Healthcare Costs and Healthcare Utilization Outcomes of Vitamin D3 Supplementation at 5000 IU Daily during a 10.9 Month Observation Period within a Pragmatic Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Vitamin D
2.3. Intervention and Control Groups
2.4. Observation Periods
2.5. Data Acquisition
2.6. Measurements and Statistical Analysis
2.6.1. Demographics and Clinical Characteristics
2.6.2. Healthcare Costs
2.6.3. Healthcare Utilization
3. Results
3.1. Subjects
3.2. Demographics and Clinical Characteristics
3.3. Healthcare Costs
3.4. Healthcare Utilization
3.5. Cost of Vitamin D3
4. Discussion
4.1. Principal Findings
4.2. Mechanisms of Vitamin D Action
4.3. Methodological and Future Research Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bodenheimer, T. High and rising health care costs. Part 1: Seeking an explanation. Ann. Intern. Med. 2005, 142, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Bodenheimer, T. High and rising health care costs. Part 2: Technologic innovation. Ann. Intern. Med. 2005, 142, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Bodenheimer, T. High and rising health care costs. Part 3: The role of health care providers. Ann. Intern. Med. 2005, 142, 996–1002. [Google Scholar] [CrossRef]
- Bodenheimer, T.; Fernandez, A. High and rising health care costs. Part 4. Can costs be controlled while preserving quality? Ann. Intern. Med. 2005, 143, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Mitka, M. Health Insurance Costs Remain a Burden for Employers and Working Families. JAMA J. Am. Med. Assoc. 2008, 300, 1863–1868. [Google Scholar] [CrossRef]
- US Workers Who Have Health Insurance for Their Families Through Employers Have Seen Premiums More Than Double in the Last Decade, According to a Survey Released Last Week. MondayMorning, Volume 17, no. 36, 21 September 2009. Gale Academic OneFile. Available online: https://link.gale.com/apps/doc/A208747934/AONE?u=rowan&sid=bookmark-AONE&xid=e646a976 (accessed on 2 October 2023).
- Roehr, B. Cost of employer provided health insurance double in US in a decade. BMJ 2011, 343, d6256. [Google Scholar] [CrossRef]
- Holick, M.F. High Prevalence of Vitamin D Inadequacy and Implications for Health. Mayo Clin. Proc. 2006, 81, 353–373. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef]
- van Helmond, N.; Brobyn, T.L.; LaRiccia, P.J.; Cafaro, T.; Hunter, K.; Roy, S.; Bandomer, B.; Ng, K.Q.; Goldstein, H.; Mitrev, L.V.; et al. Vitamin D3 Supplementation at 5000 IU Daily for the Prevention of Influenza-like Illness in Healthcare Workers: A Pragmatic Randomized Clinical Trial. Nutrients 2022, 15, 180. [Google Scholar] [CrossRef]
- Li, Y.C.; Kong, J.; Wei, M.; Chen, Z.F.; Liu, S.Q.; Cao, L.P. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Investig. 2002, 110, 229–238. [Google Scholar] [CrossRef]
- Mansbach, J.M.; Camargo, C.A. Acute Respiratory Infections. In Vitamin D and the Lung; Respiratory Medicine; Humana Press: Totowa, NJ, USA, 2012; pp. 181–200. [Google Scholar]
- Gilbert, C.R.; Arum, S.M.; Smith, C.M. Vitamin D deficiency and chronic lung disease. Can. Respir. J. 2009, 16, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Teshome, A.; Adane, A.; Girma, B.; Mekonnen, Z.A. The Impact of Vitamin D Level on COVID-19 Infection: Systematic Review and Meta-Analysis. Front. Public Health 2021, 9, 624559. [Google Scholar] [CrossRef]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Rathi, H.; Haq, A.; Wimalawansa, S.J.; Sharma, A. Putative roles of vitamin D in modulating immune response and immunopathology associated with COVID-19. Virus Res. 2021, 292, 198235. [Google Scholar] [CrossRef] [PubMed]
- Shirbhate, E.; Pandey, J.; Patel, V.K.; Kamal, M.; Jawaid, T.; Gorain, B.; Kesharwani, P.; Rajak, H. Understanding the role of ACE-2 receptor in pathogenesis of COVID-19 disease: A potential approach for therapeutic intervention. Pharmacol. Rep. 2021, 73, 1539–1550. [Google Scholar] [CrossRef]
