Partial Replacement of Diet with Dehulled Adlay Ameliorates Hepatic Steatosis, Inflammation, Oxidative Stress, and Gut Dysbiosis in Rats with Nonalcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Animals and Experimental Design
2.3. Blood and Tissue Sampling and Analysis
2.3.1. Blood Sample Analysis
2.3.2. Liver Sample Analysis
2.3.3. Gut Microbiota Analysis
2.4. Statistical Analysis
3. Results
3.1. Effects of Dehulled Adlay on Modulating HFHS Diet-Induced NAFLD
3.2. Dehulled Adlay Ameliorated HFHS Diet-Induced Liver Steatosis by Modulating β-Oxidation and De Novo Lipogenesis
3.3. Dehulled Adlay Ameliorated HFHS Diet-Induced Oxidative Stress by Upregulating Nrf2, Antioxidant Systems, and Ferroptosis
3.4. Dehulled Adlay Ameliorated HFHS Diet-Induced Inflammation by Downregulating the NLRP3 Inflammasome Pathway
3.5. Dehulled Adlay Ameliorated HFHS Diet-Induced Gut Dysbiosis by Modulating Gut Microbiota Abundance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhou, F.; Wang, W.; Zhang, X.J.; Ji, Y.X.; Zhang, P.; She, Z.G.; Zhu, L.; Cai, J.; Li, H. Epidemiological Features of NAFLD From 1999 to 2018 in China. Hepatology 2020, 71, 1851–1864. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Sumida, Y.; Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol. 2018, 53, 362–376. [Google Scholar] [CrossRef]
- Prasadi, V.P.N.; Joye, I.J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
- Shivakoti, R.; Biggs, M.L.; Djousse, L.; Durda, P.J.; Kizer, J.R.; Psaty, B.; Reiner, A.P.; Tracy, R.P.; Siscovick, D.; Mukamal, K.J. Intake and Sources of Dietary Fiber, Inflammation, and Cardiovascular Disease in Older US Adults. JAMA Netw. Open 2022, 5, e225012. [Google Scholar] [CrossRef]
- Chiang, H.; Lu, H.F.; Chen, J.C.; Chen, Y.H.; Sun, H.T.; Huang, H.C.; Tien, H.H.; Huang, C. Adlay Seed (Coix lacryma-jobi L.) Extracts Exhibit a Prophylactic Effect on Diet-Induced Metabolic Dysfunction and Nonalcoholic Fatty Liver Disease in Mice. Evid. Based Complement. Altern. Med. 2020, 2020, 9519625. [Google Scholar] [CrossRef]
- Huang, C.C.; Lin, T.C.; Liu, C.H.; Hu, H.C.; Yu, S.Y.; Wu, S.J.; Yen, M.H.; Tsai, Y.H.; Chang, F.R. Lipid Metabolism and its Mechanism Triggered by Supercritical CO2 Extract of Adlay (Coix lacryma-jobi var. ma-yuen (Rom. Caill.) Stapf) Bran in High-Fat Diet Induced Hyperlipidemic Hamsters. Front. Pharmacol. 2021, 12, 785944. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, Q.; Liu, T.; Liu, Z. Coixol Suppresses NF-kappaB, MAPK Pathways and NLRP3 Inflammasome Activation in Lipopolysaccharide-Induced RAW 264.7 Cells. Molecules 2020, 25, 894. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, H.; Xu, F.; Zhang, Y.; Li, Z.; Ju, X.; Wang, L. Insoluble-bound polyphenols of adlay seed ameliorate H2O2-induced oxidative stress in HepG2 cells via Nrf2 signalling. Food Chem. 2020, 325, 126865. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tian, X.; Li, S.; Chang, L.; Sun, P.; Lu, Y.; Yu, X.; Chen, S.; Wu, Z.; Xu, Z.; et al. Total polysaccharides of adlay bran (Coix lachryma-jobi L.) improve TNF-alpha induced epithelial barrier dysfunction in Caco-2 cells via inhibition of the inflammatory response. Food Funct. 2019, 10, 2906–2913. [Google Scholar] [CrossRef] [PubMed]
- Wen, A.; Qin, L.; Zeng, H.; Zhu, Y. Comprehensive evaluation of physicochemical properties and antioxidant activity of B. subtilis-fermented polished adlay subjected to different drying methods. Food Sci. Nutr. 2020, 8, 2124–2133. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Chen, X. Comparative studies on free radical scavenging capacities and total phenolic contents of whole and dehulled adlay (Coix Lacryma-jobi var. Ma-yuen) as affected by thermal processing methods. J. Food Process Preserv. 2013, 37, 7. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth Enzymol. 1999, 299, 27. [Google Scholar]
