Diet’s Impact on Post-Traumatic Brain Injury Depression: Exploring Neurodegeneration, Chronic Blood–Brain Barrier Destruction, and Glutamate Neurotoxicity Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
3. Results
4. Discussion
4.1. Pathophysiology of Depression
4.2. Glutamatergic Hypothesis of Depression
4.3. Glutamate Neurotoxicity
4.4. Diet as a Factor in Blood Glutamate Concentration
4.5. Other Factors
4.6. Potential Treatment Strategies
4.6.1. Diet
4.6.2. Food Supplements
4.6.3. Blood Glutamate Scavenging
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyko, M.; Gruenbaum, B.F.; Shelef, I.; Zvenigorodsky, V.; Severynovska, O.; Binyamin, Y.; Knyazer, B.; Frenkel, A.; Frank, D.; Zlotnik, A. Traumatic brain injury-induced submissive behavior in rats: Link to depression and anxiety. Transl. Psychiatry 2022, 12, 239. [Google Scholar] [CrossRef]
- Gruenbaum, B.F.; Zlotnik, A.; Fleidervish, I.; Frenkel, A.; Boyko, M. Glutamate Neurotoxicity and Destruction of the Blood–Brain Barrier: Key Pathways for the Development of Neuropsychiatric Consequences of TBI and Their Potential Treatment Strategies. Int. J. Mol. Sci. 2022, 23, 9628. [Google Scholar] [CrossRef] [PubMed]
- Gruenbaum, B.F.; Zlotnik, A.; Frenkel, A.; Fleidervish, I.; Boyko, M. Glutamate Efflux across the Blood–Brain Barrier: New Perspectives on the Relationship between Depression and the Glutamatergic System. Metabolites 2022, 12, 459. [Google Scholar] [CrossRef] [PubMed]
- Hellewell, S.C.; Beaton, C.S.; Welton, T.; Grieve, S.M. Characterizing the risk of depression following mild traumatic brain injury: A meta-analysis of the literature comparing chronic mTBI to non-mTBI populations. Front. Neurol. 2020, 11, 350. [Google Scholar] [CrossRef]
- Alderfer, B.S.; Arciniegas, D.B.; Silver, J.M. Treatment of depression following traumatic brain injury. J. Head Trauma Rehabil. 2005, 20, 544–562. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.M.; Read, C.A. Psychiatric comorbidity following traumatic brain injury. Brain Inj. 2007, 21, 1321–1333. [Google Scholar] [CrossRef]
- van Reekum, R.; Cohen, T.; Wong, J. Can traumatic brain injury cause psychiatric disorders? J. Neuropsychiatry Clin. Neurosci. 2000, 12, 316–327. [Google Scholar] [CrossRef]
- Fakhoury, M.; Shakkour, Z.; Kobeissy, F.; Lawand, N. Depression following traumatic brain injury: A comprehensive overview. Rev. Neurosci. 2021, 32, 289–303. [Google Scholar] [CrossRef]
- Inoshita, M.; Umehara, H.; Watanabe, S.-Y.; Nakataki, M.; Kinoshita, M.; Tomioka, Y.; Tajima, A.; Numata, S.; Ohmori, T. Elevated peripheral blood glutamate levels in major depressive disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 945–953. [Google Scholar] [CrossRef]
- Jahan, A.B.; Tanev, K. Neurobiological mechanisms of depression following traumatic brain injury. Brain Inj. 2023, 37, 24–33. [Google Scholar] [CrossRef]
- Ogawa, S.; Koga, N.; Hattori, K.; Matsuo, J.; Ota, M.; Hori, H.; Sasayama, D.; Teraishi, T.; Ishida, I.; Yoshida, F. Plasma amino acid profile in major depressive disorder: Analyses in two independent case-control sample sets. J. Psychiatr. Res. 2018, 96, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Vahid-Ansari, F.; Albert, P.R. Rewiring of the serotonin system in major depression. Front. Psychiatry 2021, 12, 2275. [Google Scholar] [CrossRef]
- Narapareddy, B.R.; Narapareddy, L.; Lin, A.; Wigh, S.; Nanavati, J.; Dougherty, J., III; Nowrangi, M.; Roy, D. Treatment of depression after traumatic brain injury: A systematic review focused on pharmacological and neuromodulatory interventions. Psychosomatics 2020, 61, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Slowinski, A.; Coetzer, R.; Byrne, C. Pharmacotherapy effectiveness in treating depression after traumatic brain injury: A meta-analysis. J. Neuropsychiatry Clin. Neurosci. 2019, 31, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.K.; Burke, J.F.; Upadhyayula, P.S.; Winkler, E.A.; Deng, H.; Robinson, C.K.; Pirracchio, R.; Suen, C.G.; Sharma, S.; Ferguson, A.R. Selective serotonin reuptake inhibitors for treating neurocognitive and neuropsychiatric disorders following traumatic brain injury: An evaluation of current evidence. Brain Sci. 2017, 7, 93. [Google Scholar] [CrossRef]
- Silverberg, N.D.; Panenka, W.J. Antidepressants for depression after concussion and traumatic brain injury are still best practice. BMC Psychiatry 2019, 19, 100. [Google Scholar] [CrossRef]
- Lightman, S.L.; Birnie, M.T.; Conway-Campbell, B.L. Dynamics of ACTH and cortisol secretion and implications for disease. Endocr. Rev. 2020, 41, bnaa002. [Google Scholar] [CrossRef]
- Wu, S.; Yin, Y.; Du, L. Blood–brain barrier dysfunction in the pathogenesis of major depressive disorder. Cell. Mol. Neurobiol. 2021, 42, 2571–2591. [Google Scholar] [CrossRef]
- Van Bodegom, M.; Homberg, J.R.; Henckens, M.J.A.G. Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front. Cell. Neurosci. 2017, 11, 87. [Google Scholar] [CrossRef]
- Scherholz, M.L.; Schlesinger, N.; Androulakis, I.P. Chronopharmacology of glucocorticoids. Adv. Drug Deliv. Rev. 2019, 151, 245–261. [Google Scholar] [CrossRef]
- Fischer, S.; Cleare, A.J. Cortisol as a predictor of psychological therapy response in anxiety disorders—Systematic review and meta-analysis. J. Anxiety Disord. 2017, 47, 60–68. [Google Scholar] [CrossRef]
- Pochigaeva, K.; Druzhkova, T.; Yakovlev, A.; Onufriev, M.; Grishkina, M.; Chepelev, A.; Guekht, A.; Gulyaeva, N. Hair cortisol as a marker of hypothalamic-pituitary-adrenal Axis activity in female patients with major depressive disorder. Metab. Brain Dis. 2017, 32, 577–583. [Google Scholar] [CrossRef]
- Moriguchi, S.; Takamiya, A.; Noda, Y.; Horita, N.; Wada, M.; Tsugawa, S.; Plitman, E.; Sano, Y.; Tarumi, R.; ElSalhy, M. Glutamatergic neurometabolite levels in major depressive disorder: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol. Psychiatry 2019, 24, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Deschwanden, A.; Karolewicz, B.; Feyissa, A.M.; Treyer, V.; Ametamey, S.M.; Johayem, A.; Burger, C.; Auberson, Y.P.; Sovago, J.; Stockmeier, C.A. Reduced metabotropic glutamate receptor 5 density in major depression determined by [11C] ABP688 PET and postmortem study. Am. J. Psychiatry 2011, 168, 727–734. [Google Scholar] [CrossRef]