- Getachew, B.; Tizabi, Y. Vitamin D and COVID-19: Role of ACE2, age, gender, and ethnicity. J. Med. Virol. 2021, 93, 5285–5294. [Google Scholar] [CrossRef]
- Judd, S.E.; Tangpricha, V. Vitamin D Deficiency and Risk for Cardiovascular Disease. Am. J. Med. Sci. 2009, 338, 40–44. [Google Scholar] [CrossRef]
- Martin, T.; Campbell, R.K. Vitamin D and diabetes. Diabetes Spectr. 2011, 24, 113–118. [Google Scholar] [CrossRef]
- Pittas, A.G.; Lau, J.; Hu, F.B.; Dawson-Hughes, B. Review: The role of vitamin D and calcium in type 2 diabetes. a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2007, 92, 2017–2029. [Google Scholar] [CrossRef]
- Edlich, R.F.; Mason, S.S.; Chase, M.E.; Fisher, A.L.; Gubler, K.D.; Long Iii, W.B.; Giesy, J.D.; Foley, M.L. Scientific documentation of the relationship of vitamin D deficiency and the development of cancer. J. Environ. Pathol. Toxicol. Oncol. 2009, 28, 133–141. [Google Scholar] [CrossRef]
- Dusso, A.S.; Brown, A.J.; Slatopolsky, E. Vitamin D. Am. J. Physiol. Ren. Physiol. 2005, 289, 8–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-P.; Wan, Y.-D.; Sun, T.-W.; Kan, Q.-C.; Wang, L.-X. Association between vitamin D deficiency and mortality in critically ill adult patients: A meta-analysis of cohort studies. Crit. Care 2014, 18, 684. [Google Scholar] [CrossRef]
- Liu, X.; Baylin, A.; Levy, P.D. Vitamin D deficiency and insufficiency among US adults: Prevalence, predictors and clinical implications. Br. J. Nutr. 2018, 119, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Parva, N.R.; Tadepalli, S.; Singh, P.; Qian, A.; Joshi, R.; Kandala, H.; Nookala, V.K.; Cheriyath, P. Prevalence of Vitamin D Deficiency and Associated Risk Factors in the US Population (2011-2012). Cureus 2018, 10, e2741. [Google Scholar] [CrossRef] [PubMed]
- Peiris, A.N.; Bailey, B.A.; Manning, T. The Relationship of Vitamin D Deficiency to Health Care Costs in Veterans. Mil. Med. 2008, 173, 1214–1218. [Google Scholar] [CrossRef]
- Bailey, B.A.; Manning, T.; Peiris, A.N. Vitamin D testing patterns among six veterans medical centers in the southeastern united states: Links with medical costs. Mil. Med. 2012, 177, 70–76. [Google Scholar] [CrossRef]
- Bailey, B.A.; Manning, T.; Peiris, A.N. The Impact of Living in Rural and Urban Areas: Vitamin D and Medical Costs in Veterans: Rurality and Vitamin D in Veterans. J. Rural. Health 2012, 28, 356–363. [Google Scholar] [CrossRef]
- Matthews, L.R.M.D.; Ahmed, Y.M.D.M.P.H.; Wilson, K.L.M.D.; Griggs, D.D.N.P.; Danner, O.K.M.D. Worsening severity of vitamin D deficiency is associated with increased length of stay, surgical intensive care unit cost, and mortality rate in surgical intensive care unit patients. Am. J. Surg. 2012, 204, 37–43. [Google Scholar] [CrossRef]
- Matthews, L.; Wilson, K.; Ahmed, Y.; Dennis-Griggs, D.; Thomas, C.; Childs, E.; Moore, C.; Danner, O. 1300: Economic Impact of Vitamin D Levels Less Than 18 Ng/mL on Hospitals And Third Party Payers. Crit. Care Med. 2015, 43, 327. [Google Scholar] [CrossRef]
- Hannemann, A.; Wallaschofski, H.; Nauck, M.; Marschall, P.; Flessa, S.; Grabe, H.J.; Schmidt, C.O.; Baumeister, S.E. Vitamin D and health care costs: Results from two independent population-based cohort studies. Clin. Nutr. 2018, 37, 2149–2155. [Google Scholar] [CrossRef]
- Aloia, J.F.; Patel, M.; Dimaano, R.; Li-Ng, M.; Talwar, S.A.; Mikhail, M.; Pollack, S.; Yeh, J.K. Vitamin D intake to attain a desired serum 25-hydroxyvitamin D concentration. Am. J. Clin. Nutr. 2008, 87, 1952–1958. [Google Scholar] [CrossRef] [PubMed]
- New Jersey Department of Health. New Jersey State Health Asssessment Data 2020; New Jersey Department of Health: Trenton, NJ, USA, 2020.
