Acute Benefits of Acidified Milk Drinks with 10-g and 15-g Protein on Shifting and Updating Performances in Young Adults: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting of This RCT
2.2. Participants
2.3. Sample Size
2.4. Randomization
2.5. General Procedure
2.6. Milk Protein and Placebo Drinks
2.7. Cognitive Functional Assessments
2.8. Mood State Measure
2.9. Visual Analog Scales for Drinks
2.10. Measurement of Blood Glucose Levels
2.11. Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glenn, J.M.; Madero, E.N.; Bott, N.T. Dietary Protein and Amino Acid Intake: Links to the Maintenance of Cognitive Health. Nutrients 2019, 11, 1315. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, S.; Wang, W.; Zhang, D. Association between Dietary Protein Intake and Cognitive Function in Adults Aged 60 Years and Older. J. Nutr. Health Aging 2020, 24, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kang, S.W. Relationships between Dietary Intake and Cognitive Function in Healthy Korean Children and Adolescents. J. Lifestyle Med. 2017, 7, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobsen, L.H.; Kondrup, J.; Zellner, M.; Tetens, I.; Roth, E. Effect of a High Protein Meat Diet on Muscle and Cognitive Functions: A Randomised Controlled Dietary Intervention Trial in Healthy Men. Clin. Nutr. 2011, 30, 303–311. [Google Scholar] [CrossRef]
- Van der Zwaluw, N.L.; van de Rest, O.; Tieland, M.; Adam, J.J.; Hiddink, G.J.; van Loon, L.J.C.C.; de Groot, L.C.P.G.M.P.G.M. The Impact of Protein Supplementation on Cognitive Performance in Frail Elderly. Eur. J. Nutr. 2014, 53, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Van de Rest, O.; van der Zwaluw, N.L.; de Groot, L.C.P.G.M. Literature Review on the Role of Dietary Protein and Amino Acids in Cognitive Functioning and Cognitive Decline. Amino Acids 2013, 45, 1035–1045. [Google Scholar] [CrossRef]
- Wolfe, R.R. Update on Protein Intake: Importance of Milk Proteins for Health Status of the Elderly. Nutr. Rev. 2015, 73, 41–47. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, W.K.; Kang, M.H. Relationships between Milk Consumption and Academic Performance, Learning Motivation and Strategy, and Personality in Korean Adolescents. Nutr. Res. Pr. 2016, 10, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Sun, D. Meta-Analysis of Milk Consumption and the Risk of Cognitive Disorders. Nutrients 2016, 8, 824. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Singh, L.; van Liefde, D.; Callaghan-Gillespie, M.; Steiner-Asiedu, M.; Saalia, K.; Edwards, C.; Serena, A.; Hershey, T.; Manary, M.J. Milk Powder Added to a School Meal Increases Cognitive Test Scores in Ghanaian Children. J. Nutr. 2018, 148, 1177–1184. [Google Scholar] [CrossRef]
- Zeng, Y.-C.; Li, S.-M.; Xiong, G.-L.; Su, H.-M.; Wan, J.-C. Influences of Protein to Energy Ratios in Breakfast on Mood, Alertness and Attention in the Healthy Undergraduate Students. Health N. Hav. 2011, 3, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Fischer, K.; Colombani, P.C.; Langhans, W.; Wenk, C. Carbohydrate to Protein Ratio in Food and Cognitive Performance in the Morning. Physiol. Behav. 2002, 75, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.K.; Sünram-Lea, S.I.; Wesnes, K.A. Acute Ingestion of Different Macronutrients Differentially Enhances Aspects of Memory and Attention in Healthy Young Adults. Biol. Psychol. 