Legume Intake, Body Weight, and Abdominal Adiposity: 10-Year Weight Change and Cross-Sectional Results in 15,185 U.S. Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Instrumentation and Measurement Methods
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viguiliouk, E.; Mejia, S.B.; Kendall, C.W.; Sievenpiper, J.L. Can pulses play a role in improving cardiometabolic health? Evidence from systematic reviews and meta-analyses. Ann. N. Y. Acad. Sci. 2017, 1392, 43–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nchanji, E.B.; Ageyo, O.C. Do Common Beans (Phaseolus vulgaris L.) Promote Good Health in Humans? A Systematic Review and Meta-Analysis of Clinical and Randomized Controlled Trials. Nutrients 2021, 13, 3701. [Google Scholar] [CrossRef]
- Papandreou, C.; Becerra-Tomás, N.; Bulló, M.; Martínez-González, M.; Corella, D.; Estruch, R.; Ros, E.; Arós, F.; Schroder, H.; Fitó, M.; et al. Legume consumption and risk of all-cause, cardiovascular, and cancer mortality in the PREDIMED study. Clin. Nutr. 2018, 38, 348–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becerra-Tomás, N.; Papandreou, C.; Salas-Salvadó, J. Legume Consumption and Cardiometabolic Health. Adv. Nutr. Int. Rev. J. 2019, 10, S437–S450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchenak, M.; Lamri-Senhadji, M. Nutritional Quality of Legumes, and Their Role in Cardiometabolic Risk Prevention: A Review. J. Med. Food 2013, 16, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.C.; Lawrence, F.R.; Hartman, T.J.; Curran, J.M. Consumption of Dry Beans, Peas, and Lentils Could Improve Diet Quality in the US Population. J. Am. Diet. Assoc. 2009, 109, 909–913. [Google Scholar] [CrossRef]
- Perera, T.; Russo, C.; Takata, Y.; Bobe, G. Legume Consumption Patterns in US Adults: National Health and Nutrition Examination Survey (NHANES) 2011–2014 and Beans, Lentils, Peas (BLP) 2017 Survey. Nutrients 2020, 12, 1237. [Google Scholar] [CrossRef]
- Semba, R.D.; Rahman, N.; Du, S.; Ramsing, R.; Sullivan, V.; Nussbaumer, E.; Love, D.; Bloem, M.W. Patterns of Legume Purchases and Consumption in the United States. Front. Nutr. 2021, 8, 732237. [Google Scholar] [CrossRef]
- Fryar, C.D.; Carroll, M.D.; Afful, J. Prevalence of Overweight, Obesity, and Severe Obesity among Adults Aged 20 and over: United States, 1960–1962 through 2017–2018; National Center for Health Statistics: Hyattsville, MD, USA, 2020.
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes. Rev. 2014, 15, 392–407. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, FoodData Central. 2019. Available online: https://fdc.nal.usda.gov (accessed on 5 January 2023).
- Jenkins, D.J.; Kendall, C.W.; Augustin, L.S.; Mitchell, S.; Sahye-Pudaruth, S.; Blanco Mejia, S.; Chiavaroli, L.; Mirrahimi, A.; Ireland, C.; Bashyam, B.; et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch. Intern. Med. 2012, 172, 1653–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; de Souza, R.J.; Choo, V.L.; Ha, V.; Cozma, A.I.; Chiavaroli, L.; Mirrahimi, A.; Blanco Mejia, S.; Di Buono, M.; Bernstein, A.M.; et al. Effects of dietary pulse consumption on body weight: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2016, 103, 1213–1223. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.G.; Grafenauer, S.; O’Shea, J.E. Cereal grains, legumes, and weight management: A comprehensive review of the scientific evidence. Nutr. Rev. 2008, 66, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papanikolaou, Y.; Fulgoni, V.L., 3rd. Bean Consumption Is Associated with Greater Nutrient Intake, Reduced Systolic Blood Pressure, Lower Body Weight, and a Smaller Waist Circumference in Adults: Results from the National Health and Nutrition Examination Survey 1999-2002. J. Am. Coll. Nutr. 2008, 27, 569–576. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture, Food Surveys Research Group: AMPM, USDA Automated Multiple-Pass Method. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/ampm-usda-automated-multiple-pass-method/ (accessed on 5 January 2023).
- U.S. Department of Agriculture, Food and Nutrient Database for Dietary Studies (FNDDS). Available online: https://data.nal.usda.gov/dataset/food-and-nutrient-database-dietary-studies-fndds (accessed on 5 January 2023).