- Ekwaru, J.P.; Zwicker, J.D.; Holick, M.F.; Giovannucci, E.; Veugelers, P.J. The importance of body weight for the dose response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLoS ONE 2014, 9, e111265. [Google Scholar] [CrossRef] [PubMed]
- Bergman, P.; Lindh, A.U.; Björkhem-Bergman, L.; Lindh, J.D. Vitamin D and Respiratory Tract Infections: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2013, 8, e65835. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, D.A.; Camargo, C.A., Jr.; Sluyter, J.D.; Aglipay, M.; Aloia, J.F.; Ganmaa, D.; Bergman, P.; Bischoff-Ferrari, H.A.; Borzutzky, A.; Damsgaard, C.T.; et al. Vitamin D supplementation to prevent acute respiratory infections: A systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021, 9, 276–292. [Google Scholar] [CrossRef]
- Hathcock, J.N.; Shao, A.; Vieth, R.; Heaney, R. Risk assessment for vitamin D. Am. J. Clin. Nutr. 2007, 85, 6–18. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D Is Not as Toxic as Was Once Thought: A Historical and an Up-to-Date Perspective. Mayo Clin. Proc. 2015, 90, 561–564. [Google Scholar] [CrossRef]
- Kimball, S.M.; Mirhosseini, N.; Holick, M.F. Evaluation of vitamin D3 intakes up to 15,000 international units/day and serum 25-hydroxyvitamin D concentrations up to 300 nmol/L on calcium metabolism in a community setting. Dermatoendocrinol 2017, 9, e1300213. [Google Scholar] [CrossRef] [PubMed]
- Pepper, K.J.; Judd, S.E.; Nanes, M.S.; Tangpricha, V. Evaluation of vitamin D repletion regimens to correct vitamin D status in adults. Endocr. Pr. 2009, 15, 95–103. [Google Scholar] [CrossRef]
- Vieth, R. Vitamin D toxicity, policy, and science. J. Bone Min. Res. 2007, 22 (Suppl. S2), V64–V68. [Google Scholar] [CrossRef]
- Mayo Clinic. Hypercalcemia. Available online: https://www.mayoclinic.org/diseases-conditions/hypercalcemia/symptoms-causes/syc-20355523 (accessed on 27 June 2022).
- Austin, P.C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 2009, 28, 3083–3107. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Milton Park, UK, 2013. [Google Scholar]
- Stuart, E.A.; Lee, B.K.; Leacy, F.P. Prognostic score―based balance measures can be a useful diagnostic for propensity score methods in comparative effectiveness research: Methods for Comparative Effectiveness Research/Patient-Centered Outcomes Research: From Efficacy to Effectiveness. J. Clin. Epidemiol. 2013, 66, S84–S90. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Li, X.; Su, X.; Mu, D.; Qu, Y. Could SARS-CoV-2-induced lung injury be attenuated by vitamin D? Int. J. Infect. Dis. 2021, 102, 196–202. [Google Scholar] [CrossRef]
- Yancy, C.W. COVID-19 and African Americans. JAMA J. Am. Med. Assoc. 2020, 323, 1891–1892. [Google Scholar] [CrossRef]
- Uwitonze, A.M.; Razzaque, M.S. Role of Magnesium in Vitamin D Activation and Function. J. Am. Osteopath. Assoc. 2018, 118, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Zittermann, A. Magnesium deficit—Overlooked cause of low vitamin D status? BMC Med. 2013, 11, 229. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.D.; McGregor, J.C.; Perencevich, E.N.; Furuno, J.P.; Zhu, J.; Peterson, D.E.; Finkelstein, J. The use and interpretation of quasi-experimental studies in medical informatics. J. Am. Med. Inform. Assoc. JAMIA 2006, 13, 16–23. [Google Scholar] [CrossRef]