- Zhang, Q.; Zhang, T.M. Phenol Sulfuric Acid Colorimetric Method for the Determination of Polysaccharide Content. Shandong Food Sci. Technol. 2004, 7, 2. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Gonzalez Flecha, B.; Llesuy, S.; Boveris, A. Hydroperoxide-initiated chemiluminescence: An assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic. Biol. Med. 1991, 10, 93–100. [Google Scholar] [CrossRef]
- Brunt, E.M. Pathology of fatty liver disease. Mod. Pathol. 2007, 20 (Suppl. S1), S40–S48. [Google Scholar] [CrossRef]
- Godon, J.J.; Zumstein, E.; Dabert, P.; Habouzit, F.; Moletta, R. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 1997, 63, 2802–2813. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; Jiang, Y.; Diao, Y.; Strappe, P.; Prenzler, P.; Ayton, J.; Blanchard, C. Deep-fried oil consumption in rats impairs glycerolipid metabolism, gut histology and microbiota structure. Lipids Health Dis. 2016, 15, 86. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Gevers, D.; Westcott, S.L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 2011, 6, e27310. [Google Scholar] [CrossRef] [PubMed]
- Avershina, E.; Frisli, T.; Rudi, K. De novo semi-alignment of 16S rRNA gene sequences for deep phylogenetic characterization of next generation sequencing data. Microbes Environ. 2013, 28, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Pan, J.; Zhou, W.; Ji, G.; Dang, Y. Recent advances in lean NAFLD. Biomed. Pharmacother. 2022, 153, 113331. [Google Scholar] [CrossRef] [PubMed]
- Ipsen, D.H.; Lykkesfeldt, J.; Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol. Life Sci. 2018, 75, 3313–3327. [Google Scholar] [CrossRef]
- Fabbrini, E.; Mohammed, B.S.; Magkos, F.; Korenblat, K.M.; Patterson, B.W.; Klein, S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 2008, 134, 424–431. [Google Scholar] [CrossRef]
- Feingold, K.R. Lipid and Lipoprotein Metabolism. Endocrinol. Metab. Clin. N. Am. 2022, 51, 437–458. [Google Scholar] [CrossRef]
- Ursini, F.; Maiorino, M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med. 2020, 152, 175–185. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Ge, C.; Min, J.; Wang, F. The multifaceted role of ferroptosis in liver disease. Cell Death Differ. 2022, 29, 467–480. [Google Scholar] [CrossRef]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef]
- Krajka-Kuzniak, V.; Baer-Dubowska, W. Modulation of Nrf2 and NF-kappaB Signaling Pathways by Naturally Occurring Compounds in Relation to Cancer Prevention and Therapy. Are Combinations Better Than Single Compounds? Int. J. Mol. Sci. 2021, 22, 8223. [Google Scholar] [CrossRef] [PubMed]
- Rius-Perez, S.; Perez, S.; Marti-Andres, P.; Monsalve, M.; Sastre, J. Nuclear Factor Kappa B Signaling Complexes in Acute Inflammation. Antioxid. Redox Signal. 2020, 33, 145–165. [Google Scholar] [CrossRef] [PubMed]
- Krajka-Kuzniak, V.; Paluszczak, J.; Baer-Dubowska, W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol. Rep. 2017, 69, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Shang, W.; Zhou, Z.; Strappe, P.; Wang, B.; Bird, A.; Blanchard, C. Gut Microbiome-Induced Shift of Acetate to Butyrate Positively Manages Dysbiosis in High Fat Diet. Mol. Nutr. Food Res. 2018, 62, 1700670. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Jiang, W.; Tian, Z.; Wu, H.; Ning, H.; Yan, G.; Zhang, Z.; Li, Z.; Dong, F.; Sun, Y.; et al. Fecal g. Streptococcus and g. Eubacterium_coprostanoligenes_group combined with sphingosine to modulate the serum dyslipidemia in high-fat diet mice. Clin. Nutr. 2021, 40, 4234–4245. [Google Scholar] [CrossRef]