- Ahuja, J.K.; Moshfegh, A.J.; Holden, J.M.; Harris, E. USDA Food and Nutrient Databases Provide the Infrastructure for Food and Nutrition Research, Policy, and Practice. J. Nutr. 2012, 143, 241S–249S. [Google Scholar] [CrossRef] [Green Version]
- Tucker, L.A. Dietary Fiber and Telomere Length in 5674 U.S. Adults: An NHANES Study of Biological Aging. Nutrients 2018, 10, 400. [Google Scholar] [CrossRef] [Green Version]
- Tucker, L. Fruit and Vegetable Intake and Telomere Length in a Random Sample of 5448 U.S. Adults. Nutrients 2021, 13, 1415. [Google Scholar] [CrossRef]
- Wilkinson, K.; Tucker, L.; Davidson, L.; Bailey, B. Milk-Fat Intake and Differences in Abdominal Adiposity and BMI: Evidence Based on 13,544 Randomly-Selected Adults. Nutrients 2021, 13, 1832. [Google Scholar] [CrossRef]
- Wolffenbuttel, B.H.R.; Heiner-Fokkema, M.R.; Green, R.; Gans, R.O.B. Relationship between serum B12 concentrations and mortality: Experience in NHANES. BMC Med. 2020, 18, 307. [Google Scholar] [CrossRef]
- Deng, F.E.; Shivappa, N.; Tang, Y.; Mann, J.R.; Hebert, J.R. Association between diet-related inflammation, all-cause, all-cancer, and cardiovascular disease mortality, with special focus on prediabetics: Findings from NHANES III. Eur. J. Nutr. 2017, 56, 1085–1093. [Google Scholar] [CrossRef]
- Christensen, K.; Lawler, T.; Mares, J. Dietary Carotenoids and Non-Alcoholic Fatty Liver Disease among US Adults, NHANES 2003–2014. Nutrients 2019, 11, 1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W. Nutritional Epidemiology, 2nd ed.; Oxford University Press: New York, NY, USA, 1998; 514p. [Google Scholar]
- Stunkard, A.J.; Albaum, J.M. The accuracy of self-reported weights. Am. J. Clin. Nutr. 1981, 34, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Perry, L.; Leonard, B. Obesity and mental health. JAMA 1963, 183, 808. [Google Scholar]
- Rhoads, G.; Kagan, A. The relation of coronary disease, stroke, and mortality to weight in youth and in middle age. Lancet 1983, 321, 492–495. [Google Scholar] [CrossRef]
- Troy, L.M.; Hunter, D.J.; Manson, J.E.; Colditz, G.; Stampfer, M.J.; Willett, W.C. The validity of recalled weight among younger women. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 1995, 19, 570–572. [Google Scholar]
- Kyulo, N.L.; Knutsen, S.F.; Tonstad, S.; Fraser, G.E.; Singh, P.N. Validation of recall of body weight over a 26-year period in cohort members of the Adventist Health Study 2. Ann. Epidemiol. 2012, 22, 744–746. [Google Scholar] [CrossRef] [Green Version]
- Tamakoshi, K.; Yatsuya, H.; Kondo, T.; Hirano, T.; Hori, Y.; Yoshida, T.; Toyoshima, H. The accuracy of long-term recall of past body weight in Japanese adult men. Int. J. Obes. 2003, 27, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2013; 529p. [Google Scholar]
- Ross, R.; Leger, L.; Morris, D.; de Guise, J.; Guardo, R. Quantification of adipose tissue by MRI: Relationship with anthropometric variables. J. Appl. Physiol. 1992, 72, 787–795. [Google Scholar] [CrossRef]
- Ashwell, M. Plea for simplicity: Use of waist-to-height ratio as a primary screening tool to assess cardiometabolic risk. Clin. Obes. 2012, 2, 3–5. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2011, 13, 275–286. [Google Scholar] [CrossRef]
- Kahn, H.S.; Bullard, K.M. Beyond Body Mass Index: Advantages of Abdominal Measurements for Recognizing Cardiometabolic Disorders. Am. J. Med. 2015, 129, 74–81.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NHANES. Anthropometry Procedures Manual. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/Anthropometry_Procedures_Manual.pdf (accessed on 5 January 2023).
- NHANES. Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/PAQ_H.htm (accessed on 5 January 2023).