2012, 89, 477–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.-P.; Maubois, J.-L.; Beaufrère, B. Slow and Fast Dietary Proteins Differently Modulate Postprandial Protein Accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, Y.; Murata, N.; Noma, T.; Itoh, H.; Kayano, M.; Nakamura, K.; Urashima, T. Relationship of a Special Acidified Milk Protein Drink with Cognitive Performance: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Young Adults. Nutrients 2018, 10, 574. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, K.; Kanda, A.; Tagawa, R.; Sanbongi, C.; Ikegami, S.; Itoh, H. Post-Exercise Muscle Protein Synthesis in Rats after Ingestion of Acidified Bovine Milk Compared with Skim Milk. Nutrients 2017, 9, 1071. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, K.; Saito, Y.; Sanbongi, C.; Murata, K.; Urashima, T. Effects of Low-Dose Milk Protein Supplementation Following Low-to-Moderate Intensity Exercise Training on Muscle Mass in Healthy Older Adults: A Randomized Placebo-Controlled Trial. Eur. J. Nutr. 2020, 60, 917–928. [Google Scholar] [CrossRef]
- Wegrzyn, T.F.; Henare, S.; Ahlborn, N.; Ahmed Nasef, N.; Samuelsson, L.M.; Loveday, S.M. The Plasma Amino Acid Response to Blended Protein Beverages: A Randomised Crossover Trial. Br. J. Nutr. 2022, 128, 1555–1564. [Google Scholar] [CrossRef]
- Griffin, J.W.D.; Bradshaw, P.C. Amino Acid Catabolism in Alzheimer’s Disease Brain: Friend or Foe? Oxid Med. Cell Longev. 2017, 2017, 5472792. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Yamashiro, D.; Ogawa, S.; Kobayashi, M.; Cho, D.; Iizuka, A.; Tsukamoto-Yasui, M.; Takada, M.; Isokawa, M.; Nagao, K.; et al. Intake of Seven Essential Amino Acids Improves Cognitive Function and Psychological and Social Function in Middle-Aged and Older Adults: A Double-Blind, Randomized, Placebo-Controlled Trial. Front. Nutr. 2020, 7, 586166. [Google Scholar] [CrossRef]
- Abe, S.; Ezaki, O.; Suzuki, M. Medium-Chain Triglycerides in Combination with Leucine and Vitamin D Benefit Cognition in Frail Elderly Adults: A Randomized Controlled Trial. J. Nutr. Sci. Vitam. 2017, 63, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.R.; Hawkins, M.A.W.; Updegraff, J.; Gunstad, J.; Spitznagel, M.B. Baseline Glucoregulatory Function Moderates the Effect of Dairy Milk and Fruit Juice on Postprandial Cognition in Healthy Young Adults. Eur. J. Nutr. 2018, 57, 2343–2352. [Google Scholar] [CrossRef] [PubMed]
- Nabb, S.; Benton, D. The Influence on Cognition of the Interaction between the Macro-Nutrient Content of Breakfast and Glucose Tolerance. Physiol. Behav. 2006, 87, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, M.A.W.; Gunstad, J.; Calvo, D.; Spitznagel, M.B. Higher Fasting Glucose Is Associated with Poorer Cognition among Healthy Young Adults. Health Psychol. 2016, 35, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.R.; Marfella, R.; Barbieri, M.; Boccardi, V.; Vestini, F.; Lettieri, B.; Canonico, S.; Paolisso, G. Relationships Between Daily Acute Glucose Fluctuations and Cognitive Performance Among Aged Type 2 Diabetic Patients. Diabetes Care 2010, 33, 2169–2174. [Google Scholar] [CrossRef] [Green Version]
- Green, P.; MacLeod, C.J. SIMR: An R Package for Power Analysis of Generalized Linear Mixed Models by Simulation. Methods Ecol. Evol. 2016, 7, 493–498. [Google Scholar] [CrossRef]