- Cheng, W.Y.; Yeh, W.J.; Ko, J.; Huang, Y.L.; Yang, H.Y. Consumption of Dehulled Adlay Improved Lipid Metabolism and Inflammation in Overweight and Obese Individuals after a 6-Week Single-Arm Pilot Study. Nutrients 2022, 14, 2250. [Google Scholar] [CrossRef]
- Weng, W.F.; Peng, Y.; Pan, X.; Yan, J.; Li, X.D.; Liao, Z.Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; et al. Adlay, an ancient functional plant with nutritional quality, improves human health. Front. Nutr. 2022, 9, 1019375. [Google Scholar] [CrossRef]
- Lee, B.H.; Huang, S.C.; Hou, C.Y.; Chen, Y.Z.; Chen, Y.H.; Hakkim Hazeena, S.; Hsu, W.H. Effect of polysaccharide derived from dehulled adlay on regulating gut microbiota and inhibiting Clostridioides difficile in an in vitro colonic fermentation model. Food Chem. 2023, 410, 135410. [Google Scholar] [CrossRef]
- Yeh, W.J.; Ko, J.; Cheng, W.Y.; Yang, H.Y. Diet containing dehulled adlay ameliorates hepatic steatosis, inflammation and insulin resistance in rats with non-alcoholic fatty liver disease. Br. J. Nutr. 2022, 128, 369–376. [Google Scholar] [CrossRef]
C | N | NA | p | |
---|---|---|---|---|
Weight change (g) | 310.6 ± 45.7 | 256.9 ± 38.4 | 296.3 ± 45.0 | 0.0560 |
LW/BW | 4.8 ± 0.8 | 5.0 ± 0.8 | 4.5 ± 0.8 | 0.6136 |
Serum | ||||
AST (U/L) | 117.0 ± 18.6 | 70.4 ± 23.4 * | 62.1 ± 14.0 * | <0.0001 |
ALT (U/L) | 46.5 ± 8.1 | 21.0 ± 8.9 * | 20.5 ± 5.3 * | <0.0001 |
FFA (mmol/L) | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.0 | 0.2724 |
TC (mmol/L) | 1.1 ± 0.3 | 1.3 ± 0.3 | 1.1 ± 0.4 | 0.5755 |
TG (mmol/L) | 0.6 ± 0.2 | 0.3 ± 0.1 * | 0.3 ± 0.1 * | 0.0007 |
HDL-C (mmol/L) | 0.8 ± 0.2 | 0.9 ± 0.2 | 0.9 ± 0.3 | 0.3263 |
LDL-C (mmoL/L) | 0.2 ± 0.0 | 0.3 ± 0.0 | 0.2 ± 0.1 | 0.2226 |
HDL-C/LDL-C | 3.2 ± 0.3 | 3.2 ± 0.8 | 3.8 ± 0.7 | 0.0877 |
Hepatic cytokine | ||||
TNF-α (pg/mg PT) | 465.9 ± 192.8 | 640.4 ± 296.2 | 510.5 ± 165.2 | 0.2947 |
IL-1β (pg/mg PT) | 112.9 ± 12.2 | 162.1 ± 52.4 * | 74.78 ± 25.3 # | 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-C.; Lee, P.-N.; Huang, W.-C.; Yang, H.-Y. Partial Replacement of Diet with Dehulled Adlay Ameliorates Hepatic Steatosis, Inflammation, Oxidative Stress, and Gut Dysbiosis in Rats with Nonalcoholic Fatty Liver Disease. Nutrients 2023, 15, 4375. https://doi.org/10.3390/nu15204375
Huang H-C, Lee P-N, Huang W-C, Yang H-Y. Partial Replacement of Diet with Dehulled Adlay Ameliorates Hepatic Steatosis, Inflammation, Oxidative Stress, and Gut Dysbiosis in Rats with Nonalcoholic Fatty Liver Disease. Nutrients. 2023; 15(20):4375. https://doi.org/10.3390/nu15204375
Chicago/Turabian StyleHuang, Hsuan-Chih, Pei-Ni Lee, Wen-Chih Huang, and Hsin-Yi Yang. 2023. "Partial Replacement of Diet with Dehulled Adlay Ameliorates Hepatic Steatosis, Inflammation, Oxidative Stress, and Gut Dysbiosis in Rats with Nonalcoholic Fatty Liver Disease" Nutrients 15, no. 20: 4375. https://doi.org/10.3390/nu15204375
APA StyleHuang, H. -C., Lee, P. -N., Huang, W. -C., & Yang, H. -Y. (2023). Partial Replacement of Diet with Dehulled Adlay Ameliorates Hepatic Steatosis, Inflammation, Oxidative Stress, and Gut Dysbiosis in Rats with Nonalcoholic Fatty Liver Disease. Nutrients, 15(20), 4375. https://doi.org/10.3390/nu15204375