy metal concentrations of two highly migratory sharks (Prionace glauca and Isurus oxyrinchus) in the southeastern Pacific waters: Comments on public health and conservation. Trop. Conserv. Sci. 2013, 6, 126–137. [Google Scholar] [CrossRef]
- Vélez-Alavez, M.; Labrada-Martagón, V.; Méndez-Rodriguez, L.C.; Galván-Magaña, F.; Zenteno-Savín, T. Comparative Biochemistry and Physiology, Part A Oxidative stress indicators and trace element concentrations in tissues of mako shark (Isurus oxyrinchus). Comp. Biochem. Physiol. Part A 2013, 165, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Storelli, M.M.; Giacominelli-Stuffler, R.; Storelli, A.; Marcotrigiano, G.O. Accumulation of mercury, cadmium, lead and arsenic in swordfish and bluefin tuna from the Mediterranean Sea: A comparative study. Mar. Pollut. Bull. 2005, 50, 1004–1007. [Google Scholar] [CrossRef] [PubMed]
- The Rapid Alert System for Food and Feed 2016 Annual Report; 2016; ISBN 9789279680533. Available online: https://op.europa.eu/en/publication-detail/-/publication/7ced87a2-ce70-11e7-a5d5-01aa75ed71a1/language-en (accessed on 30 April 2023).
- The Rapid Alert System for Food and Feed 2017 Annual Report; 2017; ISBN 9789279803161. Available online: https://op.europa.eu/en/publication-detail/-/publication/f4adf22f-4f7c-11e9-a8ed-01aa75ed71a1/language-en (accessed on 30 April 2023).
- Mehouel, F.; Bouayad, L.; Hammoudi, A.H.; Ayadi, O.; Regad, F. Evaluation of the heavy metals (mercury, lead, and cadmium) contamination of sardine (Sardina pilchardus) and swordfish (Xiphias gladius) fished in three Algerian coasts. Vet. World 2019, 12, 7–11. [Google Scholar] [CrossRef]
- Harmelin-Vivien, M.; Philippe, B.; Bouchoucha, M.; Marco-Miralles, F.; Marqu, M. A study of trophic structure, physiological condition and mercury biomagnification in swordfish (Xiphias gladius): Evidence of unfavourable conditions for the swordfish population in the Western Mediterranean. Mar. Pollut. Bull. 2022, 176, 113411. [Google Scholar] [CrossRef]
- Esposito, M.; De Roma, A.; Nucara, R.L.; Picazio, G.; Gallo, P. Chemosphere Total mercury content in commercial sword fi sh (Xiphias gladius) from different FAO fi shing areas. Chemosphere 2018, 197, 14–19. [Google Scholar] [CrossRef]
- Mársico, E.T.; Machado, M.E.S.; Knoff, M.; Clemente, S.C.S.; Oswaldo, F.; De Janeiro, C.-R. Communication Total mercury in sharks along the southern Brazilian Coast. Arq. Bras. Med. Vet. Zootec 2007, 59, 1593–1596. [Google Scholar] [CrossRef]
- Content, M.; Tuna, Y.; Intake, M. Mercury Content in Yellowfin Tuna (Thunnus albacares) and Swordfish (Xiphias gladius) and Estimation of Mercury Intake. J. Food Secur. 2014, 2, 23–26. [Google Scholar]
- Hollanda, S.; Bodin, N.; Churlaud, C.; Bustamante, P. Mercury and Selenium Levels in Swordfish (Xiphias gladius) Fished in the Exclusive Economic Zone of the Republic of Seychelles. Int. J. Earth Energy Environ. Sci. 2017, 10, 1. [Google Scholar] [CrossRef]
