Should Carbohydrate Intake Be More Liberal during Oral and Enteral Nutrition in Type 2 Diabetic Patients?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 2017, 96, 10–15. [Google Scholar] [CrossRef]
- Coletti, C.; Acosta, G.F.; Keslacy, S.; Coletti, D. Exercise-mediated reinnervation of skeletal muscle in elderly people: An update. Eur. J. Transl. Myol. 2022, 32, 10416. [Google Scholar] [CrossRef] [PubMed]
- Hegerova, P.; Dedkova, Z.; Sobotka, L. Early nutritional support and physiotherapy improved long-term self-sufficiency in acutely ill older patients. Nutrition 2015, 31, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Cereda, E.; Klersy, C.; Faliva, M.A.; Peroni, G.; Nichetti, M.; Gasparri, C.; Iannello, G.; Spadaccini, D.; Infantino, V.; et al. Improving rehabilitation in sarcopenia: A randomized-controlled trial utilizing a muscle-targeted food for special medical purposes. J. Cachexia Sarcopenia Muscle 2020, 11, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- Rogeri, P.S.; Zanella, R., Jr.; Martins, G.L.; Garcia, M.D.; Leite, G.; Lugaresi, R.; Gasparini, S.O.; Sperandio, G.A.; Ferreira, L.H.B.; Souza-Junior, T.P. Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients 2021, 14, 52. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Austin, P.; Boeykens, K.; Chourdakis, M.; Cuerda, C.; Jonkers-Schuitema, C.; Lichota, M.; Nyulasi, I.; Schneider, S.M.; Stanga, Z.; et al. ESPEN guideline on home enteral nutrition. Clin. Nutr. 2020, 39, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Pohl, M.; Mayr, P.; Mertl-Roetzer, M.; Lauster, F.; Lerch, M.; Eriksen, J.; Haslbeck, M.; Rahlfs, V.W. Glycaemic control in type II diabetic tube-fed patients with a new enteral formula low in carbohydrates and high in monounsaturated fatty acids: A randomised controlled trial. Eur. J. Clin. Nutr. 2005, 59, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- Huhmann, M.B.; Yamamoto, S.; Neutel, J.M.; Cohen, S.S.; Ochoa Gautier, J.B. Very high-protein and low-carbohydrate enteral nutrition formula and plasma glucose control in adults with type 2 diabetes mellitus: A randomized crossover trial. Nutr. Diabetes 2018, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Sobotka, L.; Sobotka, O. The predominant role of glucose as a building block and precursor of reducing equivalents. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 555–562. [Google Scholar] [CrossRef]
- Soeters, P.B.; Shenkin, A.; Sobotka, L.; Soeters, M.R.; de Leeuw, P.W.; Wolfe, R.R. The anabolic role of the Warburg, Cori-cycle and Crabtree effects in health and disease. Clin. Nutr. 2021, 40, 2988–2998. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Misra, A.; Mohan, V.; Taylor, R.; Yancy, W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ 2018, 361, k2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendonca, N.; Hill, T.R.; Granic, A.; Davies, K.; Collerton, J.; Mathers, J.C.; Siervo, M.; Wrieden, W.L.; Seal, C.J.; Kirkwood, T.B. Macronutrient intake and food sources in the very old: Analysis of the Newcastle 85+ Study. Br. J. Nutr. 2016, 115, 2170–2180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazdova, Z.; Fiala, J.; Bauerova, J.; Hruba, D. Dietary guidelines in the Czech Republic. I.: Theoretical background and development. Cent. Eur. J. Public Health 2000, 8, 186–190. [Google Scholar] [PubMed]