|
Vitamin D3 | Control | Standardized | |
---|---|---|---|
(n = 196) | (n = 444) | Difference | |
Age at enrollment in years, mean ± SD | 47 ± 12 | 50 ± 13 | 0.23 |
Gender, n (%) | |||
Man | 46 (23) | 106 (24) | 0.01 |
Woman | 149 (76) | 337 (76) | 0 |
Other | 1 (0.5) | 1 (0.2) | 0.05 |
Race, n (%) | |||
American Indian/Alaska Native | 1 (0.5) | 1 (0.2) | 0.05 |
Asian | 9 (5) | 26 (6) | 0.06 |
Black/African American | 23 (12) | 41 (9) | 0.08 |
Native Hawaiian/other Pacific Islander | 2 (1) | 0 (0) | 0.14 |
White | 144 (73) | 348 (78) | 0.12 |
More than one race | 6 (3) | 14 (3) | 0.01 |
Other | 11 (6) | 14 (3) | 0.12 |
Ethnicity, n (%) | |||
Hispanic or Latino | 22 (11) | 22 (5) | 0.23 |
Not Hispanic or Latino | 174 (89) | 419 (95) | 0.23 |
Body mass index in kg/m2, mean ± SD | 30 ± 6 | 29 ± 7 | 0.17 |
Comorbidities, n (%) | |||
Cardiovascular disease | 48 (24) | 130 (29) | 0.11 |
Respiratory disease | 32 (16) | 84 (19) | 0.07 |
Eye disease | 9 (5) | 14 (3) | 0.07 |
Gastrointestinal disease | 79 (40) | 169 (38) | 0.05 |
Urological disease | 14 (7) | 52 (12) | 0.16 |
Liver disease | 3 (2) | 6 (1) | 0.02 |
Hematological disease | 23 (12) | 40 (9) | 0.09 |
Dermatological disease | 35 (18) | 57 (13) | 0.14 |
Diabetes | 13 (7) | 36 (8) | 0.06 |
Endocrine disease (other) | 28 (14) | 58 (13) | 0.04 |
Malignant disease | 11 (6) | 24 (5) | 0.01 |
History of vitamin D deficiency, n (%) | 47 (24) | 137 (31) | 0.15 |
Previous COVID-19, n (%) | 12 (6) | 19 (4) | 0.08 |
Control (n = 1958) | Intervention (n = 196) | Difference | 95%-CI | p-Value | |||
---|---|---|---|---|---|---|---|
Mean (SD) | Median (Q1, Q3) | Mean (SD) | Median (Q1, Q3) | ||||
Total billed charges for any reason | 69.3 (179) | 20.1 (6.7, 61.9) | 61.3 (103) | 22.2 (8.5, 74.1) | −8.04 | −24.5 to 8.4 | 0.36 |
Cost of hospitalizations due to COVID-19 | 0.56 (12.5) | 0 (0, 0) | 0 (0) | 0 (0, 0) | −0.56 | −2.3 to 1.2 | 0.48 |
Cost of ICU admissions due to COVID-19 | 0.33 (8.9) | 0 (0, 0) | 0 (0) | 0 (0, 0) | −0.33 | −0.72 to 0.06 | 0.58 |
Cost of ventilator use due to COVID-19 (zeros entry) | |||||||
Medical pharmacy prescription costs for any reason | 6.4 (92.4) | 0 (0, 0) | 7.4 (51.4) | 0 (0, 0) | 1.05 | −7.3 to 9.4 | 0.52 |
Freestanding prescription costs for any reason | 9.05 (38.3) | 1.4 (0.2, 5.4) | 13.4 (34.9) | 1.6 (0.4, 8.1) | 4.4 | −1.2 to 9.9 | 0.07 |
Control (n = 1958) | Intervention (n = 196) | Relative Rate | 95%-CI | p-Value | Rate Difference | 95%-CI | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|
Sum of Events or Units | Rate Per 1000 Person-Days | Sum of Events or Units | Rate Per 1000 Person-Days | |||||||
Number of hospitalizations for any reason P | 110 | 0.19 | 0 | 1.46 × 10−11 | 7.8 × 10−11 | 0 to N/A | 0.99 | −0.19 | −0.21 to −0.17 | <0.0001 |
Number of ICU admissions for any reason NB | 36 | 0.06 | 0 | 8.11 × 10−12 | 1.33 × 10−10 | 0 to N/A | 0.99 | −0.06 | −0.08 to −0.04 | <0.0001 |