- Luykx, J.J.; Laban, K.G.; Van Den Heuvel, M.P.; Boks, M.P.M.; Mandl, R.C.W.; Kahn, R.S.; Bakker, S.C. Region and state specific glutamate downregulation in major depressive disorder: A meta-analysis of 1H-MRS findings. Neurosci. Biobehav. Rev. 2012, 36, 198–205. [Google Scholar] [CrossRef]
- Lee, C.-H.; Giuliani, F. The role of inflammation in depression and fatigue. Front. Immunol. 2019, 10, 1696. [Google Scholar] [CrossRef]
- Bodnar, C.N.; Morganti, J.M.; Bachstetter, A.D. Depression following a traumatic brain injury: Uncovering cytokine dysregulation as a pathogenic mechanism. Neural Regen. Res. 2018, 13, 1693. [Google Scholar] [PubMed]
- Risbrough, V.B.; Vaughn, M.N.; Friend, S.F. Role of inflammation in traumatic brain injury–associated risk for neuropsychiatric disorders: State of the evidence and where do we go from here. Biol. Psychiatry 2022, 91, 438–448. [Google Scholar] [CrossRef]
- Gottshall, J.L.; Agyemang, A.A.; O’Neil, M.; Wei, G.; Presson, A.; Hewins, B.; Fisher, D.; Mithani, S.; Shahim, P.; Pugh, M.J. Sleep quality: A common thread linking depression, post-traumatic stress, and post-concussive symptoms to biomarkers of neurodegeneration following traumatic brain injury. Brain Inj. 2022, 36, 633–643. [Google Scholar] [CrossRef]
- LoBue, C.; Cullum, C.M.; Didehbani, N.; Yeatman, K.; Jones, B.; Kraut, M.A.; Hart, J., Jr. Neurodegenerative dementias after traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 2018, 30, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Faden, A.I.; Loane, D.J. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics 2015, 12, 143–150. [Google Scholar] [CrossRef]
- Farbota, K.D.M.; Sodhi, A.; Bendlin, B.B.; McLaren, D.G.; Xu, G.; Rowley, H.A.; Johnson, S.C. Longitudinal volumetric changes following traumatic brain injury: A tensor-based morphometry study. J. Int. Neuropsychol. Soc. 2012, 18, 1006–1018. [Google Scholar] [CrossRef] [PubMed]
- McGuire, J.L.; Ngwenya, L.B.; McCullumsmith, R.E. Neurotransmitter changes after traumatic brain injury: An update for new treatment strategies. Mol. Psychiatry 2019, 24, 995–1012. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.-X.; Wang, Y.; Qin, Z.-H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 2009, 30, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Ezza, H.S.A.; Khadrawyb, Y.A. Glutamate excitotoxicity and neurodegeneration. J. Mol. Genet. Med. 2014, 8, 4. [Google Scholar]
- Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Arch. Eur. J. Physiol. 2010, 460, 525–542. [Google Scholar] [CrossRef]
- Lewerenz, J.; Maher, P. Chronic glutamate toxicity in neurodegenerative diseases—What is the evidence? Front. Neurosci. 2015, 9, 469. [Google Scholar] [CrossRef]
- Frank, D.; Gruenbaum, B.F.; Zlotnik, A.; Semyonov, M.; Frenkel, A.; Boyko, M. Pathophysiology and Current Drug Treatments for Post-Stroke Depression: A Review. Int. J. Mol. Sci. 2022, 23, 15114. [Google Scholar] [CrossRef]
- Khoodoruth, M.A.S.; Estudillo-Guerra, M.A.; Pacheco-Barrios, K.; Nyundo, A.; Chapa-Koloffon, G.; Ouanes, S. Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization. Front. Psychiatry 2022, 13, 886918. [Google Scholar] [CrossRef]
- Boyko, M.; Gruenbaum, B.F.; Frank, D.; Natanel, D.; Negev, S.; Azab, A.N.; Barsky, G.; Knyazer, B.; Kofman, O.; Zlotnik, A. The Integrity of the Blood–Brain Barrier as a Critical Factor for Regulating Glutamate Levels in Traumatic Brain Injury. Int. J. Mol. Sci. 2023, 24, 5897. [Google Scholar] [CrossRef]
- Markits, I.H.S. Monosodium glutamate (MSG) chemical Economics Handbook. In Chemical Economics Handbook; S&P Global Commodity Insights: London, UK, 2018; pp. 1–88. Available online: https://Ihsmarkit.Com/Products/Monosodium-Glutamate-Chemical-Economics-Handbook.html (accessed on 15 September 2023).
- Kazmi, Z.; Fatima, I.; Perveen, S.; Malik, S.S. Monosodium glutamate: Review on clinical reports. Int. J. Food Prop. 2017, 20, 1807–1815. [Google Scholar] [CrossRef]
- Rutten, E.P.A.; Engelen, M.P.K.J.; Wouters, E.F.M.; Schols, A.M.W.J.; Deutz, N.E.P. Metabolic effects of glutamine and glutamate ingestion in healthy subjects and in persons with chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2006, 83, 115–123. [Google Scholar] [PubMed]
- Insawang, T.; Selmi, C.; Cha’on, U.; Pethlert, S.; Yongvanit, P.; Areejitranusorn, P.; Boonsiri, P.; Khampitak, T.; Tangrassameeprasert, R.; Pinitsoontorn, C. Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutr. Metab. 2012, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Stegink, L.D.; Filer, L.J., Jr.; Baker, G.L. Plasma glutamate concentrations in adult subjects ingesting monosodium L-glutamate in consomme. Am. J. Clin. Nutr. 1985, 42, 220–225. [Google Scholar] [CrossRef]
- Stegink, L.D.; Filer, L.J., Jr.; Baker, G.L. Effect of carbohydrate on plasma and erythrocyte glutamate levels in humans ingesting large doses of monosodium L-glutamate in water. Am. J. Clin. Nutr. 1983, 37, 961–968. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Cameron, J.L.; Fernstrom, M.H.; McConaha, C.; Weltzin, T.E.; Kaye, W.H. Short-term neuroendocrine effects of a large oral dose of monosodium glutamate in fasting male subjects. J. Clin. Endocrinol. Metab. 1996, 81, 184–191. [Google Scholar] [PubMed]
- Graham, T.E.; Sgro, V.; Friars, D.; Gibala, M.J. Glutamate ingestion: The plasma and muscle free amino acid pools of resting humans. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E83–E89. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.-J.; Huang, P.-C. Circadian variations in plasma and erythrocyte glutamate concentrations in adult men consuming a diet with and without added monosodium glutamate. J. Nutr. 2000, 130, 1002S–1004S. [Google Scholar] [CrossRef]