- Armstrong, T.; Bull, F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). J. Public Health 2006, 14, 66–70. [Google Scholar] [CrossRef]
- Cleland, C.L.; Hunter, R.F.; Kee, F.; Cupples, M.E.; Sallis, J.F.; Tully, M.A. Validity of the Global Physical Activity Questionnaire (GPAQ) in assessing levels and change in moderate-vigorous physical activity and sedentary behaviour. BMC Public Health 2014, 14, 1255. [Google Scholar] [CrossRef] [Green Version]
- Abete, I.; Parra, D.; Martinez, J.A. Legume-, Fish-, or High-Protein-Based Hypocaloric Diets: Effects on Weight Loss and Mitochondrial Oxidation in Obese Men. J. Med. Food 2009, 12, 100–108. [Google Scholar] [CrossRef]
- Anderson, J.W.; Story, L.; Sieling, B.; Chen, W.J.L.; Petro, M.S.; Story, J. Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. Am. J. Clin. Nutr. 1984, 40, 1146–1155. [Google Scholar] [CrossRef]
- Nestel, P.; Cehun, M.; Chronopoulos, A. Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. Am. J. Clin. Nutr. 2004, 79, 390–395. [Google Scholar] [CrossRef] [Green Version]
- Veenstra, J.; Duncan, A.; Cryne, C.; Deschambault, B.; Boye, J.; Benali, M.; Marcotte, M.; Tosh, S.; Farnworth, E.; Wright, A. Effect of pulse consumption on perceived flatulence and gastrointestinal function in healthy males. Food Res. Int. 2010, 43, 553–559. [Google Scholar] [CrossRef]
- Jimenez-Cruz, A.; Bacardi-Gascon, M.; Turnbull, W.H.; Rosales-Garay, P.; Severino-Lugo, I. A Flexible, Low-Glycemic Index Mexican-Style Diet in Overweight and Obese Subjects With Type 2 Diabetes Improves Metabolic Parameters During a 6-Week Treatment Period. Diabetes Care 2003, 26, 1967–1970. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.W.; Gustafson, N.J.; Spencer, D.B.; Tietyen, J.; Bryant, C.A. Serum lipid response of hypercholesterolemic men to single and divided doses of canned beans. Am. J. Clin. Nutr. 1990, 51, 1013–1019. [Google Scholar] [CrossRef]
- Marinangeli, C.P.F.; Jones, P.J.H. Whole and fractionated yellow pea flours reduce fasting insulin and insulin resistance in hypercholesterolaemic and overweight human subjects. Br. J. Nutr. 2010, 105, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Pittaway, J.K.; Ahuja, K.D.K.; Robertson, I.K.; Ball, M.J. Effects of a Controlled Diet Supplemented with Chickpeas on Serum Lipids, Glucose Tolerance, Satiety and Bowel Function. J. Am. Coll. Nutr. 2007, 26, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Abeysekara, S.; Chilibeck, P.D.; Vatanparast, H.; Zello, G.A. A pulse-based diet is effective for reducing total and LDL-cholesterol in older adults. Br. J. Nutr. 2012, 108 (Suppl. 1), S103–S110. [Google Scholar] [CrossRef] [PubMed]
- Tonstad, S.; Malik, N.; Haddad, E. A high-fibre bean-rich diet versus a low-carbohydrate diet for obesity. J. Hum. Nutr. Diet. 2013, 27 (Suppl. 2), 109–116. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, U.S. Department of Health and Human Services, Dietary Guidelines for Americans, 2020–2025. Available online: https://www.dietaryguidelines.gov/ (accessed on 5 January 2023).