Number of emergency room visits for any reason NB | 319 | 0.55 | 11 | 0.29 | 0.53 | 0.27 to 1.03 | 0.06 | −0.26 | −0.46 to −0.05 | 0.0131 |
Number of hospitalizations due to COVID-19 P | 5 | 8.47 × 10−3 | 0 | 1.97 × 10−12 | 2.3 × 10−10 | 0 to N/A | 0.99 | −8.47 × 10−3 | −0.02 to −1.05 × 10−3 | 0.0253 |
Number of ICU admissions due to COVID-19 P | 3 | 5.08 × 10−3 | 0 | 7.25 × 10−13 | 1.4 × 10−10 | 0 to N/A | 0.99 | −5.08 × 10−3 | −1.1 × 10−2 to 6.69 × 10−4 | 0.08 |
All other outpatient units * for any reason NB | 20,546 | 34.7 | 1388 | 37.3 | 1.08 | 0.87 to 1.33 | 0.5 | 2.6 | −5.2 to 10.4 | 0.51 |
Number of urgent care visits for any reason ZINB | 969 | 3.47 | 55 | 2.29 | 0.66 | 0.37 to 1.17 | 0.16 | −1.2 | −2.5 to 0.17 | 0.08 |
Number of primary care physician units ** for any reason NB | 5111 | 8.69 | 355 | 9.76 | 1.12 | 0.92 to 1.37 | 0.26 | 1.06 | −0.88 to 2.9 | 0.28 |
Number of nurse practitioner units ** for any reason NB | 893 | 1.52 | 54 | 1.39 | 0.92 | 0.59 to 1.43 | 0.7 | −0.12 | −0.74 to 0.5 | 0.69 |
All other professional units * for any reason ZINB | 26,076 | 47.8 | 1761 | 51.2 | 1.07 | 0.88 to 1.31 | 0.5 | 3.4 | −5.92 to 13.5 | 0.45 |
Number of medical pharmacy units *** for any reason NB | 1674 | 2.88 | 138 | 3.42 | 1.19 | 0.61 to 2.29 | 0.61 | 0.54 | −1.7 to 2.76 | 0.64 |
Number of freestanding prescriptions for any reason ZINB | 22,286 | 37.4 | 1645 | 43 | 1.15 | 0.96 to 1.39 | 0.14 | 5.7 | −2.3 to 13.6 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
LaRiccia, P.J.; Cafaro, T.; John, D.; van Helmond, N.; Mitrev, L.V.; Bandomer, B.; Brobyn, T.L.; Hunter, K.; Roy, S.; Ng, K.Q.; et al. Healthcare Costs and Healthcare Utilization Outcomes of Vitamin D3 Supplementation at 5000 IU Daily during a 10.9 Month Observation Period within a Pragmatic Randomized Clinical Trial. Nutrients 2023, 15, 4435. https://doi.org/10.3390/nu15204435
LaRiccia PJ, Cafaro T, John D, van Helmond N, Mitrev LV, Bandomer B, Brobyn TL, Hunter K, Roy S, Ng KQ, et al. Healthcare Costs and Healthcare Utilization Outcomes of Vitamin D3 Supplementation at 5000 IU Daily during a 10.9 Month Observation Period within a Pragmatic Randomized Clinical Trial. Nutrients. 2023; 15(20):4435. https://doi.org/10.3390/nu15204435
Chicago/Turabian StyleLaRiccia, Patrick J., Teresa Cafaro, Dibato John, Noud van Helmond, Ludmil V. Mitrev, Brigid Bandomer, Tracy L. Brobyn, Krystal Hunter, Satyajeet Roy, Kevin Q. Ng, and et al. 2023. "Healthcare Costs and Healthcare Utilization Outcomes of Vitamin D3 Supplementation at 5000 IU Daily during a 10.9 Month Observation Period within a Pragmatic Randomized Clinical Trial" Nutrients 15, no. 20: 4435. https://doi.org/10.3390/nu15204435
APA StyleLaRiccia, P. J., Cafaro, T., John, D., van Helmond, N., Mitrev, L. V., Bandomer, B., Brobyn, T. L., Hunter, K., Roy, S., Ng, K. Q., Goldstein, H., Tsai, A., Thwing, D., Maag, M. A., & Chung, M. K. (2023). Healthcare Costs and Healthcare Utilization Outcomes of Vitamin D3 Supplementation at 5000 IU Daily during a 10.9 Month Observation Period within a Pragmatic Randomized Clinical Trial. Nutrients, 15(20), 4435. https://doi.org/10.3390/nu15204435