Longan Polysaccharides with Covalent Selenylation Combat the Fumonisin B1-Induced Cell Toxicity and Barrier Disruption in Intestinal Epithelial (IEC-6) Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regents and Materials
2.2. Extraction and Chemical Selenylation of LP
2.3. Cell Culture and Assay of Cell Viability
2.4. Assay of Transepithelial Electrical Resistance
2.5. Assay of Paracellular Permeability
2.6. Measurements of LDH Release, Intracellular ROS, and MMP
2.7. Reverse Transcription Quantitative Real-Time PCR Assay
2.8. Western Blotting Assay
2.9. Statistical Analyses
3. Results
3.1. Effects of Polysaccharide Samples on FB1-Induced Cytotoxicity
3.2. Effect of Polysaccharide Samples on Cell Barrier Integrity
3.3. Effect of Polysaccharide Samples on FB1-Induced Intracellular ROS Generation and MMP Loss
3.4. Effect of Polysaccharide Samples on the Expression of the TJ-Related Genes and Proteins
3.5. Effect of Polysaccharide Samples on the Expression of MAPK- and Apoptosis-Related Proteins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rheeder, J.P.; Marasas, W.F.O.; Vismer, H.F. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microb. 2002, 68, 2101–2105. [Google Scholar] [CrossRef]
- Chen, J.; Wei, Z.; Wang, Y.; Long, M.; Wu, W.D.; Kuca, K. Fumonisin B1: Mechanisms of toxicity and biological detoxification progress in animals. Food Chem. Toxicol. 2021, 149, 111977. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.Y.; Xian, R.X.; Lin, F.H.; Li, X.T.; Li, X.W.; Qiang, F.; Li, X.R. Fumonisin B1 induces hepatotoxicity in mice through the activation of oxidative stress, apoptosis and fibrosis. Chemosphere 2022, 296, 133910. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, K.; Stockmann-Juvala, H.; Naarala, J.; Loikkanen, J.; Vähäkangas, K. Apoptosis in neurotoxicity of fumonisin B1. Toxicol. Lett. 2006, 164, S232. [Google Scholar] [CrossRef]
- Zhuang, S.; Ming, K.; Ma, N.; Sun, J.R.; Wang, D.H.; Ding, M.X.; Ding, Y. Portulaca oleracea L. polysaccharide ameliorates lipopolysaccharide-induced inflammatory responses and barrier dysfunction in porcine intestinal epithelial monolayers. J. Funct. Foods 2022, 91, 104997. [Google Scholar] [CrossRef]
- Chen, Z.G.; Chen, H.Y.; Li, X.; Yuan, Q.L.; Su, J.M.; Yang, L.; Ning, L.Z.; Lei, H.Y. Fumonisin B1 damages the barrier functions of porcine intestinal epithelial cells in vitro. J. Biochem. Mol. Toxicol. 2019, 33, 22397. [Google Scholar] [CrossRef]
- Li, X.; Tan, C.P.; Liu, Y.F.; Xu, Y.J. Interactions between food hazards and intestinal barrier: Impact on food borne diseases. J. Agri. Food Chem. 2020, 68, 14728–14738. [Google Scholar] [CrossRef]
- Li, M.C.; Liu, S.H.; Tan, L.; Luo, Y.; Gao, Z.S.; Liu, J.W.; Wu, Y.T.; Fan, W.T.; DeSaeger, S.; Song, S.Q. Fumonisin B1 induced intestinal epithelial barrier damage through endoplasmic reticulum stress triggered by the ceramide synthase 2 depletion. Food Chem. Toxicol. 2022, 166, 113263. [Google Scholar] [CrossRef] [PubMed]