- Stegink, L.D.; Filer, L.J., Jr.; Baker, G.L. Plasma and erythrocyte amino acid levels in normal adult subjects fed a high protein meal with and without added monosodium glutamate. J. Nutr. 1982, 112, 1953–1960. [Google Scholar] [CrossRef]
- Loï, C.; Cynober, L. Glutamate: A safe nutrient, not just a simple additive. Ann. Nutr. Metab. 2022, 78, 133–146. [Google Scholar] [CrossRef]
- Hajihasani, M.M.; Soheili, V.; Zirak, M.R.; Sahebkar, A.; Shakeri, A. Natural products as safeguards against monosodium glutamateinduced toxicity. Iran. J. Basic Med. Sci. 2020, 23, 416–430. [Google Scholar]
- López-Pérez, S.J.; Ureña-Guerrero, M.E.; Morales-Villagrán, A. Monosodium glutamate neonatal treatment as a seizure and excitotoxic model. Brain Res. 2010, 1317, 246–256. [Google Scholar] [CrossRef]
- Beas-Zárate, C.; Pérez-Vega, M.a.I.; González-Burgos, I. Neonatal exposure to monosodium L-glutamate induces loss of neurons and cytoarchitectural alterations in hippocampal CA1 pyramidal neurons of adult rats. Brain Res. 2002, 952, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Dief, A.E.; Kamha, E.S.; Baraka, A.M.; Elshorbagy, A.K. Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: A potential role for cyclic AMP protein kinase. Neurotoxicology 2014, 42, 76–82. [Google Scholar] [CrossRef]
- Frieder, B.; Grimm, V.E. Prenatal monosodium glutamate (MSG) treatment given through the mother’s diet causes behavioral deficits in rat offspring. Int. J. Neurosci. 1984, 23, 117–126. [Google Scholar] [CrossRef]
- Frieder, B.; Grimm, V.E. Prenatal Monosodium Glutamate Causes Long-Lasting Cholinergic and Adrenergic Changes in Various Brain Regions. J. Neurochem. 1987, 48, 1359–1365. [Google Scholar] [CrossRef] [PubMed]
- Hashem, H.E.; El-Din Safwat, M.D.; Algaidi, S. The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). J. Mol. Histol. 2012, 43, 179–186. [Google Scholar] [CrossRef]
- Onaolapo, A.Y.; Onaolapo, O.J. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule. World J. Psychiatry 2021, 11, 297. [Google Scholar] [CrossRef] [PubMed]
- Rao, T.S.S.; Asha, M.R.; Ramesh, B.N.; Rao, K.S.J. Understanding nutrition, depression and mental illnesses. Indian J. Psychiatry 2008, 50, 77. [Google Scholar]
- Sharma, S.; Fulton, S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int. J. Obes. 2013, 37, 382–389. [Google Scholar] [CrossRef]
- Onaolapo, A.Y.; Onaolapo, O.J. Dietary glutamate and the brain: In the footprints of a Jekyll and Hyde molecule. Neurotoxicology 2020, 80, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Onaolapo, O.J.; Onaolapo, A.Y.; Akanmu, M.A.; Olayiwola, G. Changes in spontaneous working-memory, memory-recall and approach-avoidance following “low dose” monosodium glutamate in mice. AIMS Neurosci. 2016, 3, 317–337. [Google Scholar] [CrossRef]
- Baek, J.H.; Vignesh, A.; Son, H.; Lee, D.H.; Roh, G.S.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Kim, H.J. Glutamine supplementation ameliorates chronic stress-induced reductions in glutamate and glutamine transporters in the mouse prefrontal cortex. Exp. Neurobiol. 2019, 28, 270. [Google Scholar] [CrossRef]
- Kraal, A.Z.; Arvanitis, N.R.; Jaeger, A.P.; Ellingrod, V.L. Could dietary glutamate play a role in psychiatric distress? Neuropsychobiology 2020, 79, 13–19. [Google Scholar] [CrossRef]
- Quines, C.B.; Rosa, S.G.; Da Rocha, J.T.; Gai, B.M.; Bortolatto, C.F.; Duarte, M.M.M.F.; Nogueira, C.W. Monosodium glutamate, a food additive, induces depressive-like and anxiogenic-like behaviors in young rats. Life Sci. 2014, 107, 27–31. [Google Scholar] [CrossRef]
- Frank, D.; Gruenbaum, B.F.; Shelef, I.; Zvenigorodsky, V.; Severynovska, O.; Fleidervish, I.; Knyazer, B.; Frenkel, A.; Zlotnik, A.; Kofman, O. Blood glutamate scavenging as a novel glutamate-based therapeutic approach for post-traumatic brain injury anxiety and social impairment. Transl. Psychiatry 2023, 13, 41. [Google Scholar] [CrossRef]
- Frank, D.; Gruenbaum, B.F.; Shelef, I.; Severynovska, O.; Gal, R.; Dubilet, M.; Zlotnik, A.; Kofman, O.; Boyko, M. Blood glutamate scavenging with pyruvate as a novel preventative and therapeutic approach for depressive-like behavior following traumatic brain injury in a rat model. Front. Neurosci. 2022, 16, 832478. [Google Scholar] [CrossRef] [PubMed]
- Boon, H.; Kostovski, E.; Pirkmajer, S.; Song, M.; Lubarski, I.; Iversen, P.O.; Hjeltnes, N.; Widegren, U.; Chibalin, A.V. Influence of chronic and acute spinal cord injury on skeletal muscle Na+-K+-ATPase and phospholemman expression in humans. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E864–E871. [Google Scholar] [CrossRef] [PubMed]
- Aliprandi, A.; Longoni, M.; Stanzani, L.; Tremolizzo, L.; Vaccaro, M.; Begni, B.; Galimberti, G.; Garofolo, R.; Ferrarese, C. Increased plasma glutamate in stroke patients might be linked to altered platelet release and uptake. J. Cereb. Blood Flow Metab. 2005, 25, 513–519. [Google Scholar] [CrossRef]
- Collard, C.D.; Park, K.A.; Montalto, M.C.; Alapati, S.; Buras, J.A.; Stahl, G.L.; Colgan, S.P. Neutrophil-derived glutamate regulates vascular endothelial barrier function. J. Biol. Chem. 2002, 277, 14801–14811. [Google Scholar] [CrossRef]
- Morimoto, R.; Uehara, S.; Yatsushiro, S.; Juge, N.; Hua, Z.; Senoh, S.; Echigo, N.; Hayashi, M.; Mizoguchi, T.; Ninomiya, T. Secretion of L-glutamate from osteoclasts through transcytosis. EMBO J. 2006, 25, 4175–4186. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Klin, Y.; Kotz, R.; Dubilet, M.; Boyko, M.; Ohayon, S.; Shapira, Y.; Teichberg, V.I. Regulation of blood L-glutamate levels by stress as a possible brain defense mechanism. Exp. Neurol. 2010, 224, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, L.L.; Barker, J.M. Sex differences in the glutamate system: Implications for addiction. Neurosci. Biobehav. Rev. 2020, 113, 157–168. [Google Scholar] [CrossRef]