- Raven, J. Manual for Raven’s Progressive Matrices and Vocabulary Scales; Oxford Psychologist Press: Oxford, UK, 1998. [Google Scholar]
- Matsuoka, K.; Uno, M.; Kasai, K.; Koyama, K.; Kim, Y. Estimation of Premorbid IQ in Individuals with Alzheimer’s Disease Using Japanese Ideographic Script (Kanji) Compound Words: Japanese Version of National Adult Reading Test. Psychiatry Clin. Neurosci. 2006, 60, 332–339. [Google Scholar] [CrossRef]
- Peirce, J.; Gray, J.R.; Simpson, S.; MacAskill, M.; Höchenberger, R.; Sogo, H.; Kastman, E.; Lindeløv, J.K. PsychoPy2: Experiments in Behavior Made Easy. Behav. Res. Methods 2019, 51, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Spector, A.; Biederman, I. Mental Set and Mental Shift Revisited. Am. J. Psychol. 1976, 89, 670. [Google Scholar] [CrossRef]
- Liang, Y.; Huo, M.; Kennison, R.; Zhou, R. The Role of Cognitive Control in Older Adult Cognitive Reappraisal: Detached and Positive Reappraisal. Front. Behav. Neurosci. 2017, 11, 27. [Google Scholar] [CrossRef]
- Hakoda, Y.; Watanabe, M. Manual for New Stroop Test II; Toyo Physical: Fukuoka, Japan, 2004. [Google Scholar]
- Fiore, F.; Borella, E.; Mammarella, I.C.; de Beni, R. Age Differences in Verbal and Visuo-Spatial Working Memory Updating: Evidence from Analysis of Serial Position Curves. Memory 2012, 20, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Morris, N.; Jones, D.M. Memory Updating in Working Memory: The Role of the Central Executive. Br. J. Psychol. 1990, 81, 111–121. [Google Scholar] [CrossRef]
- Silva, P.H.R.; Spedo, C.T.; Baldassarini, C.R.; Benini, C.D.; Ferreira, D.A.; Barreira, A.A.; Leoni, R.F. Brain Functional and Effective Connectivity Underlying the Information Processing Speed Assessed by the Symbol Digit Modalities Test. Neuroimage 2019, 184, 761–770. [Google Scholar] [CrossRef]
- Cornelis, C.; de Picker, L.J.; Hulstijn, W.; Dumont, G.; Timmers, M.; Janssens, L.; Sabbe, B.G.C.; Morrens, M. Preserved Learning during the Symbol-Digit Substitution Test in Patients with Schizophrenia, Age-Matched Controls, and Elderly. Front. Psychiatry 2015, 5, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wechsler, D.A. Wechsler Adult Intelligence Scale, 3rd ed.; The Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Woods, D.L.; Kishiyama, M.M.; Yund, E.W.; Herron, T.J.; Edwards, B.; Poliva, O.; Hink, R.F.; Reed, B. Improving Digit Span Assessment of Short-Term Verbal Memory. J. Clin. Exp. Neuropsychol. 2011, 33, 101–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuchert, J.P.; McNair, D.M. POMS-2 Manual: A Profile of Mood States, 2nd ed.; Multi-Health Systems Inc.: North Tonawanda, NY, USA, 2012. [Google Scholar]
- Yokoyama, K.; Watanabe, K. Japanese Version POMS-2 Manual: A Profile of Mood States, 2nd ed.; Kaneko Shobo: Tokyo, Japan, 2015. [Google Scholar]
- Sakairi, Y.; Nakatsuka, K.; Shimizu, T. Development of the Two-Dimensional Mood Scale for Self-Monitoring and Self-Regulation of Momentary Mood States. Jpn. Psychol. Res. 2013, 55, 338–349. [Google Scholar] [CrossRef]
- Nouchi, R.; Kobayashi, A.; Nouchi, H.; Kawashima, R. Newly Developed TV-Based Cognitive Training Games Improve Car Driving Skills, Cognitive Functions, and Mood in Healthy Older Adults: Evidence From a Randomized Controlled Trial. Front. Aging Neurosci. 2019, 11, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Chen, Q.; Chen, Y.; Zhong, R. The Effect of Sweet Taste on Romantic Semantic Processing: An ERP Study. Front. Psychol. 2019, 10, 1573. [Google Scholar] [CrossRef] [PubMed]