- Li, T.T.; Huang, S.M.; Wang, J.; Yin, P.; Liu, H.J.; Sun, C.P. Alginate oligosaccharides protect against fumonisin B1-induced intestinal damage via promoting gut microbiota homeostasis. Food Res. Int. 2022, 152, 110927. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gong, Y.F.; Yao, W.Z.; Chen, X.Y.; Xian, J.B.; You, L.J.; Fardim, P. Structural characterization and protective effects of polysaccharide from Gracilaria lemaneiformis on LPS-induced injury in IEC-6 cells. Food Chem. X 2021, 12, 100157. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.Y.; Li, H.L.; Wen, Y.F.; Jiang, D.X.; Zhu, S.M.; He, X.L.; Xiong, Q.; Gao, J.; Hou, S.Z.; Huang, S.; et al. Tremella fuciformis polysaccharides ameliorated ulcerative colitis via inhibiting inflammation and enhancing intestinal epithelial barrier function. Int. J. Biol. Macromol. 2021, 180, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhao, J.W.; Xie, H.Q.; Cai, M.; Yao, L.; Li, J.M.; Han, L.; Chen, W.D.; Yu, N.; Peng, D.Y. Dendrobium huoshanense polysaccharides ameliorate ulcerative colitis by improving intestinal mucosal barrier and regulating gut microbiota. J. Funct. Foods 2022, 96, 105231. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, Y.M.; Shi, J.; Chen, F.; Ashraf, M. Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan Lour.) fruit—A review. Food Res. Int. 2011, 44, 1837–1842. [Google Scholar] [CrossRef]
- Bai, Y.J.; Huang, F.; Zhang, R.F.; Dong, L.H.; Jia, X.C.; Liu, L.; Yi, Y.; Zhang, M.W. Longan pulp polysaccharides relieve intestinal injury in vivo and in vitro by promoting tight junction expression. Carbohydr. Polym. 2020, 229, 115475. [Google Scholar] [CrossRef]
- Rong, Y.; Yang, R.L.; Yang, Y.Z.; Wen, Y.Z.; Liu, S.X.; Li, C.F.; Hu, Z.Y.; Cheng, X.R.; Li, W. Structural characterization of an active polysaccharide of longan and evaluation of immunological activity. Carbohydr. Polym. 2019, 213, 247–256. [Google Scholar] [CrossRef]
- Xie, L.M.; Shen, M.Y.; Hong, Y.Z.; Ye, H.D.; Huang, L.X.; Xie, J.H. Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr. Polym. 2020, 229, 115436. [Google Scholar] [CrossRef]
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr. 2010, 91, 1484S–1491S. [Google Scholar] [CrossRef]
- Cui, M.X.; Fang, Z.; Song, M.D.; Zhou, T.D.; Wang, Y.J.; Liu, K.H. Phragmites rhizoma polysaccharide-based nanocarriers for synergistic treatment of ulcerative colitis. Int. J. Biol. Macromol. 2022, 220, 22–32. [Google Scholar] [CrossRef]
- Bami, M.K.; Afsharmanesh, M.; Salarmoini, M.; Ebrahimnejad, H. Effects of selenium-chitosan on intestinal microflora, intestinal histomorphology, and immune response of broiler chickens. Livest. Sci. 2022, 255, 104806. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Chen, H.; Li, W.T.; He, Q.; Liang, J.Y.M.; Yan, X.H.; Yuan, Y.H.; Yue, T.L. Selenium-containing tea polysaccharides ameliorate DSS-induced ulcerative colitis via enhancing the intestinal barrier and regulating the gut microbiota. Int. J. Biol. Macromol. 2022, 209 Pt A, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.H.; Tang, Z.M.; Xiong, C.; Wu, F.F.; Zhao, J.R.; Zhao, X.H. Enhanced growth inhibition and apoptosis induction in human colon carcinoma HT-29 cells of soluble longan polysaccharides with a covalent chemical selenylation. Nutrients 2022, 14, 1710. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.H.; Wang, L.; Zhang, Q.; Zhang, X.N.; Zhao, X.H. Activities of the soluble and non-digestible longan (Dimocarpus longan Lour.) polysaccharides against HCT-116 cells as affected by a chemical selenylation. Curr. Res. Food Sci. 2022, 5, 1071–1083. [Google Scholar] [CrossRef]