- Zlotnik, A.; Gruenbaum, B.F.; Mohar, B.; Kuts, R.; Gruenbaum, S.E.; Ohayon, S.; Boyko, M.; Klin, Y.; Sheiner, E.; Shaked, G. The effects of estrogen and progesterone on blood glutamate levels: Evidence from changes of blood glutamate levels during the menstrual cycle in women. Biol. Reprod. 2011, 84, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Stegink, L.D.; Filer, L.J.; Baker, G.L.; Bell, E.F. Plasma glutamate concentrations in 1-year-old infants and adults ingesting monosodium L-glutamate in consommé. Pediatr. Res. 1986, 20, 53–58. [Google Scholar] [CrossRef]
- Wesseldijk, F.; Fekkes, D.; Huygen, F.; Van De Heide-Mulder, M.; Zijlstra, F.J. Increased plasma glutamate, glycine, and arginine levels in complex regional pain syndrome type 1. Acta Anaesthesiol. Scand. 2008, 52, 688–694. [Google Scholar] [CrossRef]
- Dean, P.J.A.; Sterr, A. Long-term effects of mild traumatic brain injury on cognitive performance. Front. Hum. Neurosci. 2013, 7, 30. [Google Scholar] [CrossRef]
- Losoi, H.; Silverberg, N.D.; Wäljas, M.; Turunen, S.; Rosti-Otajärvi, E.; Helminen, M.; Luoto, T.M.; Julkunen, J.; Öhman, J.; Iverson, G.L. Recovery from mild traumatic brain injury in previously healthy adults. J. Neurotrauma 2016, 33, 766–776. [Google Scholar] [CrossRef]
- Amick, M.M.; Meterko, M.; Fortier, C.B.; Fonda, J.R.; Milberg, W.P.; McGlinchey, R.E. The deployment trauma phenotype and employment status in veterans of the wars in Iraq and Afghanistan. J. Head Trauma Rehabil. 2018, 33, E30. [Google Scholar] [CrossRef]
- Bryant, R.A.; O'Donnell, M.L.; Creamer, M.; McFarlane, A.C.; Clark, C.R.; Silove, D. The psychiatric sequelae of traumatic injury. Am. J. Psychiatry 2010, 167, 312–320. [Google Scholar] [CrossRef]
- Ponsford, J.L.; Nguyen, S.; Downing, M.; Bosch, M.; McKenzie, J.E.; Turner, S.; Chau, M.; Mortimer, D.; Gruen, R.L.; Knott, J. Factors associated with persistent post-concussion symptoms following mild traumatic brain injury in adults. J. Rehabil. Med. 2019, 51, 32–39. [Google Scholar] [CrossRef]
- Pogoda, T.K.; Hendricks, A.M.; Iverson, K.M.; Stolzmann, K.L.; Krengel, M.H.; Baker, E.; Meterko, M.; Lew, H.L. Multisensory impairment reported by veterans with and without mild traumatic brain injury history. J. Rehabil. Res. Dev. 2012, 49, 971. [Google Scholar] [CrossRef]
- Dretsch, M.N.; Silverberg, N.D.; Iverson, G.L. Multiple past concussions are associated with ongoing post-concussive symptoms but not cognitive impairment in active-duty army soldiers. J. Neurotrauma 2015, 32, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Wäljas, M.; Iverson, G.L.; Lange, R.T.; Hakulinen, U.; Dastidar, P.; Huhtala, H.; Liimatainen, S.; Hartikainen, K.; Öhman, J. A prospective biopsychosocial study of the persistent post-concussion symptoms following mild traumatic brain injury. J. Neurotrauma 2015, 32, 534–547. [Google Scholar] [CrossRef] [PubMed]
- Léveillé, E.; Guay, S.; Blais, C.; Scherzer, P.; De Beaumont, L. Sex-related differences in emotion recognition in multi-concussed athletes. J. Int. Neuropsychol. Soc. 2017, 23, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, S.; De Beaumont, L.; Henry, L.C.; Boulanger, Y.; Evans, A.C.; Bourgouin, P.; Poirier, J.; Théoret, H.; Lassonde, M. Sports concussions and aging: A neuroimaging investigation. Cereb. Cortex 2013, 23, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.C.; Franke, L.M.; Sima, A.P.; Cifu, D.X. Symptom trajectories after military blast exposure and the influence of mild traumatic brain injury. J. Head Trauma Rehabil. 2017, 32, E16–E26. [Google Scholar] [CrossRef] [PubMed]
- LaFrance Jr, W.C.; DeLuca, M.; Machan, J.T.; Fava, J.L. Traumatic brain injury and psychogenic nonepileptic seizures yield worse outcomes. Epilepsia 2013, 54, 718–725. [Google Scholar] [CrossRef]
- Verfaellie, M.; Lafleche, G.; Spiro Iii, A.; Bousquet, K. Neuropsychological outcomes in OEF/OIF veterans with self-report of blast exposure: Associations with mental health, but not MTBI. Neuropsychology 2014, 28, 337. [Google Scholar] [CrossRef]
- Vasterling, J.J.; Constans, J.I.; Hanna-Pladdy, B. Head injury as a predictor of psychological outcome in combat veterans. J. Trauma. Stress Off. Publ. Int. Soc. Trauma. Stress Stud. 2000, 13, 441–451. [Google Scholar] [CrossRef]
- Nordhaug, L.H.; Hagen, K.; Vik, A.; Stovner, L.J.; Follestad, T.; Pedersen, T.; Gravdahl, G.B.; Linde, M. Headache following head injury: A population-based longitudinal cohort study (HUNT). J. Headache Pain 2018, 19, 1–9. [Google Scholar] [CrossRef]
- Barnes, S.M.; Walter, K.H.; Chard, K.M. Does a history of mild traumatic brain injury increase suicide risk in veterans with PTSD? Rehabil. Psychol. 2012, 57, 18. [Google Scholar] [CrossRef]
- Palombo, D.J.; Kapson, H.S.; Lafleche, G.; Vasterling, J.J.; Marx, B.P.; Franz, M.; Verfaellie, M. Alterations in autobiographical memory for a blast event in Operation Enduring Freedom and Operation Iraqi Freedom veterans with mild traumatic brain injury. Neuropsychology 2015, 29, 543. [Google Scholar] [CrossRef] [PubMed]
- Spira, J.L.; Lathan, C.E.; Bleiberg, J.; Tsao, J.W. The impact of multiple concussions on emotional distress, post-concussive symptoms, and neurocognitive functioning in active duty United States marines independent of combat exposure or emotional distress. J. Neurotrauma 2014, 31, 1823–1834. [Google Scholar] [CrossRef]
- Decq, P.; Gault, N.; Blandeau, M.; Kerdraon, T.; Berkal, M.; ElHelou, A.; Dusfour, B.; Peyrin, J.-C. Long-term consequences of recurrent sports concussion. Acta Neurochir. 2016, 158, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Mickevičiene, D.; Schrader, H.; Nestvold, K.; Surkiene, D.; Kunickas, R.; Stovner, L.J.; Sand, T. A controlled historical cohort study on the post-concussion syndrome. Eur. J. Neurol. 2002, 9, 581–587. [Google Scholar] [CrossRef]
- Jurick, S.M.; Hoffman, S.N.; Sorg, S.; Keller, A.V.; Evangelista, N.D.; DeFord, N.E.; Sanderson-Cimino, M.; Bangen, K.J.; Delano-Wood, L.; Deoni, S. Pilot investigation of a novel white matter imaging technique in Veterans with and without history of mild traumatic brain injury. Brain Inj. 2018, 32, 1255–1264. [Google Scholar] [CrossRef]