- Grabenhorst, F.; Rolls, E.T.; Bilderbeck, A. How Cognition Modulates Affective Responses to Taste and Flavor: Top-down Influences on the Orbitofrontal and Pregenual Cingulate Cortices. Cereb. Cortex 2008, 18, 1549–1559. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.J.; Thompson, C.H.; Luscombe-Marsh, N.D.; Wycherley, T.P.; Wittert, G.; Brinkworth, G.D. Efficacy of Real-Time Continuous Glucose Monitoring to Improve Effects of a Prescriptive Lifestyle Intervention in Type 2 Diabetes: A Pilot Study. Diabetes Ther. 2019, 10, 509–522. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Kleinke, K. Multiple Imputation by Predictive Mean Matching When Sample Size Is Small. J. Res. Methods Behav. Soc. Sci. 2018, 14, 3. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics. J. Educ. Behav. Stat. 2000, 25, 60–83. [Google Scholar] [CrossRef] [Green Version]
- Crichton, G.E.; Elias, M.F.; Dore, G.A.; Robbins, M.A. Relation between Dairy Food Intake and Cognitive Function: The Maine-Syracuse Longitudinal Study. Int. Dairy J. 2012, 22, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Brindal, E.; Baird, D.; Slater, A.; Danthiir, V.; Wilson, C.; Bowen, J.; Noakes, M. The Effect of Beverages Varying in Glycaemic Load on Postprandial Glucose Responses, Appetite and Cognition in 10-12-Year-Old School Children. Br. J. Nutr. 2013, 110, 529–537. [Google Scholar] [CrossRef]
- Kaplan, R.J.; Greenwood, C.E.; Winocur, G.; Wolever, T.M.S. Dietary Protein, Carbohydrate, and Fat Enhance Memory Performance in the Healthy Elderly. Am. J. Clin. Nutr. 2001, 74, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Hall, W.L.; Millward, D.J.; Long, S.J.; Morgan, L.M. Casein and Whey Exert Different Effects on Plasma Amino Acid Profiles, Gastrointestinal Hormone Secretion and Appetite. Br. J. Nutr. 2003, 89, 239–248. [Google Scholar] [CrossRef]
- Dalangin, R.; Kim, A.; Campbell, R.E. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int. J. Mol. Sci. 2020, 21, 6197. [Google Scholar] [CrossRef]
- Liberman, H.R. Amino Acid and Protein Requirements: Cognitive Performance, Stress, and Brain Function. In The Role of Protein and Amino Acids in Sustaining and Enhancing Performance; Nutrition, T.C.M., Ed.; National Academy Press: Washington, DC, USA, 1999; pp. 289–307. [Google Scholar]
- Yudkoff, M. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS. Neurochem. Res. 2017, 42, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Yudkoff, M.; Daikhin, Y.; Nissim, I.; Horyn, O.; Luhovyy, B.; Lazarow, A.; Nissim, I. Brain Amino Acid Requirements and Toxicity: The Example of Leucine. J. Nutr. 2005, 135, 1531S–1538S. [Google Scholar] [CrossRef]
- Aquili, L. The Role of Tryptophan and Tyrosine in Executive Function and Reward Processing. Int. J. Tryptophan Res. 2020, 13, 117864692096482. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Quaresma, M.; Souza, W.; Lemos, V.; Caris, A.; Thomatieli-Santos, R. The Possible Importance of Glutamine Supplementation to Mood and Cognition in Hypoxia from High Altitude. Nutrients 2020, 12, 3627. [Google Scholar] [CrossRef] [PubMed]