- Park, K.-B.; Park, H.A.; Kang, J.-H.; Kim, K.; Cho, Y.G.; Jang, J. Animal and Plant Protein Intake and Body Mass Index and Waist Circumference in a Korean Elderly Population. Nutrients 2018, 10, 577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Mouratidou, T.; Vereecken, C.; Kersting, M.; Bolca, S.; de Moraes, A.C.F.; Cuenca-García, M.; Moreno, L.A.; González-Gross, M.; Valtueña, J.; et al. Dietary animal and plant protein intakes and their associations with obesity and cardio-metabolic indicators in European adolescents: The HELENA cross-sectional study. Nutr. J. 2015, 14, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astrup, A.; Grunwald, G.; Melanson, E.; Saris, W.; Hill, J. The role of low-fat diets in body weight control: A meta-analysis of ad libitum dietary intervention studies. Int. J. Obes. 2000, 24, 1545–1552. [Google Scholar] [CrossRef] [Green Version]
- Bray, G.A.; Popkin, B.M. Dietary fat intake does affect obesity! Am. J. Clin. Nutr. 1998, 68, 1157–1173. [Google Scholar] [CrossRef] [Green Version]
- Nelson, L.H.; Tucker, L.A. Diet Composition Related to Body Fat in a Multivariate Study of 203 Men. J. Am. Diet. Assoc. 1996, 96, 771–777. [Google Scholar] [CrossRef]
- Tucker, L.A.; Kano, M.J. Dietary fat and body fat: A multivariate study of 205 adult females. Am. J. Clin. Nutr. 1992, 56, 616–622. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2016, 54, 858–870. [Google Scholar] [CrossRef] [Green Version]
- Gullón, P.; Gullón, B.; Tavaria, F.; Vasconcelos, M.; Gomes, A.M. In vitro fermentation of lupin seeds (Lupinus albus) and broad beans (Vicia faba): Dynamic modulation of the intestinal microbiota and metabolomic output. Food Funct. 2015, 6, 3316–3322. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.H.; Wu, C.Y. The gut microbiome in obesity. J. Formos. Med. Assoc. 2019, 118 (Suppl. 1), S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Rizkalla, S.W.; Bellisle, F.; Slama, G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Br. J. Nutr. 2002, 88 (Suppl. 3), S255–S262. [Google Scholar] [CrossRef] [PubMed]
- Joslowski, G.; Halim, J.; Goletzke, J.; Gow, M.; Ho, M.; Louie, J.C.-Y.; Buyken, A.E.; Cowell, C.T.; Garnett, S.P. Dietary glycemic load, insulin load, and weight loss in obese, insulin resistant adolescents: RESIST study. Clin. Nutr. 2015, 34, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.M.; Dalskov, S.-M.; van Baak, M.; Jebb, S.A.; Papadaki, A.; Pfeiffer, A.F.; Martinez, J.A.; Handjieva-Darlenska, T.; Kunešová, M.; Pihlsgård, M.; et al. Diets with High or Low Protein Content and Glycemic Index for Weight-Loss Maintenance. N. Engl. J. Med. 2010, 363, 2102–2113. [Google Scholar] [CrossRef] [Green Version]
- Mollard, R.; Zykus, A.; Luhovyy, B.L.; Nunez, M.F.; Wong, C.L.; Anderson, G.H. The acute effects of a pulse-containing meal on glycaemic responses and measures of satiety and satiation within and at a later meal. Br. J. Nutr. 2011, 108, 509–517. [Google Scholar] [CrossRef]
- Li, S.S.; Kendall, C.W.; de Souza, R.J.; Jayalath, V.H.; Cozma, A.I.; Ha, V.; Mirrahimi, A.; Chiavaroli, L.; Augustin, L.S.; Blanco Mejia, S.; et al. Dietary pulses, satiety and food intake: A systematic review and meta-analysis of acute feeding trials. Obesity 2014, 22, 1773–1780. [Google Scholar] [CrossRef]
- Sathe, S.K.; Deshpande, S.S.; Salunkhe, D.K.; Rackis, J.J. Dry beans of phaseolus. A review. Part 2. Chemical composition: Carbohydrates, fiber, minerals, vitamins, and lipids. Crit. Rev. Food Sci. Nutr. 1984, 21, 41–93. [Google Scholar] [CrossRef]