- Hanks, A.S.; Wansink, B.; Just, D.R. Reliability and accuracy of real-time visualization techniques for measuring school cafeteria tray waste: Validating the quarter-waste method. J. Acad. Nutr. Diet. 2014, 114, 470–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casale, J.; Crane, J.S. Biochemistry, Glycosaminoglycans; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Sprovieri, P.; Martino, G. The role of the carbohydrates in plasmatic membrane. Physiol. Res. 2018, 67, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Yarema, K.J. Carbohydrate engineered cells for regenerative medicine. Adv. Drug Deliv. Rev. 2010, 62, 671–682. [Google Scholar] [CrossRef] [Green Version]
- Cherkas, A.; Holota, S.; Mdzinarashvili, T.; Gabbianelli, R.; Zarkovic, N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants 2020, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Kuehne, A.; Emmert, H.; Soehle, J.; Winnefeld, M.; Fischer, F.; Wenck, H.; Gallinat, S.; Terstegen, L.; Lucius, R.; Hildebrand, J.; et al. Acute Activation of Oxidative Pentose Phosphate Pathway as First-Line Response to Oxidative Stress in Human Skin Cells. Mol. Cell 2015, 59, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Panday, A.; Sahoo, M.K.; Osorio, D.; Batra, S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol. 2015, 12, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Herb, M.; Schramm, M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef]
- Mullen, L.; Mengozzi, M.; Hanschmann, E.M.; Alberts, B.; Ghezzi, P. How the redox state regulates immunity. Free. Radic. Biol. Med. 2020, 157, 3–14. [Google Scholar] [CrossRef]
- Lemus, M.R.; Roussarie, E.; Hammad, N.; Mougeolle, A.; Ransac, S.; Issa, R.; Mazat, J.P.; Uribe-Carvajal, S.; Rigoulet, M.; Devin, A. The role of glycolysis-derived hexose phosphates in the induction of the Crabtree effect. J. Biol. Chem. 2018, 293, 12843–12854. [Google Scholar] [CrossRef] [Green Version]
- Noba, L.; Wakefield, A. Are carbohydrate drinks more effective than preoperative fasting: A systematic review of randomised controlled trials. J. Clin. Nurs. 2019, 28, 3096–3116. [Google Scholar] [CrossRef] [PubMed]
- Nygren, J.; Thorell, A.; Ljungqvist, O. Preoperative oral carbohydrate therapy. Curr. Opin. Anaesthesiol. 2015, 28, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Lidder, P.; Thomas, S.; Fleming, S.; Hosie, K.; Shaw, S.; Lewis, S. A randomized placebo controlled trial of preoperative carbohydrate drinks and early postoperative nutritional supplement drinks in colorectal surgery. Color. Dis. 2013, 15, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Kotfis, K.; Jamiol-Milc, D.; Skonieczna-Zydecka, K.; Folwarski, M.; Stachowska, E. The Effect of Preoperative Carbohydrate Loading on Clinical and Biochemical Outcomes after Cardiac Surgery: A Systematic Review and Meta-Analysis of Randomized Trials. Nutrients 2020, 12, 3105. [Google Scholar] [CrossRef]
- Feguri, G.R.; Lima, P.R.L.; Franco, A.C.; Cruz, F.R.H.D.L.; Borges, D.C.; Toledo, L.R.; Segri, N.J.; Aguilar-Nascimento, J.E.D. Benefits of Fasting Abbreviation with Carbohydrates and Omega-3 Infusion During CABG: A Double-Blind Controlled Randomized Trial. Braz. J. Cardiovasc. Surg. 2019, 34, 125–135. [Google Scholar] [CrossRef]
- Ljungqvist, O. Modulating postoperative insulin resistance by preoperative carbohydrate loading. Best Pract. Res. Clin. Anaesthesiol. 2009, 23, 401–409. [Google Scholar] [CrossRef]
- Rothman, D.L.; Magnusson, I.; Katz, L.D.; Shulman, R.G.; Shulman, G.I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 1991, 254, 573–576. [Google Scholar] [CrossRef]
- Soeters, M.R.; Soeters, P.B. The evolutionary benefit of insulin resistance. Clin. Nutr. 2012, 31, 1002–1007. [Google Scholar] [CrossRef]