- Horstman, A.M.H.; Ganzevles, R.A.; Kudla, U.; Kardinaal, A.F.M.; van den Borne, J.J.G.C.; Huppertz, T. Postprandial Blood Amino Acid Concentrations in Older Adults after Consumption of Dairy Products: The Role of the Dairy Matrix. Int. Dairy J. 2021, 113, 104890. [Google Scholar] [CrossRef]
- Fernstrom, J.D. Branched-Chain Amino Acids and Brain Function. J. Nutr. 2005, 135, 1539S–1546S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, G.; van Aken, L.; de Mey, H.; Witteman, C.; Egger, J. Decline of Executive Function in a Clinical Population: Age, Psychopathology, and Test Performance on the Cambridge Neuropsychological Test Automated Battery (CANTAB). Appl. Neuropsychol. Adult 2014, 21, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, H.J.; Brunsdon, V.E.A.; Bradford, E.E.F. The Developmental Trajectories of Executive Function from Adolescence to Old Age. Sci. Rep. 2021, 11, 1382. [Google Scholar] [CrossRef]
0-g Milk Group | 10-g Milk Group | 15-g Milk Group | p Value | ||
---|---|---|---|---|---|
Age | M | 22.38 | 22.56 | 21.78 | 0.92 |
SD | (1.75) | (1.76) | (1.66) | ||
Height | M | 169.51 | 167.52 | 169.47 | 0.82 |
(cm) | SD | (6.69) | (9.61) | (8.06) | |
Weight | M | 61.21 | 60.52 | 59.26 | 0.76 |
(kg) | SD | (9.08) | (10.06) | (10.57) | |
Japanese Reading Test | M | 20.76 | 21.78 | 21.11 | 0.21 |
(score) | SD | (2.68) | (2.69) | (2.48) | |
Raven’s progressive matrix test | M | 29.76 | 28.67 | 29.63 | 0.57 |
(score) | SD | (2.41) | (2.22) | (3.85) |
Drink | 0-g Milk Protein Drink Group | 10-g Milk Protein Drink Group | 15-g Milk Protein Drink Group |
---|---|---|---|
Basic ingredients (%) | |||
Milk protein | 0 | 3.1 | 4.6 |
Glucose | 4.6 | 4.6 | 4.6 |
Gelling agents | 1.6 | 1.6 | 1.6 |
Sweetener | 0.01 | 0.01 | 0.01 |
Flavoring agent | 0.05 | 0.05 | 0.05 |
Acidifier | 0.3 | 0.6 | 0.6 |
Water | 93.5 | 90.1 | 88.6 |
Total | 100 | 100 | 100 |
Nutrient | |||
Protein (g) | 0.1 | 10.2 | 15.1 |
Fat (g) | 0 | 0.2 | 0.3 |
Carbohydrate (g) | 22.5 | 23.3 | 23.7 |
Dietary fiber (g) | 1.3 | 1.3 | 1.3 |
Ash content (g) | 0.5 | 1.3 | 1.7 |
Sodium (mg) | 120 | 120 | 126 |
Energy (kcal) | 92.7 | 138.3 | 160.3 |
Before the Drink Intake | Immediately after the Drink Intake | At 15 min after the Drink Intake | At 60 min after the Drink Intake | |
---|---|---|---|---|
0-g milk group | 82.21 (7.51) | 80.74 (8.66) | 83.42 (9.84) | 89.40 (9.49) |
10-g milk group | 78.22 (10.60) | 76.56 (8.65) | 79.83 (9.87) | 87.00 (14.15) |
15-g milk group | 81.95 (11.33) | 79.58 (10.09) | 81.26 (12.67) | 86.74 (14.38) |
Before the Drink Intake | At 15 min after the Drink Intake | At 60 min after the Drink Intake | |
---|---|---|---|
Digit symbol coding | |||
0-g milk group | 0.01 | −0.25 | −0.19 |
10-g milk group | 0.05 | −0.18 | −0.13 |
15-g milk group | 0.28 | 0.08 | −0.13 |
Stroop task | |||
0-g milk group | 0.06 | 0.23 | 0.24 |
10-g milk group | −0.07 | −0.24 | −0.33 |
15-g milk group | 0.08 | 0.06 | 0.30 |
Plus-minus task | |||
0-g milk group | 0.00 | 0.02 | 0.05 |
10-g milk group | −0.21 | 0.37 | 0.06 |
15-g milk group | −0.20 | 0.30 | −0.07 |
Verbal running working memory | |||
0-g milk group | 0.15 | 0.13 | 0.25 |
10-g milk group | −0.16 | −0.17 | −0.34 |
15-g milk group | −0.19 | −0.07 | −0.10 |
Digit span backward | |||
0-g milk group | 0.37 | −0.07 | 0.37 |
10-g milk group | 0.19 | −0.13 | 0.02 |
15-g milk group | 0.11 | −0.09 | −0.18 |
0-g Milk Group | 10-g Milk Group | 15-g Milk Group | |
---|---|---|---|