- Takenaka, T.; Harada, N.; Kuze, J.; Chiba, M.; Iwao, T.; Matsunaga, T. Application of a human intestinal epithelial cell monolayer to the prediction of oral drug absorption in humans as a superior alternative to the Caco-2 cell monolayer. J. Pharm. Sci. 2016, 105, 915–924. [Google Scholar] [CrossRef]
- Ji, Y.; Luo, X.; Yang, Y.; Dai, Z.L.; Wu, G.Y.; Wu, Z.L. Endoplasmic reticulum stress-induced apoptosis in intestinal epithelial cells: A feed-back regulation by mechanistic target of rapamycin complex 1 (mTORC1). J. Anim. Sci. Biotechnol. 2018, 3, 38. [Google Scholar] [CrossRef] [PubMed]
- Ling, K.H.; Wan, M.L.Y.; Ei-Nezami, H.; Wang, M.F. Protective capacity of resveratrol, a natural polyphenolic compound, against deoxynivalenol-induced intestinal barrier dysfunction and bacterial translocation. Chem. Res. Toxicol. 2016, 29, 823–833. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Caloni, F.; Spotti, M.; Pompa, G.; Zucco, F.; Stammati, A.; De Angelis, I. Evaluation of fumonisin B1 and its metabolites absorption and toxicity on intestinal cells line Caco-2. Toxicon 2002, 40, 1181–1188. [Google Scholar] [CrossRef]
- Yin, S.T.; Guo, X.; Li, J.H.; Fan, L.H.; Hu, H.B. Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells. Arch. Toxicol. 2016, 90, 985–996. [Google Scholar] [CrossRef]
- Song, Y.; Jia, B.X.; Yang, Y.X.; Liu, N.; Wu, A.B. Involvement of PERK-CHOP pathway in fumonisin B1- induced cytotoxicity in human gastric epithelial cells. Food Chem. Toxicol. 2020, 136, 111080. [Google Scholar] [CrossRef]
- Song, Y.Y.; Liu, W.; Zhao, Y.; Zang, J.T.; Gao, H. Fumonisin B1 exposure induces apoptosis of human kidney tubular epithelial cells through regulating PTEN/PI3K/AKT signaling pathway via disrupting lipid raft formation. Toxicon 2021, 204, 31–36. [Google Scholar] [CrossRef]
- Singh, M.P.; Kang, S.C. Endoplasmic reticulum stress-mediated autophagy activation attenuates fumonisin B1 induced hepatotoxicity in vitro and in vivo. Food Chem. Toxicol. 2017, 110, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Lei, H.Y.; Zhou, L.H.; Tang, M.W.; Liu, Q.; Long, F.; Li, Q.; Su, J.M. Effect of fumonisin B1 on proliferation and apoptosis of intestinal porcine epithelial cells. Toxins 2022, 14, 471. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Cheng, T.M.; Guo, Y.D.; Li, C.; Zhang, W.D.; Zhi, F.C. Somatostatin ameliorates lipopolysaccharide-induced tight junction damage via the ERK-MAPK pathway in Caco2 cells. Eur. J. Cell Biol. 2014, 93, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.; Zhong, J.; Bian, Y.F.; Fan, Y.S.; Chen, Q.Y.; Liu, P.; Liu, Z.J. Rhein ameliorates lipopolysaccharide-induced intestinal barrier injury via modulation of Nrf2 and MAPKs. Life Sci. 2019, 216, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Park, J.M.; Her, S.; Kim, M.S.; Park, Y.J.; Hahm, K.B. Revaprazan prevented indomethacin-induced intestinal damages by enhancing tight junction related mechanisms. Biochem. Pharmacol. 2020, 182, 114290. [Google Scholar] [CrossRef]
- Ying, M.X.; Yu, Q.; Zheng, B.; Wang, H.; Wang, J.Q.; Chen, S.P.; Gu, Y.; Nie, S.P.; Xie, M.Y. Cultured Cordyceps sinensis polysaccharides attenuate cyclophosphamide-induced intestinal barrier injury in mice. J. Funct. Foods 2019, 62, 103523. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, L.; Tao, W.; Pei, X.; Wang, G.; Wang, M. Clostridium tyrobutyricum protect intestinal barrier function from LPS-induced apoptosis via p38/JNK signaling pathway in IPEC-J2 cells. Cell Physiol. Biochem. 2018, 46, 1779–1792. [Google Scholar] [CrossRef]