- MacGregor, A.J.; Dougherty, A.L.; Tang, J.J.; Galarneau, M.R. Postconcussive symptom reporting among US combat veterans with mild traumatic brain injury from Operation Iraqi Freedom. J. Head Trauma Rehabil. 2013, 28, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Polusny, M.A.; Kehle, S.M.; Nelson, N.W.; Erbes, C.R.; Arbisi, P.A.; Thuras, P. Longitudinal effects of mild traumatic brain injury and posttraumatic stress disorder comorbidity on postdeployment outcomes in national guard soldiers deployed to Iraq. Arch. Gen. Psychiatry 2011, 68, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Ozen, L.J.; Fernandes, M.A. Effects of “diagnosis threat” on cognitive and affective functioning long after mild head injury. J. Int. Neuropsychol. Soc. 2010, 17, 219–229. [Google Scholar] [CrossRef]
- Baldassarre, M.; Smith, B.; Harp, J.; Herrold, A.; High Jr, W.M.; Babcock-Parziale, J.; Pape, T.L.-B. Exploring the relationship between mild traumatic brain injury exposure and the presence and severity of postconcussive symptoms among veterans deployed to Iraq and Afghanistan. PMR 2015, 7, 845–858. [Google Scholar] [CrossRef]
- Tarazi, A.; Tator, C.H.; Wennberg, R.; Ebraheem, A.; Green, R.E.A.; Collela, B.; Saverino, C.; Khodadadi, M.; Misquitta, K.; Tartaglia, M.C. Motor function in former professional football players with history of multiple concussions. J. Neurotrauma 2018, 35, 1003–1007. [Google Scholar] [CrossRef]
- Callahan, M.L.; Binder, L.M.; O’Neil, M.E.; Zaccari, B.; Roost, M.S.; Golshan, S.; Huckans, M.; Fann, J.R.; Storzbach, D. Sensory sensitivity in operation enduring freedom/operation Iraqi freedom veterans with and without blast exposure and mild traumatic brain injury. Appl. Neuropsychol. Adult 2018, 25, 126–136. [Google Scholar] [CrossRef]
- Lee, J.E.C.; Garber, B.; Zamorski, M.A. Prospective analysis of premilitary mental health, somatic symptoms, and postdeployment postconcussive symptoms. Psychosom. Med. 2015, 77, 1006–1017. [Google Scholar] [CrossRef]
- Dismuke-Greer, C.E.; Nolen, T.L.; Nowak, K.; Hirsch, S.; Pogoda, T.K.; Agyemang, A.A.; Carlson, K.F.; Belanger, H.G.; Kenney, K.; Troyanskaya, M. Understanding the impact of mild traumatic brain injury on veteran service-connected disability: Results from Chronic Effects of Neurotrauma Consortium. Brain Inj. 2018, 32, 1178–1187. [Google Scholar] [CrossRef]
- Barker-Collo, S.; Theadom, A.; Jones, K.; Starkey, N.; Kahan, M.; Feigin, V. Depression and anxiety across the first 4 years after mild traumatic brain injury: Findings from a community-based study. Brain Inj. 2018, 32, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Vasterling, J.J.; Brailey, K.; Proctor, S.P.; Kane, R.; Heeren, T.; Franz, M. Neuropsychological outcomes of mild traumatic brain injury, post-traumatic stress disorder and depression in Iraq-deployed US Army soldiers. Br. J. Psychiatry 2012, 201, 186–192. [Google Scholar] [CrossRef]
- Gardner, A.J.; Iverson, G.L.; Wojtowicz, M.; Levi, C.R.; Kay-Lambkin, F.; Schofield, P.W.; Zafonte, R.; Shultz, S.R.; Lin, A.P.; Stanwell, P. MR spectroscopy findings in retired professional rugby league players. Int. J. Sports Med. 2017, 38, 241–252. [Google Scholar] [CrossRef]
- Hoot, M.R.; Levin, H.S.; Smith, A.N.; Goldberg, G.; Wilde, E.A.; Walker, W.C.; Eapen, B.C.; Nolen, T.; Pugh, N.L. Pain and chronic mild traumatic brain injury in the US military population: A Chronic Effects of Neurotrauma Consortium study. Brain Inj. 2018, 32, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.; Mustapic, M.; Diaz-Arrastia, R.; Lange, R.; Gulyani, S.; Diehl, T.; Motamedi, V.; Osier, N.; Stern, R.A.; Kapogiannis, D. Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain Inj. 2018, 32, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, K.; Donnelly, J.P.; Warner, G.C.; Kittleson, C.J.; King, P.R. Longitudinal study of objective and subjective cognitive performance and psychological distress in OEF/OIF veterans with and without traumatic brain injury. Clin. Neuropsychol. 2018, 32, 436–455. [Google Scholar] [CrossRef]
- Lippa, S.M.; Fonda, J.R.; Fortier, C.B.; Amick, M.A.; Kenna, A.; Milberg, W.P.; McGlinchey, R.E. Deployment-related psychiatric and behavioral conditions and their association with functional disability in OEF/OIF/OND veterans. J. Trauma. Stress 2015, 28, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.; Berglund, P.; Rönnbäck, L. Mental fatigue and impaired information processing after mild and moderate traumatic brain injury. Brain Inj. 2009, 23, 1027–1040. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.S.; Wickwire, E.M. Sleep disturbances among older adults following traumatic brain injury. Int. Rev. Psychiatry 2020, 32, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Vanderploeg, R.D.; Curtiss, G.; Luis, C.A.; Salazar, A.M. Long-term morbidities following self-reported mild traumatic brain injury. J. Clin. Exp. Neuropsychol. 2007, 29, 585–598. [Google Scholar] [CrossRef] [PubMed]
- Olivera, A.; Lejbman, N.; Jeromin, A.; French, L.M.; Kim, H.-S.; Cashion, A.; Mysliwiec, V.; Diaz-Arrastia, R.; Gill, J. Peripheral total tau in military personnel who sustain traumatic brain injuries during deployment. JAMA Neurol. 2015, 72, 1109–1116. [Google Scholar] [CrossRef]
- Morissette, S.B.; Woodward, M.; Kimbrel, N.A.; Meyer, E.C.; Kruse, M.I.; Dolan, S.; Gulliver, S.B. Deployment-related TBI, persistent postconcussive symptoms, PTSD, and depression in OEF/OIF veterans. Rehabil. Psychol. 2011, 56, 340. [Google Scholar] [CrossRef]
- Bell, B.D.; Primeau, M.; Sweet, J.J.; Lofland, K.R. Neuropsychological functioning in migraine headache, nonheadache chronic pain, and mild traumatic brain injury patients. Arch. Clin. Neuropsychol. 1999, 14, 389–399. [Google Scholar] [CrossRef]
- Rogers, J.M.; Fox, A.M.; Donnelly, J. Impaired practice effects following mild traumatic brain injury: An event-related potential investigation. Brain Inj. 2015, 29, 343–351. [Google Scholar] [CrossRef]
- Alway, Y.; McKay, A.; Ponsford, J.; Schönberger, M. Expressed emotion and its relationship to anxiety and depression after traumatic brain injury. Neuropsychol. Rehabil. 2012, 22, 374–390. [Google Scholar] [CrossRef]