Sweetness | 5.98 (2.32) | 5.99 (2.26) | 6.08 (2.34) |
Sourness | 5.42 (2.15) | 5.18 (3.06) | 5.48 (2.31) |
Bitterness | 0.71 (0.96) | 0.77 (1.03) | 0.88 (1.67) |
General Preference | 6.27 (2.02) | 5.29 (2.42) | 6.36 (2.55) |
Before the Drink Intake | At 15 min after the Drink Intake | At 60 min after the Drink Intake | ||||
---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |
Digit symbol coding (total correct answers) | ||||||
0-g milk group | 34.91 | (4.99) | 35.18 | (4.56) | 36.27 | (4.91) |
10-g milk group | 33.91 | (5.29) | 33.91 | (4.68) | 36.05 | (4.92) |
15-g milk group | 33.09 | (5.16) | 35.14 | (4.22) | 35.45 | (4.86) |
Stroop task (total correct answers) | ||||||
0-g milk group | 62.57 | (4.18) | 63.14 | (3.34) | 64.95 | (3.26) |
10-g milk group | 62.61 | (4.22) | 63.39 | (4.29) | 63.00 | (5.19) |
15-g milk group | 60.79 | (2.48) | 61.26 | (3.85) | 61.21 | (2.65) |
Plus-minus task (msecs) | ||||||
0-g milk group | 291 | (283) | 299 | (220) | 265 | (140) |
10-g milk group | 293 | (499) | 49 * | (151) | 67 | (139) |
15-g milk group | 305 | (373) | 46 * | (159) | 47 * | (143) |
Verbal running working memory task (Accuracy (%)) | ||||||
0-g milk group | 0.73 | (0.16) | 0.73 | (0.15) | 0.76 | (0.13) |
10-g milk group | 0.73 | (0.19) | 0.86 | (0.12) | 0.90 * | (0.13) |
15-g milk group | 0.75 | (0.17) | 0.84 | (0.17) | 0.91 * | (0.12) |
Digit span backward (number of digits) | ||||||
0-g milk group | 6.55 | (1.82) | 6.45 | (1.84) | 7.45 | (1.60) |
10-g milk group | 6.00 | (1.20) | 6.64 | (2.26) | 7.59 | (1.56) |
15-g milk group | 6.23 | (1.51) | 6.73 | (2.27) | 7.00 | (2.07) |
Before Experiment | After Experiment | |||
---|---|---|---|---|
M | SD | M | SD | |
Anger–Hostility | ||||
0-g milk protein drink-group | 2.76 | (3.62) | 1.67 | (2.13) |
10-g milk protein drink-group | 2.17 | (3.45) | 1.44 | (2.33) |
15-g milk protein drink-group | 2.06 | (2.86) | 1.94 | (3.86) |
Confusion–Bewilderment | ||||
0-g milk protein drink-group | 4.33 | (2.97) | 3.67 | (2.42) |
10-g milk protein drink-group | 4.56 | (3.71) | 3.94 | (3.11) |
15-g milk protein drink-group | 4.00 | (3.48) | 3.17 | (2.92) |
Depression–Dejection | ||||
0-g milk protein drink-group | 3.95 | (3.85) | 3.19 | (3.70) |
10-g milk protein drink-group | 2.56 | (2.18) | 1.72 | (2.42) |
15-g milk protein drink-group | 2.22 | (2.82) | 2.06 | (3.21) |
Fatigue–Inertia | ||||
0-g milk protein drink-group | 5.38 | (3.61) | 4.95 | (3.35) |
10-g milk protein drink-group | 5.83 | (4.79) | 4.94 | (3.40) |
15-g milk protein drink-group | 4.39 | (4.09) | 4.89 | (4.34) |
Tension–Anxiety | ||||
0-g milk protein drink-group | 5.62 | (2.77) | 4.00 | (2.65) |
10-g milk protein drink-group | 5.22 | (3.64) | 3.22 | (2.67) |
15-g milk protein drink-group | 5.17 | (4.20) | 3.00 | (3.27) |
Vigor–Activity | ||||
0-g milk protein drink-group | 5.95 | (3.06) | 5.14 | (4.05) |
10-g milk protein drink-group | 6.44 | (3.99) | 4.56 | (3.55) |
15-g milk protein drink-group | 6.33 | (3.58) | 5.78 | (3.56) |
Friendliness | ||||
0-g milk protein drink-group | 10.95 | (4.14) | 11.33 | (5.00) |
10-g milk protein drink-group | 9.94 | (4.65) | 9.80 | (4.60) |
15-g milk protein drink-group | 11.33 | (3.63) | 10.33 | (4.12) |
Before the Drink Intake | Immediately after the Drink Intake | At 15 min after the Drink Intake | At 60 min after the Drink Intake | |||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | |
Energetic | ||||||||
0-g milk group | 3.29 | (1.38) | 3.33 | (1.06) | 3.29 | (1.38) | 3.57 | (1.29) |
10-g milk group | 3.22 | (1.35) | 3.22 | (1.40) | 3.61 | (1.42) | 3.67 | (1.57) |
15-g milk group | 3.39 | (1.04) | 3.72 | (1.13) | 3.11 | (1.37) | 3.50 | (1.29) |
Lively | ||||||||
0-g milk group | 0.29 | (0.56) | 0.14 | (0.36) | 0.43 | (0.98) | 0.24 | (0.44) |
10-g milk group | 0.83 | (0.99) | 0.56 | (0.98) | 0.83 | (0.79) | 0.83 | (1.04) |
15-g milk group | 0.39 | (0.78) | 0.11 | (0.32) | 0.61 | (0.92) | 0.72 | (1.07) |
Lethargic | ||||||||
0-g milk group | 1.19 | (1.17) | 0.71 | (1.06) | 0.90 | (1.30) | 0.95 | (1.24) |
10-g milk group | 1.06 | (1.11) | 0.78 | (0.81) | 0.67 | (0.77) | 1.06 | (0.87) |
15-g milk group | 1.50 | (1.15) | 1.00 | (1.33) | 1.06 | (1.16) | 1.33 | (1.19) |
Listless | ||||||||
0-g milk group | 1.43 | (1.08) | 1.62 | (1.20) | 1.76 | (1.34) | 1.81 | (1.63) |
10-g milk group | 1.67 | (1.61) | 1.78 | (1.40) | 1.72 | (1.13) | 1.33 | (1.08) |
15-g milk group | 1.11 | (1.08) | 1.94 | (1.06) | 1.71 | (1.16) | 1.33 | (1.08) |
Relaxed | ||||||||
0-g milk group | 3.29 | (1.19) | 3.33 | (1.15) | 3.10 | (1.45) | 3.38 | (1.32) |
10-g milk group | 3.00 | (1.41) | 2.78 | (1.52) | 2.56 | (1.34) | 2.67 | (1.53) |
15-g milk group | 3.17 | (1.04) | 3.44 | (1.29) | 2.94 | (0.94) | 3.11 | (1.45) |
Calm | ||||||||
0-g milk group | 0.48 | (0.81) | 0.44 | (0.36) | 0.29 | (0.56) | 0.48 | (1.03) |
10-g milk group | 0.43 | (1.15) | 0.44 | (0.70) | 0.78 | (0.81) | 0.61 | (1.09) |
15-g milk group | 0.44 | (0.62) | 0.42 | (0.55) | 0.44 | (0.70) | 0.39 | (0.85) |
Irritated | ||||||||
0-g milk group | 1.19 | (1.33) | 0.81 | (1.03) | 1.14 | (1.39) | 1.05 | (1.28) |
10-g milk group | 1.28 | (1.13) | 1.28 | (1.23) | 1.11 | (1.13) | 1.44 | (1.15) |
15-g milk group | 1.39 | (1.33) | 1.22 | (1.35) | 1.17 | (1.15) | 1.56 | (1.25) |
Nervous | ||||||||
0-g milk group | 1.33 | (1.06) | 1.81 | (1.17) | 1.81 | (1.50) | 1.67 | (1.49) |
10-g milk group | 1.56 | (1.46) | 1.72 | (1.36) | 1.33 | (1.24) | 1.33 | (1.03) |
15-g milk group | 1.39 | (1.24) | 1.83 | (1.25) | 1.67 | (1.08) | 1.22 | (1.22) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nouchi, R.; Butler, L.T.; Lamport, D.; Nouchi, H.; Kawashima, R. Acute Benefits of Acidified Milk Drinks with 10-g and 15-g Protein on Shifting and Updating Performances in Young Adults: A Randomized Controlled Trial. Nutrients 2023, 15, 431. https://doi.org/10.3390/nu15020431
Nouchi R, Butler LT, Lamport D, Nouchi H, Kawashima R. Acute Benefits of Acidified Milk Drinks with 10-g and 15-g Protein on Shifting and Updating Performances in Young Adults: A Randomized Controlled Trial. Nutrients. 2023; 15(2):431. https://doi.org/10.3390/nu15020431
Chicago/Turabian StyleNouchi, Rui, Laurie T. Butler, Daniel Lamport, Haruka Nouchi, and Ryuta Kawashima. 2023. "Acute Benefits of Acidified Milk Drinks with 10-g and 15-g Protein on Shifting and Updating Performances in Young Adults: A Randomized Controlled Trial" Nutrients 15, no. 2: 431. https://doi.org/10.3390/nu15020431
APA StyleNouchi, R., Butler, L. T., Lamport, D., Nouchi, H., & Kawashima, R. (2023). Acute Benefits of Acidified Milk Drinks with 10-g and 15-g Protein on Shifting and Updating Performances in Young Adults: A Randomized Controlled Trial. Nutrients, 15(2), 431. https://doi.org/10.3390/nu15020431