- Tucker, L.A.; Thomas, K.S. Increasing Total Fiber Intake Reduces Risk of Weight and Fat Gains in Women. J. Nutr. 2009, 139, 576–581. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.A.; Ludwig, D.S. Dietary Fiber and Body-Weight Regulation. Observations and mechanisms. Pediatr. Clin. N. Am. 2001, 48, 969–980. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
Variable | Percentile | ||||
---|---|---|---|---|---|
10th | 25th | 50th | 75th | 90th | |
Age (years) | 22.5 | 30.6 | 44.7 | 57.3 | 66.0 |
10-year weight change (%) | −10.6 | −2.9 | 5.5 | 14.6 | 25.9 |
Waist to Height Ratio | 0.47 | 0.52 | 0.58 | 0.65 | 0.73 |
Body Mass Index (kg/m2) | 21.8 | 24.3 | 28.1 | 33.0 | 38.4 |
Energy intake (kcal) | 1244 | 1574 | 2009 | 2553 | 3154 |
Fiber intake (g/1000 kcal) | 4.4 | 5.8 | 7.8 | 10.4 | 13.5 |
Physical Activity (MVPA: min/week) | 0 | 0 | 73 | 239 | 479 |
Cigarettes (per month) | 0 | 0 | 0 | 0 | 290 |
Categorical Variable | N | % | SE |
---|---|---|---|
Sex | |||
Women | 7608 | 50.1 | 0.56 |
Men | 7577 | 49.9 | 0.56 |
Race/Ethnicity | |||
Mexican American | 1473 | 9.7 | 0.98 |
Other Hispanic | 957 | 6.3 | 0.60 |
Non-Hispanic White | 9657 | 63.6 | 1.75 |
Non-Hispanic Black | 1716 | 11.3 | 0.98 |
Non-Hispanic Asian | 835 | 5.5 | 0.48 |
Other Race/Multiracial | 547 | 3.6 | 0.28 |
Year of Assessment | |||
2011–2012 | 3720 | 24.5 | 1.28 |
2013–2014 | 3766 | 24.8 | 1.34 |
2015–2016 | 3796 | 25.0 | 1.18 |
2017–2018 | 3903 | 25.7 | 1.03 |
Economic Status (housing) | |||
Renting | 3584 | 23.6 | 0.99 |
Buying | 7289 | 48.0 | 1.54 |
Other | 4312 | 28.4 | 1.08 |
Alcohol Use | |||
Abstainer | 7046 | 46.4 | 1.12 |
Moderate Drinker | 3872 | 25.5 | 0.92 |
Heavy Drinker | 4267 | 28.1 | 0.65 |
Legume Intake | |||
None | 11,571 | 76.2 | 0.66 |
Low | 1807 | 11.9 | 0.43 |
Moderate/High | 1807 | 11.9 | 0.52 |
Legume Intake (grams/1000 kcal) | ||||||||
---|---|---|---|---|---|---|---|---|
None | Low | Moderate/High | ||||||
Outcome Variable | Mean | 95% CI | Mean | 95% CI | Mean | 95% CI | F | p |
10-yr Percent Weight Change | n = 7673 | n = 1231 | n = 1233 | |||||
Model 1 | 10.5 a | 9.6–11.4 | 9.9 a | 8.3–11.5 | 8.5 b | 7.5–9.6 | 6.7 | 0.0023 |
Model 2 | 10.5 a | 9.6–11.3 | 9.7 a | 8.2–11.3 | 8.5 b | 7.4–9.5 | 6.5 | 0.0028 |
Model 3 | 10.3 | 9.4–11.1 | 9.9 | 8.4–11.5 | 9.3 | 8.3–10.3 | 1.9 | 0.1626 |
Body Mass Index | n = 11,571 | n = 1807 | n = 1807 | |||||
Model 1 | 29.7 a | 29.4–29.9 | 29.1 b | 28.6–29.7 | 28.9 b | 28.5–29.4 | 7.2 | 0.0015 |
Model 2 | 29.5 a | 29.3–29.8 | 29.0 b | 28.4–29.5 | 28.8 b | 28.4–29.3 | 8.0 | 0.0008 |
Model 3 | 29.5 | 29.2–29.7 | 29.1 | 28.6–29.7 | 29.3 | 28.9–29.8 | 0.8 | 0.4399 |
Waist to Height Ratio | n = 11,571 | n = 1807 | n = 1807 | |||||
Model 1 | 0.601 a | 0.596–0.605 | 0.590 b | 0.582–0.598 | 0.589 b | 0.582–0.595 | 9.7 | 0.0002 |
Model 2 | 0.598 a | 0.584–0.612 | 0.589 b | 0.573–0.604 | 0.587 b | 0.572–0.602 | 9.4 | 0.0003 |
Model 3 | 0.599 | 0.592–0.606 | 0.593 | 0.584–0.603 | 0.598 | 0.588–0.607 | 1.2 | 0.3221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucker, L.A. Legume Intake, Body Weight, and Abdominal Adiposity: 10-Year Weight Change and Cross-Sectional Results in 15,185 U.S. Adults. Nutrients 2023, 15, 460. https://doi.org/10.3390/nu15020460
Tucker LA. Legume Intake, Body Weight, and Abdominal Adiposity: 10-Year Weight Change and Cross-Sectional Results in 15,185 U.S. Adults. Nutrients. 2023; 15(2):460. https://doi.org/10.3390/nu15020460
Chicago/Turabian StyleTucker, Larry A. 2023. "Legume Intake, Body Weight, and Abdominal Adiposity: 10-Year Weight Change and Cross-Sectional Results in 15,185 U.S. Adults" Nutrients 15, no. 2: 460. https://doi.org/10.3390/nu15020460
APA StyleTucker, L. A. (2023). Legume Intake, Body Weight, and Abdominal Adiposity: 10-Year Weight Change and Cross-Sectional Results in 15,185 U.S. Adults. Nutrients, 15(2), 460. https://doi.org/10.3390/nu15020460