- Theadom, A.; Parag, V.; Dowell, T.; McPherson, K.; Starkey, N.; Barker-Collo, S.; Jones, K.; Ameratunga, S.; Feigin, V.L.; Group, B.R. Persistent problems 1 year after mild traumatic brain injury: A longitudinal population study in New Zealand. Br. J. Gen. Pract. 2016, 66, e16–e23. [Google Scholar] [CrossRef]
- Barker-Collo, S.; Jones, A.; Jones, K.; Theadom, A.; Dowell, A.; Starkey, N.; Feigin, V.L. Prevalence, natural course and predictors of depression 1 year following traumatic brain injury from a population-based study in New Zealand. Brain Inj. 2015, 29, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Schoenhuber, R.; Gentilini, M. Anxiety and depression after mild head injury: A case control study. J. Neurol. Neurosurg. Psychiatry 1988, 51, 722–724. [Google Scholar] [CrossRef] [PubMed]
- Kerr, Z.Y.; Thomas, L.C.; Simon, J.E.; McCrea, M.; Guskiewicz, K.M. Association between history of multiple concussions and health outcomes among former college football players: 15-year follow-up from the NCAA concussion study (1999-2001). Am. J. Sports Med. 2018, 46, 1733–1741. [Google Scholar] [CrossRef] [PubMed]
- Carrier-Toutant, F.; Guay, S.; Beaulieu, C.; Léveillé, É.; Turcotte-Giroux, A.; Papineau, S.D.; Brisson, B.; D’Hondt, F.; De Beaumont, L. Effects of repeated concussions and sex on early processing of emotional facial expressions as revealed by electrophysiology. J. Int. Neuropsychol. Soc. 2018, 24, 673–683. [Google Scholar] [CrossRef]
- Mac Donald, C.L.; Barber, J.; Jordan, M.; Johnson, A.M.; Dikmen, S.; Fann, J.R.; Temkin, N. Early clinical predictors of 5-year outcome after concussive blast traumatic brain injury. JAMA Neurol. 2017, 74, 821–829. [Google Scholar] [CrossRef]
- Hoge, C.W.; McGurk, D.; Thomas, J.L.; Cox, A.L.; Engel, C.C.; Castro, C.A. Mild traumatic brain injury in US soldiers returning from Iraq. New Engl. J. Med. 2008, 358, 453–463. [Google Scholar] [CrossRef]
- Gaines, K.D.; Soper, H.V.; Berenji, G.R. Executive functioning of combat mild traumatic brain injury. Appl. Neuropsychol. Adult 2016, 23, 115–124. [Google Scholar] [CrossRef]
- Osborn, A.J.; Mathias, J.L.; Fairweather-Schmidt, A.K.; Anstey, K.J. Anxiety and comorbid depression following traumatic brain injury in a community-based sample of young, middle-aged and older adults. J. Affect. Disord. 2017, 213, 214–221. [Google Scholar] [CrossRef]
- Wang, B.; Zeldovich, M.; Rauen, K.; Wu, Y.-J.; Covic, A.; Muller, I.; Haagsma, J.A.; Polinder, S.; Menon, D.; Asendorf, T. Longitudinal analyses of the reciprocity of depression and anxiety after traumatic brain injury and its clinical implications. J. Clin. Med. 2021, 10, 5597. [Google Scholar] [CrossRef]
- Mac Donald, C.L.; Adam, O.R.; Johnson, A.M.; Nelson, E.C.; Werner, N.J.; Rivet, D.J.; Brody, D.L. Acute post-traumatic stress symptoms and age predict outcome in military blast concussion. Brain 2015, 138, 1314–1326. [Google Scholar] [CrossRef]
- Iverson, K.M.; Pogoda, T.K. Traumatic brain injury among women veterans: An invisible wound of intimate partner violence. Med. Care 2015, 53, S112–S119. [Google Scholar] [CrossRef] [PubMed]
- Kerr, Z.Y.; Marshall, S.W.; Harding Jr, H.P.; Guskiewicz, K.M. Nine-year risk of depression diagnosis increases with increasing self-reported concussions in retired professional football players. Am. J. Sports Med. 2012, 40, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.P.; Helmer, D.A.; Harding, M.J.; Kosten, T.R.; Petersen, N.J.; Nielsen, D.A. Serotonin transporter genotype and mild traumatic brain injury independently influence resilience and perception of limitations in veterans. J. Psychiatr. Res. 2013, 47, 835–842. [Google Scholar] [CrossRef]
- Wilk, J.E.; Herrell, R.K.; Wynn, G.H.; Riviere, L.A.; Hoge, C.W. Mild traumatic brain injury (concussion), posttraumatic stress disorder, and depression in US soldiers involved in combat deployments: Association with postdeployment symptoms. Psychosom. Med. 2012, 74, 249–257. [Google Scholar] [CrossRef]
- Stein, M.B.; Jain, S.; Giacino, J.T.; Levin, H.; Dikmen, S.; Nelson, L.D.; Vassar, M.J.; Okonkwo, D.O.; Diaz-Arrastia, R.; Robertson, C.S. Risk of posttraumatic stress disorder and major depression in civilian patients after mild traumatic brain injury: A TRACK-TBI study. JAMA Psychiatry 2019, 76, 249–258. [Google Scholar] [CrossRef]
- Didehbani, N.; Munro Cullum, C.; Mansinghani, S.; Conover, H.; Hart Jr, J. Depressive symptoms and concussions in aging retired NFL players. Arch. Clin. Neuropsychol. 2013, 28, 418–424. [Google Scholar] [CrossRef]
- Di Battista, A.; Godfrey, C.; Soo, C.; Catroppa, C.; Anderson, V. Depression and health related quality of life in adolescent survivors of a traumatic brain injury: A pilot study. PloS One 2014, 9, e101842. [Google Scholar] [CrossRef]
- Strigo, I.A.; Spadoni, A.D.; Inslicht, S.S.; Simmons, A.N. Repeated exposure to experimental pain differentiates combat traumatic brain injury with and without post-traumatic stress disorder. J. Neurotrauma 2018, 35, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Petrie, E.C.; Cross, D.J.; Yarnykh, V.L.; Richards, T.; Martin, N.M.; Pagulayan, K.; Hoff, D.; Hart, K.; Mayer, C.; Tarabochia, M. Neuroimaging, behavioral, and psychological sequelae of repetitive combined blast/impact mild traumatic brain injury in Iraq and Afghanistan war veterans. J. Neurotrauma 2014, 31, 425–436. [Google Scholar] [CrossRef]
- Bomyea, J.; Lang, A.J.; Delano-Wood, L.; Jak, A.; Hanson, K.L.; Sorg, S.; Clark, A.L.; Schiehser, D.M. Neuropsychiatric predictors of Post-Injury headache after Mild-Moderate traumatic brain injury in veterans. Headache: J. Head Face Pain 2016, 56, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.G.; Leddy, J.J.; Hinds, A.L.; Shucard, J.; Sharma, T.; Hernandez, S.; Durinka, J.; Zivadinov, R.; Willer, B.S. An exploratory study of mild cognitive impairment of retired professional contact sport athletes. J. Head Trauma Rehabil. 2018, 33, E16. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, J.M.; Wang, Y.; Minn, I.; Bienko, N.; Ambinder, E.B.; Xu, X.; Peters, M.E.; Dougherty, J.W.; Vranesic, M.; Koo, S.M. Imaging of glial cell activation and white matter integrity in brains of active and recently retired national football league players. JAMA Neurol. 2017, 74, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Epstein, D.J.; Legarreta, M.; Bueler, E.; King, J.; McGlade, E.; Yurgelun-Todd, D. Orbitofrontal cortical thinning and aggression in mild traumatic brain injury patients. Brain Behav. 2016, 6, e00581. [Google Scholar] [CrossRef]