- Barone, G.; Storelli, A.; Meleleo, D.; Dambrosio, A.; Garofalo, R.; Busco, A.; Storelli, M.M. Levels of Mercury, Methylmercury and Selenium in Fish: Insights into Children Food Safety. Toxics 2021, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Afonso, C.; Bernardo, I.; Bandarra, N.M.; Martins, L.L. The implications of following dietary advice regarding fish consumption frequency and meal size for the benefit (EPA + DHA and Se) versus risk (MeHg) assessment. Int. J. Food Sci. Nutr. 2019, 70, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wang, Y.J.; He, B.S.; Zhou, J. Linc00312 Single Nucleotide Polymorphism as Biomarker for Chemoradiotherapy Induced Hematotoxicity in Nasopharyngeal Carcinoma Patients. Dis. Markers 2022, 6707821. [Google Scholar] [CrossRef]
- Bradley, M.A.; Barst, B.D.; Basu, N. A Review of Mercury Bioavailability in Humans and Fish. Int. J. Environ. Res. Public Health 2017, 14, 169. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.M.; Emmett, P.M.; Emond, A.M.; Golding, J. Europe PMC Funders Group Europe PMC Funders Author Manuscripts A review of guidance on fish consumption in pregnancy: Is it fit for purpose? Public Health Nutr. 2018, 21, 2149–2159. [Google Scholar] [CrossRef] [PubMed]
- Spiller, P.; Hibbeln, J.R.; Myers, G.; Vannice, G.; Golding, J.; Crawford, M.A.; Strain, J.J.; Connor, S.L.; Brenna, J.T.; Kris-Etherton, P.; et al. An abundance of seafood consumption studies presents new opportunities to evaluate effects on neurocognitive development. Prostaglandins Leukot. Essent. Fat. Acids 2020, 151, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Starling, P.; Charlton, K.; McMahon, A.T.; Lucas, C. Fish intake during pregnancy and foetal neurodevelopment–A systematic review of the evidence. Nutrients 2015, 7, 2001–2014. [Google Scholar] [CrossRef]
- Rideout, K.; Kosatsky, T. Fish for Dinner? Balancing Risks, Benefits, and Values in Formulating Food Consumption Advice. Risk Anal. 2017, 37, 2041–2052. [Google Scholar] [CrossRef]
- Branco, V.; Vale, C.; Canário, J.; dos Santos, M.N. Mercury and selenium in blue shark (Prionace glauca, L. 1758) and swordfish (Xiphias gladius, L. 1758) from two areas of the Atlantic Ocean. Environ. Pollut. 2007, 150, 373–380. [Google Scholar] [CrossRef]
- Fang, G.C.; Nam, D.H.; Basu, N. Mercury and selenium content of Taiwanese seafood. Food Addit. Contam. Part B Surveill. 2011, 4, 212–217. [Google Scholar] [CrossRef]
- Kaneko, J.J.; Ralston, N.V.C. Selenium and mercury in pelagic fish in the central North Pacific near Hawaii. Biol. Trace Elem. Res. 2007, 119, 242–254. [Google Scholar] [CrossRef]
- Kim, S.W.; Han, S.J.; Kim, Y.; Jun, J.W.; Giri, S.S.; Chi, C.; Yun, S.; Kim, H.J.; Kim, S.G.; Kang, J.W.; et al. Heavy metal accumulation in and food safety of shark meat from Jeju island, Republic of Korea. PLoS ONE 2019, 14, e0212410. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Gochfeld, M. Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: Variation within species and relevance to risk communication. Food Chem. Toxicol. 2013, 57, 235–245. [Google Scholar] [CrossRef]
- Cabañero, A.I.; Carvalho, C.; Madrid, Y.; Batoréu, C.; Cámara, C. Quantification and speciation of mercury and selenium in fish samples of high consumption in Spain and Portugal. Biol. Trace Elem. Res. 2005, 103, 17–35. [Google Scholar] [CrossRef]