- Gao, X.L.; Yang, Q.L.; Huang, X.Y.; Yan, Z.Q.; Zhang, S.W.; Luo, R.R.; Wang, P.F.; Wang, W.; Xie, K.H.; Jiang, T.T.; et al. Effects of Clostridium perfringens beta2 toxin on apoptosis, inflammation, and barrier function of intestinal porcine epithelial cells. Microb. Pathog. 2020, 147, 104379. [Google Scholar] [CrossRef]
- Li, D.; Gao, L.; Li, M.X.; Luo, Y.Y.; Xie, Y.Z.; Luo, T.; Su, L.; Yong, T.Q.; Chen, S.D.; Jiao, C.W.; et al. Polysaccharide from spore of Ganoderma lucidum ameliorates paclitaxel-induced intestinal barrier injury: Apoptosis inhibition by reversing microtubule polymerization. Biomed. Pharmacother. 2020, 130, 110539. [Google Scholar] [CrossRef]
- Ou, Z.P.; Zhu, L.J.; Huang, C.L.; Ma, C.Y.; Kong, L.; Lin, X.; Gao, X.Y.; Huang, L.; Wen, L.X.; Liang, Z.; et al. Betulinic acid attenuates cyclophosphamide-induced intestinal mucosa injury by inhibiting the NF-κB/MAPK signalling pathways and activating the Nrf2 signalling pathway. Ecotox. Environ. Saf. 2021, 225, 112746. [Google Scholar] [CrossRef] [PubMed]
- Bouhet, S.; Hourcade, E.; Loiseau, N.; Fikry, A.; Martinez, S.; Roselli, M.; Galtier, P.; Mengheri, E.; Oswald, I.P. The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol. Sci. 2004, 77, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.Y.; Wu, Z.Y.; Sun, W.Z.; Wang, Z.H.; Wu, J.H.; Huang, M.Q.; Wang, B.W.; Sun, B.G. Protective effects of natural polysaccharides on intestinal barrier injury: A review. J. Agri. Food Chem. 2022, 70, 711–735. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, F.; Chen, X.X.; Yang, Z.J.; Cao, Y. Effects of the polysaccharide SPS-3-1 purified from Spirulina on barrier integrity and proliferation of Caco-2 cells. Int. J. Biol. Macromol. 2020, 163, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Zhang, H.R.; Han, Q.J.; Lan, J.H.; Chen, G.Y.; Cao, G.T.; Yang, C.M. Effects of astragalus and ginseng polysaccharides on growth performance, immune function and intestinal barrier in weaned piglets challenged with lipopolysaccharide. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.J.; Jia, X.C.; Huang, F.; Zhang, R.F.; Dong, L.H.; Liu, L.; Zhang, M.W. Structural elucidation, anti-inflammatory activity and intestinal barrier protection of longan pulp polysaccharide LPIIa. Carbohydr. Polym. 2020, 246, 116532. [Google Scholar] [CrossRef]
- Song, Y.; Yang, Y.; Zhang, Y.Y.; Duan, L.S.; Zhou, C.L.; Ni, Y.Y.; Liao, X.J.; Li, Q.H.; Hu, X.S. Effect of acetylation on antioxidant and cytoprotective activity of polysaccharides isolated from pumpkin (Cucurbita pepo, lady godiva). Carbohydr. Polym. 2013, 98, 686–691. [Google Scholar] [CrossRef]
- Liu, C.Y.; Hu, D.J.; Zhu, H.; Zhang, Y.Y.; Qin, J.; Wang, F.; Zhang, Z.D.; Lv, G.P. Preparation, characterization and immunoregulatory activity of derivatives of polysaccharide from Atractylodes lancea (Thunb.) DC. Int. J. Biol. Macromol. 2022, 216, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.H.; Zhang, P.P.; Zhang, C.X.; Jiang, G.P.; Zheng, W.Y.; Song, S.; Ai, Q.C. Sulfated polysaccharides from pacific abalone attenuated DSS-induced acute and chronic ulcerative colitis in mice via regulating intestinal micro-ecology and the NF-κB pathway. Food Funct. 2021, 12, 11351–11365. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Y.; Ouyang, K.H.; Chen, L.L.; Zhao, M.; Wang, W.J. Sulfated Cyclocarya paliurus polysaccharides improve immune function of immunosuppressed mice by modulating intestinal microbiota. Int. J. Biol. Macromol. 2022, 212, 31–42. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Lu, F.; Zhang, H.; Ye, Y.W.; Liu, P.H.; Lin, D.M.; Zhou, H.; Li, M.; Yang, B.X. Polysaccharides from Agaricus blazei Murrill ameliorate dextran sulfate sodium-induced colitis via attenuating intestinal barrier dysfunction. J. Funct. Foods 2022, 92, 105072. [Google Scholar] [CrossRef]
- Wang, J.L.; Wang, Y.X.; Xu, L.; Wu, Q.Q.; Wang, Q.; Kong, W.B.; Liang, J.Y.; Yao, J.; Zhang, J. Synthesis and structural features of phosphorylated Artemisia sphaerocephala polysaccharide. Carbohydr. Polym. 2018, 181, 19–26. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer (5′-3′) |
---|---|
ZO-1 | Forward (F)-AGCTGCCTCGAACCTCTACTCTAC |
Forward (R)-GCCTGGTGGTGGAACTTGCTC | |
ZO-2 | F-GATAGCAGCCATCGTGGTCAAGAG |
R-TGCCGACTCCTCTCACTGTAGC | |
Occludin | F-TGGCTATGGAGGCGGCTATGG |
R-AAGGAAGCGATGAAGCAGAAGGC | |
Claudin-1 | F-GGTGCCTGGAAGATGATGAGGTG |
R-GCCACTAATGTCGCCAGACCTG | |
Claudin-3 | F-GTCGGCCAACACCATCATCAGG |
R-GGCAGGAGCAACACAGCAAGG | |
GAPDH | F-GGTTGTCTCCTGCGACTTCA |
R-TGGTCCAGGGTTTCTTACTCC |
Protein | Relative Expression Fold | ||||
---|---|---|---|---|---|
Control | FB1 | LP and FB1 | SeLP1 and FB1 | SeLP2 and FB1 | |
ZO-1 | 1.0 ± 0.1 | 0.6 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.9 ± 0.1 |
Occludin | 1.0 ± 0.2 | 0.5 ± 0.1 | 0.7 ± 0.1 | 0.8 ± 0.1 | 0.9 ± 0.1 |
Claudin-1 | 1.0 ± 0.2 | 0.5 ± 0.1 | 0.6 ± 0.1 | 0.8 ± 0.1 | 0.9 ± 0.1 |
Protein | Relative Expression Fold | ||||
---|---|---|---|---|---|
Control | FB1 | LP and FB1 | SeLP1 and FB1 | SeLP2 and FB1 | |
p-JNK/JNK | 1.0 ± 0.1 | 2.0 ± 0.2 | 1.6 ± 0.1 | 1.5 ± 0.1 | 1.3 ± 0.1 |
p-p38/p38 | 1.0 ± 0.1 | 2.5 ± 0.1 | 2.2 ± 0.1 | 1.8 ± 0.1 | 1.5 ± 0.1 |
Bax | 1.0 ± 0.2 | 1.7 ± 0.1 | 1.5 ± 0.1 | 1.3 ± 0.1 | 1.1 ± 0.1 |
Bcl-2 | 1.0 ± 0.1 | 0.6 ± 0.1 | 0.7 ± 0.1 | 0.7 ± 0.1 | 0.9 ± 0.1 |
C-caspase-3 | 1.0 ± 0.2 | 1.9 ± 0.1 | 1.9 ± 0.1 | 1.7 ± 0.1 | 1.5 ± 0.1 |
C-caspase-9 | 1.0 ± 0.1 | 2.2 ± 0.1 | 1.9 ± 0.1 | 1.8 ± 0.1 | 1.5 ± 0.1 |
Cytochrome c | 1.0 ± 0.1 | 2.3 ± 0.1 | 1.9 ± 0.1 | 1.7 ± 0.1 | 1.5 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.-H.; Zhao, X.-H. Longan Polysaccharides with Covalent Selenylation Combat the Fumonisin B1-Induced Cell Toxicity and Barrier Disruption in Intestinal Epithelial (IEC-6) Cells. Nutrients 2023, 15, 4679. https://doi.org/10.3390/nu15214679
Yu Y-H, Zhao X-H. Longan Polysaccharides with Covalent Selenylation Combat the Fumonisin B1-Induced Cell Toxicity and Barrier Disruption in Intestinal Epithelial (IEC-6) Cells. Nutrients. 2023; 15(21):4679. https://doi.org/10.3390/nu15214679
Chicago/Turabian StyleYu, Ya-Hui, and Xin-Huai Zhao. 2023. "Longan Polysaccharides with Covalent Selenylation Combat the Fumonisin B1-Induced Cell Toxicity and Barrier Disruption in Intestinal Epithelial (IEC-6) Cells" Nutrients 15, no. 21: 4679. https://doi.org/10.3390/nu15214679
APA StyleYu, Y. -H., & Zhao, X. -H. (2023). Longan Polysaccharides with Covalent Selenylation Combat the Fumonisin B1-Induced Cell Toxicity and Barrier Disruption in Intestinal Epithelial (IEC-6) Cells. Nutrients, 15(21), 4679. https://doi.org/10.3390/nu15214679