- Konrad, C.; Geburek, A.J.; Rist, F.; Blumenroth, H.; Fischer, B.; Husstedt, I.; Arolt, V.; Schiffbauer, H.; Lohmann, H. Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychol. Med. 2011, 41, 1197–1211. [Google Scholar] [CrossRef]
- Schiehser, D.M.; Delano-Wood, L.; Jak, A.J.; Hanson, K.L.; Sorg, S.F.; Orff, H.; Clark, A.L. Predictors of cognitive and physical fatigue in post-acute mild–moderate traumatic brain injury. Neuropsychol. Rehabil. 2017, 27, 1031–1046. [Google Scholar] [CrossRef]
- Whelan-Goodinson, R.; Ponsford, J.; Schönberger, M. Validity of the Hospital Anxiety and Depression Scale to assess depression and anxiety following traumatic brain injury as compared with the Structured Clinical Interview for DSM-IV. J. Affect. Disord. 2009, 114, 94–102. [Google Scholar] [CrossRef]
- Peskind, E.R.; Petrie, E.C.; Cross, D.J.; Pagulayan, K.; McCraw, K.; Hoff, D.; Hart, K.; Yu, C.-E.; Raskind, M.A.; Cook, D.G. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. NeuroImage 2011, 54, S76–S82. [Google Scholar] [CrossRef]
- Drapeau, J.; Gosselin, N.; Peretz, I.; McKerral, M. Emotional recognition from dynamic facial, vocal and musical expressions following traumatic brain injury. Brain Inj. 2017, 31, 221–229. [Google Scholar] [CrossRef]
- McKenzie, D.P.; Downing, M.G.; Ponsford, J.L. Key Hospital Anxiety and Depression Scale (HADS) items associated with DSM-IV depressive and anxiety disorder 12-months post traumatic brain injury. J. Affect. Disord. 2018, 236, 164–171. [Google Scholar] [CrossRef]
- Dahm, J.; Wong, D.; Ponsford, J. Validity of the Depression Anxiety Stress Scales in assessing depression and anxiety following traumatic brain injury. J. Affect. Disord. 2013, 151, 392–396. [Google Scholar] [CrossRef]
- Dailey, N.S.; Smith, R.; Vanuk, J.R.; Raikes, A.C.; Killgore, W.D.S. Resting-state functional connectivity as a biomarker of aggression in mild traumatic brain injury. Neuroreport 2018, 29, 1413–1417. [Google Scholar] [CrossRef] [PubMed]
- Guskiewicz, K.M.; Marshall, S.W.; Bailes, J.; McCrea, M.; Harding, H.P.; Matthews, A.; Mihalik, J.R.; Cantu, R.C. Recurrent concussion and risk of depression in retired professional football players. Med. Sci. Sports Exerc. 2007, 39, 903. [Google Scholar] [CrossRef] [PubMed]
- Astafiev, S.V.; Zinn, K.L.; Shulman, G.L.; Corbetta, M. Exploring the physiological correlates of chronic mild traumatic brain injury symptoms. NeuroImage Clin. 2016, 11, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.D.; Berisha, V.; Chiang, C.C.; Ross, K.; Schwedt, T.J. Less cortical thickness in patients with persistent post-traumatic headache compared with healthy controls: An MRI study. Headache J. Head Face Pain 2018, 58, 53–61. [Google Scholar] [CrossRef]
- Raikes, A.C.; Bajaj, S.; Dailey, N.S.; Smith, R.S.; Alkozei, A.; Satterfield, B.C.; Killgore, W.D.S. Diffusion tensor imaging (DTI) correlates of self-reported sleep quality and depression following mild traumatic brain injury. Front. Neurol. 2018, 9, 468. [Google Scholar] [CrossRef]
- Pineau, H.; Marchand, A.; Guay, S. Specificity of cognitive and behavioral complaints in post-traumatic stress disorder and mild traumatic brain injury. Behav. Sci. 2015, 5, 43–58. [Google Scholar] [CrossRef]
- Newberg, A.B.; Serruya, M.; Gepty, A.; Intenzo, C.; Lewis, T.; Amen, D.; Russell, D.S.; Wintering, N. Clinical comparison of 99mTc exametazime and 123I Ioflupane SPECT in patients with chronic mild traumatic brain injury. PLoS One 2014, 9, e87009. [Google Scholar] [CrossRef]
- Donnell, A.J.; Kim, M.S.; Silva, M.A.; Vanderploeg, R.D. Incidence of postconcussion symptoms in psychiatric diagnostic groups, mild traumatic brain injury, and comorbid conditions. Clin. Neuropsychol. 2012, 26, 1092–1101. [Google Scholar] [CrossRef]
- Sponheim, S.R.; McGuire, K.A.; Kang, S.S.; Davenport, N.D.; Aviyente, S.; Bernat, E.M.; Lim, K.O. Evidence of disrupted functional connectivity in the brain after combat-related blast injury. NeuroImage 2011, 54, S21–S29. [Google Scholar] [CrossRef]
- Maruta, J.; Spielman, L.A.; Yarusi, B.B.; Wang, Y.; Silver, J.M.; Ghajar, J. Chronic post-concussion neurocognitive deficits. II. Relationship with persistent symptoms. Front. Hum. Neurosci. 2016, 10, 45. [Google Scholar] [CrossRef]
- Morey, R.A.; Haswell, C.C.; Selgrade, E.S.; Massoglia, D.; Liu, C.; Weiner, J.; Marx, C.E.; Group, M.W.; Cernak, I.; McCarthy, G. Effects of chronic mild traumatic brain injury on white matter integrity in Iraq and Afghanistan war veterans. Hum. Brain Mapp. 2013, 34, 2986–2999. [Google Scholar] [CrossRef] [PubMed]
- Himanen, L.; Portin, R.; Tenovuo, O.; Taiminen, T.; Koponen, S.; Hiekkanen, H.; Helenius, H. Attention and depressive symptoms in chronic phase after traumatic brain injury. Brain Inj. 2009, 23, 220–227. [Google Scholar] [CrossRef]
- Suhr, J.A.; Gunstad, J. Postconcussive symptom report: The relative influence of head injury and depression. J. Clin. Exp. Neuropsychol. 2002, 24, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.C.; McDonald, S.D.; Ketchum, J.M.; Nichols, M.; Cifu, D.X. Identification of transient altered consciousness induced by military-related blast exposure and its relation to postconcussion symptoms. J. Head Trauma Rehabil. 2013, 28, 68–76. [Google Scholar] [CrossRef]
- Small, G.W.; Kepe, V.; Siddarth, P.; Ercoli, L.M.; Merrill, D.A.; Donoghue, N.; Bookheimer, S.Y.; Martinez, J.; Omalu, B.; Bailes, J. PET scanning of brain tau in retired national football league players: Preliminary findings. Am. J. Geriatr. Psychiatry 2013, 21, 138–144. [Google Scholar] [CrossRef]