- Calatayud, M.; Devesa, V.; Virseda, J.R.; Barberá, R.; Montoro, R.; Vélez, D. Mercury and selenium in fish and shellfish: Occurrence, bioaccessibility and uptake by Caco-2 cells. Food Chem. Toxicol. 2012, 50, 2696–2702. [Google Scholar] [CrossRef]
- Plessi, M.; Bertelli, D.; Monzani, A. Mercury and selenium content in selected seafood. J. Food Compos. Anal. 2001, 14, 461–467. [Google Scholar] [CrossRef]
- Amezcua, F.; Ruelas-Inzunza, J.; Coiraton, C.; Spanopoulos-Zarco, P.; Páez-Osuna, F. A Global Review of Cadmium, Mercury, and Selenium in Sharks: Geographical Patterns, Baseline Levels and Human Health Implications. Rev. Environ. Contam. Toxicol. 2022, 260, 4. [Google Scholar] [CrossRef]
Sampling Area | Typology | Hg (mg/kg) | Se (mg/kg) | Se/Hg (µmol/kg) | HBVSe | Ref. |
---|---|---|---|---|---|---|
Prionace glauca | ||||||
Spain and Portugal | Wild | 0.35 | - | - | - | [105] |
Azores and Ecuador | 0.2 | 0.084 | - | - | [125] | |
Spain | 0.350 | 0.102 | 0.74 | −1 | [19] | |
Isurus oxyrinchus | ||||||
Taiwan | Wild | 0.305 | 0.457 | 7.83 | 54.64 | [126] |
Spain and Portugal | 0.56 | - | - | - | [105] | |
Hawaii | 1.81 | 0.32 | 0.46 | −11.1 | [127] | |
Korea | 0.27 | 0.36 | - | - | [128] | |
Xiphias glaudius | ||||||
Hawaii | Wild | 1.07 | 0.39 | 1.16 | 0.1 | [127] |
Mediterranean area | 0.64 | 0.44 | 1.8 | 4 | [117] | |
EEUU | 1.31 | 0.63 | 1.23 | - | [129] | |
Portugal | 0.47 | 0.47 | 3 | - | [130] | |
Spain | 0.51 | 0.308 | 1 | 4 | [131] | |
Italy | 0.249 | 0.283 | 1 | - | [132] | |
Spain | 0.540 | 0.494 | 2.32 | 13 | [19] | |
Shark (various species) | ||||||
Atlantic western central | Wild | 1.48 | 1.24 | 15.66 | 9.11 | [133] |
Pacific eastern central | 1.65 | 0.86 | 10.87 | −0.97 | ||
Pacific western central | 0.93 | 0.77 | 9.76 | 6.67 | ||
Indian Ocean western | 1.54 | 1.57 | 19.90 | 16.15 | ||
All regions (FAO) | 1.23 | 0.81 | 10.20 | 3.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamorro, F.; Otero, P.; Carpena, M.; Fraga-Corral, M.; Echave, J.; Seyyedi-Mansour, S.; Cassani, L.; Prieto, M.A. Health Benefits of Oily Fish: Illustrated with Blue Shark (Prionace glauca), Shortfin Mako Shark (Isurus oxyrinchus), and Swordfish (Xiphias gladius). Nutrients 2023, 15, 4919. https://doi.org/10.3390/nu15234919
Chamorro F, Otero P, Carpena M, Fraga-Corral M, Echave J, Seyyedi-Mansour S, Cassani L, Prieto MA. Health Benefits of Oily Fish: Illustrated with Blue Shark (Prionace glauca), Shortfin Mako Shark (Isurus oxyrinchus), and Swordfish (Xiphias gladius). Nutrients. 2023; 15(23):4919. https://doi.org/10.3390/nu15234919
Chicago/Turabian StyleChamorro, Franklin, Paz Otero, Maria Carpena, Maria Fraga-Corral, Javier Echave, Sepidar Seyyedi-Mansour, Lucia Cassani, and Miguel A. Prieto. 2023. "Health Benefits of Oily Fish: Illustrated with Blue Shark (Prionace glauca), Shortfin Mako Shark (Isurus oxyrinchus), and Swordfish (Xiphias gladius)" Nutrients 15, no. 23: 4919. https://doi.org/10.3390/nu15234919
APA StyleChamorro, F., Otero, P., Carpena, M., Fraga-Corral, M., Echave, J., Seyyedi-Mansour, S., Cassani, L., & Prieto, M. A. (2023). Health Benefits of Oily Fish: Illustrated with Blue Shark (Prionace glauca), Shortfin Mako Shark (Isurus oxyrinchus), and Swordfish (Xiphias gladius). Nutrients, 15(23), 4919. https://doi.org/10.3390/nu15234919