- Soeters, M.R.; Soeters, P.B.; Schooneman, M.G.; Houten, S.M.; Romijn, J.A. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am. J. Physiol.-Endocrinol. Metab. 2012, 303, E1397–E1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, K.F.; Price, T.B.; Bergeron, R. Regulation of net hepatic glycogenolysis and gluconeogenesis during exercise: Impact of type 1 diabetes. J. Clin. Endocrinol. Metab. 2004, 89, 4656–4664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skorepa, P.; Sobotka, O.; Vanek, J.; Ticha, A.; Fortunato, J.; Manak, J.; Blaha, V.; Horacek, J.M.; Sobotka, L. The Impact of Glucose-Based or Lipid-Based Total Parenteral Nutrition on the Free Fatty Acids Profile in Critically Ill Patients. Nutrients 2020, 12, 1373. [Google Scholar] [CrossRef]
- Campbell, G.J.; Senior, A.M.; Bell-Anderson, K.S. Metabolic Effects of High Glycaemic Index Diets: A Systematic Review and Meta-Analysis of Feeding Studies in Mice and Rats. Nutrients 2017, 9, 646. [Google Scholar] [CrossRef] [PubMed]
Type 2 Diabetes | No Diabetes | |
---|---|---|
n (Female) | 14 (8) | 7 (6) |
Age (years) | 72.7 ± 9.8 | 78.9 ± 7.6 |
Height (cm) | 164.6 ± 8.4 | 163.6 ± 6.0 |
Weight (kg) | 85.8 ± 20.3 | 72.6 ± 6.2 * |
Standard diet | ||
Energy (kcal/day) | 2082.5 ± 114.0 | 2219.1 ± 117.7 * |
Carbohydrate (g/day) | 233.4 ± 20.8 | 317.1 ± 24.3 ** |
Protein (g/day) | 90.0 ± 12.6 | 84.0 ± 3.9 |
Fat (g/day) | 87.6 ± 3.6 | 68.3 ± 6.5 ** |
Standard diet + maltodextrin | ||
Energy (kcal/day) | 2642.7 ± 120.2 | 2839.6 ± 133.5 * |
Carbohydrate (g/day) | 384.0 ± 16.6 | 467.1 ± 24.3 ** |
Protein (g/day) | 88.6 ± 9.4 | 85.6 ± 3.8 |
Fat (g/day) | 83.6 ± 6.4 | 69.9 ± 4.2 ** |
T2DM Patients | Plasma Glucose Levels (mmol/L) | |||
---|---|---|---|---|
Time interval | Control | Maltodextrin | p | |
0:00–6:30 | 6.37 ± 2.54 | 6.21 ± 2.17 | 0.206 | |
6:30–10:00 | 8.19 ± 2.47 | 8.93 ± 2.90 | 0.005 | |
10:00–11:30 | 7.66 ± 2.83 | 9.71 ± 4.21 | <0.001 | |
11:30–14:30 | 6.90 ± 2.02 | 9.34 ± 3.50 | <0.001 | |
14:30–17:30 | 6.99 ± 1.81 | 7.67 ± 2.42 | 0.034 | |
17:30–20:30 | 7.77 ± 2.29 | 9.16 ± 2.85 | <0.001 | |
20:30–0:00 | 7.40 ± 2.93 | 7.60 ± 3.09 | 0.313 | |
Nondiabetic patients | ||||
Time interval | Control | Maltodextrin | p | |
0:00–6:30 | 5.22 ± 0.30 | 4.83 ± 0.31 | 0.01 | |
6:30–10:00 | 6.06 ± 0.39 | 5.97 ± 0.55 | 0.263 | |
10:00–11:30 | 5.83 ± 0.38 | 5.80 ± 0.69 | 0.454 | |
11:30–14:30 | 5.94 ± 0.43 | 6.10 ± 0.61 | 0.177 | |
14:30–17:30 | 6.13 ± 0.38 | 5.94 ± 0.30 | 0.128 | |
17:30–20:30 | 5.96 ± 0.38 | 6.10 ± 0.34 | 0.158 | |
20:30–0:00 | 5.54 ± 0.23 | 5.34 ± 0.27 | 0.140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobotka, O.; Ticha, M.; Kubickova, M.; Adamek, P.; Polakova, L.; Mezera, V.; Sobotka, L. Should Carbohydrate Intake Be More Liberal during Oral and Enteral Nutrition in Type 2 Diabetic Patients? Nutrients 2023, 15, 439. https://doi.org/10.3390/nu15020439
Sobotka O, Ticha M, Kubickova M, Adamek P, Polakova L, Mezera V, Sobotka L. Should Carbohydrate Intake Be More Liberal during Oral and Enteral Nutrition in Type 2 Diabetic Patients? Nutrients. 2023; 15(2):439. https://doi.org/10.3390/nu15020439
Chicago/Turabian StyleSobotka, Ondrej, Marie Ticha, Marketa Kubickova, Petr Adamek, Lenka Polakova, Vojtech Mezera, and Lubos Sobotka. 2023. "Should Carbohydrate Intake Be More Liberal during Oral and Enteral Nutrition in Type 2 Diabetic Patients?" Nutrients 15, no. 2: 439. https://doi.org/10.3390/nu15020439
APA StyleSobotka, O., Ticha, M., Kubickova, M., Adamek, P., Polakova, L., Mezera, V., & Sobotka, L. (2023). Should Carbohydrate Intake Be More Liberal during Oral and Enteral Nutrition in Type 2 Diabetic Patients? Nutrients, 15(2), 439. https://doi.org/10.3390/nu15020439