- Raskin, S.A. The relationship between sexual abuse and mild traumatic brain injury. Brain Inj. 1997, 11, 587–604. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kim, E.Y.; Sun, J.; Kim, H.-K.; Lee, Y.S.; Oh, B.-M.; Park, H.Y.; Leigh, J.-H. Incidence of depression after traumatic brain injury: A nationwide longitudinal study of 2.2 million adults. J. Neurotrauma 2022, 39, 390–397. [Google Scholar] [CrossRef]
- Stolze, T.; Franke, S.; Haybaeck, J.; Moehler, M.; Grimminger, P.P.; Lang, H.; Roth, W.; Gockel, I.; Kreuser, N.; Bläker, H. Mismatch repair deficiency, chemotherapy and survival for resectable gastric cancer: An observational study from the German staR cohort and a meta-analysis. J. Cancer Res. Clin. Oncol. 2023, 149, 1007–1017. [Google Scholar] [CrossRef]
- Petousis, S.; Christidis, P.; Margioula-Siarkou, C.; Liberis, A.; Vavoulidis, E.; Margioula-Siarkou, G.; Vatopoulou, A.; Papanikolaou, A.; Mavromatidis, G.; Dinas, K. Axillary lymph node dissection vs. sentinel node biopsy for early-stage clinically node-negative breast cancer: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2022, 306, 1221–1234. [Google Scholar] [CrossRef]
- Bhutta, M.S.; Shechter, O.; Gallo, E.S.; Martin, S.D.; Jones, E.; Doncel, G.F.; Borenstein, R. Ginkgolic acid inhibits herpes simplex virus type 1 skin infection and prevents zosteriform spread in mice. Viruses 2021, 13, 86. [Google Scholar] [CrossRef]
- Humphreys, J.; Valdés Hernández, M.d.C. Impact of polycyclic aromatic hydrocarbon exposure on cognitive function and neurodegeneration in humans: A systematic review and meta-analysis. Front. Neurol. 2023, 13, 2890. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, H.; He, Y.; Hu, Z.; Gu, Y.; Li, Y.; Ye, Y.; Hu, J. Neuropsychiatric Symptoms and Their Associations with Inflammatory Biomarkers in the Chronic Phase Following Traumatic Brain Injuries. Front. Psychiatry 2022, 1304. [Google Scholar]
- Tomar, S.; Sharma, A.; Jain, A.; Sinha, V.; Gupta, I. Study of fatigue and associated factors in traumatic brain injury and its correlation with insomnia and depression. Asian J. Neurosurg. 2018, 13, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.; Jain, A.; Sharma, A.; Mittal, R.; Gupta, I. Role of sertraline in posttraumatic brain injury depression and quality-of-life in TBI. Asian J. Neurosurg. 2014, 9, 182–188. [Google Scholar] [CrossRef]
- Jain, A.; Mittal, R.S.; Sharma, A.; Sharma, A.; Gupta, I.D. Study of insomnia and associated factors in traumatic brain injury. Asian J. Psychiatry 2014, 8, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Devi, Y.; Khan, S.; Rana, P.; Dhandapani, M.; Ghai, S.; Gopichandran, L.; Dhandapani, S. Cognitive, behavioral, and functional impairments among traumatic brain injury survivors: Impact on caregiver burden. J. Neurosci. Rural Pract. 2020, 11, 629–635. [Google Scholar] [CrossRef]
- Chaurasiya, A.; Ranjan, J.K.; Pandey, N.; Asthana, H.S. Clinical and affective correlates of cognitive functioning in complicated mild and moderate traumatic brain injury patients belonging to rural areas. J. Neurosci. Rural Pract. 2021, 12, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Chaurasiya, A.; Pandey, N.; Ranjan, J.K.; Asthana, H.S. Neurocognitive and Affective Sequelae Following Complicated Mild and Moderate Traumatic Brain Injury: A Case Series. Neurol. India 2021, 69, 56. [Google Scholar] [PubMed]
- Ubukata, S.; Ueda, K.; Fujimoto, G.; Ueno, S.; Murai, T.; Oishi, N. Extracting apathy from depression syndrome in traumatic brain injury by using a clustering method. J. Neuropsychiatry Clin. Neurosci. 2022, 34, 158–167. [Google Scholar] [CrossRef]
- Jang, S.H.; Kwon, H.G. Relationship between depression and dorsolateral prefronto-thalamic tract injury in patients with mild traumatic brain injury. Sci. Rep. 2020, 10, 19728. [Google Scholar] [CrossRef] [PubMed]
- Looi, M.C.; Idris, Z.; Kumaran, T.; Thyagarajan, D.; Abdullah, J.M.; Ghani, A.R.I.; Ismail, M.I. A Study of 309 Patients and at One Year Follow-Up for Depression after Traumatic Brain Injury. J. Neurotrauma 2023, 40, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Al-Kader, D.A.; Onyechi, C.I.; Ikedum, I.V.; Fattah, A.; Zafar, S.; Bhat, S.; Malik, M.A.; Bheesham, N.; Qadar, L.T.; Cheema, M.S. Depression and anxiety in patients with a history of traumatic brain injury: A case-control study. Cureus 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-R.; Chiu, W.-T.; Chen, Y.-J.; Yu, W.-Y.; Huang, S.-J.; Tsai, M.-D. Longitudinal changes in the health-related quality of life during the first year after traumatic brain injury. Arch. Phys. Med. Rehabil. 2010, 91, 474–480. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyko, M.; Gruenbaum, B.F.; Oleshko, A.; Merzlikin, I.; Zlotnik, A. Diet’s Impact on Post-Traumatic Brain Injury Depression: Exploring Neurodegeneration, Chronic Blood–Brain Barrier Destruction, and Glutamate Neurotoxicity Mechanisms. Nutrients 2023, 15, 4681. https://doi.org/10.3390/nu15214681
Boyko M, Gruenbaum BF, Oleshko A, Merzlikin I, Zlotnik A. Diet’s Impact on Post-Traumatic Brain Injury Depression: Exploring Neurodegeneration, Chronic Blood–Brain Barrier Destruction, and Glutamate Neurotoxicity Mechanisms. Nutrients. 2023; 15(21):4681. https://doi.org/10.3390/nu15214681
Chicago/Turabian StyleBoyko, Matthew, Benjamin F. Gruenbaum, Anna Oleshko, Igor Merzlikin, and Alexander Zlotnik. 2023. "Diet’s Impact on Post-Traumatic Brain Injury Depression: Exploring Neurodegeneration, Chronic Blood–Brain Barrier Destruction, and Glutamate Neurotoxicity Mechanisms" Nutrients 15, no. 21: 4681. https://doi.org/10.3390/nu15214681
APA StyleBoyko, M., Gruenbaum, B. F., Oleshko, A., Merzlikin, I., & Zlotnik, A. (2023). Diet’s Impact on Post-Traumatic Brain Injury Depression: Exploring Neurodegeneration, Chronic Blood–Brain Barrier Destruction, and Glutamate Neurotoxicity Mechanisms. Nutrients, 15(21), 4681. https://doi.org/10.3390/nu15214681